MODEL POINTS AND TVAR IN LIFE INSURANCE

Julien Trufin (Joint work with Michel Denuit)

> Department of Mathematics ULB, Brussels, Belgium

CIRM, Luminy, February 2016

Problem of interest

Motivation:

- Life insurance models are becoming more and more sophisticated under Solvency 2 regulation.
 - Cash-flow projection: based on a **policy-by-policy approach**.
- However, the use of Monte-Carlo simulations based on a policy-by-policy approach often leads to **large running times**.
- A way to address this problem: to rely on grouping methods.
 - Under certain conditions, the regulator permits the projection of future cash-flows based on suitable model points.
 - Basic idea:

(1) To aggregate policies into homogeneous groups;

(2) To replace the group of contracts with a representative insurance policy in order to speed the simulation process.

• **Goal here**: to homogenize a group of policies by controlling the impact on Tail-Value-at-Risk (TVaR).

Problem of interest

Context:

We consider independent risks X_1, \ldots, X_n causing an aggregate loss amount

$$S=X_1+X_2+\ldots+X_n.$$

We denote by F_i the distribution function of X_i (i = 1, ..., n) and we assume that

$$F_1(x) \ge F_2(x) \ge \cdots \ge F_n(x)$$
 for all x .

Problem of interest

Goal:

To build two sets of iid random variables X_1^-,\ldots,X_n^- and X_1^+,\ldots,X_n^+ such that

 $TVaR[X_1^- + \ldots + X_n^-] \leq TVaR[S] \leq TVaR[X_1^+ + \ldots + X_n^+].$

Upper bound: main result

Proposition:

Let us define iid random variables X_i^+ (i = 1, ..., n) with common distribution function

$$F^+(x)=rac{1}{n}\sum_{k=1}^n F_k(x), \ x\in\mathbb{R}.$$

Then,

$$TVaR[S] \leq TVaR[X_1^+ + \ldots + X_n^+].$$

Upper bound: main result

Conclusion:

Let X_1, \ldots, X_n be the losses of a group of heterogeneous contracts.

Replacing the losses by homogeneous X_1^+, \ldots, X_n^+ with common distribution function F^+ turns out to be a conservative strategy.

• Indeed, this inflates the Tail-VaR associated to the aggregate loss.

• Let a portfolio made of *n* life insurance contracts.

Notations:

- T_i : the remaining lifetime of policyholder $i \ (i = 1, ..., n)$.
- $b_i g(T_i)$: the random loss associated to policy *i*.

• Examples of specific life insurance contracts:

 $E \times 1$ Let $g(T_i) = \sum_{k=1}^{\lfloor T_i \rfloor} v(k)$, where v(t) is the present value of a unit payment made at time t.

 \Rightarrow $b_i g(T_i)$ = the present value of a **life annuity contract** paying b_i at the end of each year, as long as policyholder *i* survives.

Ex 2 Let $g(T_i) = v(T_i)$.

 \Rightarrow $b_i g(T_i) =$ the present value of a **whole life insurance contract** with payment b_i at time of death of policyholder *i*.

Ex3 Let $g(T_i) = v(T_i)\mathbb{I}[T_i < m] + v(m)\mathbb{I}[T_i \ge m]$.

 \Rightarrow $b_i g(T_i) =$ the present value of an **endowment insurance** with benefit b_i .

Homogeneous lifetimes:

• T_1, \ldots, T_n are assumed to be iid.

• Proposition:

Let B_1, \ldots, B_n be random variables independent of T_1, \ldots, T_n with common distribution

$$B_{i} = \begin{cases} b_{1} \text{ with probability } \frac{1}{n} \\ b_{2} \text{ with probability } \frac{1}{n} \\ \vdots \\ b_{n} \text{ with probability } \frac{1}{n}. \end{cases}$$

Then, we have

$$TVaR\left[\sum_{i=1}^{n} b_i g(T_i)\right] \leq TVaR\left[\sum_{i=1}^{n} B_i g(T_i)\right].$$

Homogeneous lifetimes:

• Conclusion:

When the lifetimes are homogeneous but the amounts of benefits vary between contracts, it is conservative to replace the deterministic benefits b_i with a stochastic one B_i randomly drawn from $\{b_1, \ldots, b_n\}$.

