#### Spatial dependence issues for extremes

Gwladys Toulemonde<sup>1</sup>, Jean-Noel Bacro<sup>1</sup>, Carlo Gaetan<sup>2</sup> <sup>1</sup> IMAG, University of Montpellier, France. <sup>2</sup> DAIS, Università Ca' Foscari, Italy.

> CIRM workshop "Extremes, Copulas and Actuarial Science"

> > February 2016

This work was supported by the french national programme LEFE/INSU and the Numev Labex.

# Outline



#### 2 Extreme spatial processes

- Max-stable processes
- Asymptotically independent processes





# Outline



- 2 Extreme spatial processes
- Proposition of a mixture model
- An other approach (work in progress...)

#### Theorem

Let  $(X_i, Y_i) \sim F$  be independent random vectors with w.l.g. unit Fréchet margins  $K(x) = \exp(-1/x)$ , x > 0. A limit distribution for  $(M_{x,n}, M_{y,n}) = (\max_{i=1,\dots,n} X_i, \max_{i=1,\dots,n} Y_i)$  is said to exist  $(F \in D(G))$  if

$$\lim_{n \to \infty} \mathbb{P}\left(M_{x,n} \le nx, M_{y,n} \le ny\right) = G(x, y)$$

with G a non degenerate distribution.

Limit distributions G are max-stable : G<sup>k</sup>(kx<sub>