- Heterogeneous lifetimes:
 - T_1, \ldots, T_n are assumed to be independent such that

$$\Pr[T_1 > t] \le \Pr[T_2 > t] \le \cdots \le \Pr[T_n > t].$$

Example: when T_1, \ldots, T_n all obey the same life table and correspond to individuals aged x_1, \ldots, x_n with $x_1 > \ldots > x_n$.

• Proposition:

If g is a monotonic function, then

$$TVaR\left[b\sum_{i=1}^{n}g(T_{i})\right] \leq TVaR\left[b\sum_{i=1}^{n}g(T_{i}^{+})\right]$$

where T_1^+, \ldots, T_n^+ are independent with common survival function

$$\Pr[T_1^+ > t] = \frac{1}{n} \sum_{i=1}^n \Pr[T_i > t].$$

Heterogeneous lifetimes:

• Conclusion:

Homogenizing life tables appears to be a safe strategy when the benefits b_i are the same for all contracts (i.e. when $b_i = b$ for all i = 1, ..., n).

Lower bound: main result

Proposition:

Let U_1, \ldots, U_n be iid random variables $(U_i \sim Uni(0, 1))$ and let us define iid random variables X_i^- as

$$X_i^- = \frac{1}{n} \sum_{j=1}^n F_j^{-1}(U_i), \ i = 1, 2, \dots, n.$$

Then,

$$TVaR\left[X_{1}^{-}+\ldots+X_{n}^{-}
ight]\leq TVaR\left[S
ight].$$

Lower bound: main result

Conclusion:

Averaging F_1, \ldots, F_n to produce F^+ provides the actuary with an upper bound on the aggregate loss whereas the lower bound is obtained by averaging VaRs $F_1^{-1}, \ldots, F_n^{-1}$.

Homogeneous lifetimes:

• T_1, \ldots, T_n are assumed to be iid.

• Proposition:

We have

$$TVaR\left[\overline{b}\sum_{i=1}^{n}g(T_{i})
ight]\leq TVaR\left[\sum_{i=1}^{n}b_{i}g(T_{i})
ight]$$

where $\overline{b} = \frac{1}{n} \sum_{i=1}^{n} b_i$.

Conclusion:

When the lifetimes are homogeneous but the amounts of benefits vary between contracts, replacing the benefits b_i with their average value \overline{b} decreases the Tail-VaR of the aggregate loss.

Heterogeneous lifetimes:

- T_1, \ldots, T_n are assumed to be heterogeneous with distribution functions F_{T_1}, \ldots, F_{T_n} .
- **Proposition:** If we assume that g is monotonic, then

$$TVaR\left[b\sum_{i=1}^{n}\left\{\frac{1}{n}\sum_{j=1}^{n}g\left(F_{\mathcal{T}_{j}}^{-1}(U_{i})\right)\right\}\right] \leq TVaR\left[b\sum_{i=1}^{n}g(\mathcal{T}_{i})\right].$$

Conclusion:

The lower bound is obtained by replacing each policy by a portfolio of n policies differing from the original one by the fact that

- the remaining lifetimes are comonotonic,
- the amounts of benefits are *n* times smaller.

Short bibliography

- Denuit, M., Dhaene, J., Goovaerts, M.J., Kaas, R., 2005. Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, New York.
- Denuit, M., Genest, C., Marceau, E., 2002. Criteria for the stochastic ordering of random sums, with actuarial applications. Scandinavian Actuarial Journal, 3-16.
- Denuit, M., Müller, A., 2002. Smooth generators of integral stochastic orders. Annals of Applied Probability 12, 1174-1184.
- Denuit, M., Trufin, J., 2015. Model points and Tail-VaR in life insurance. Insurance: Mathematics and Economics 64, 268-272.
- Denuit, M., Vermandele, C., 1998. Optimal reinsurance and stop-loss order. Insurance: Mathematics and Economics 22, 229-233.
- EIOPA. 2010. QIS5 Technical Specification. European commission.
- Frostig, E., 2001. A comparison between homogeneous and heterogeneous portfolios. Insurance: Mathematics and Economics 29, 59-71.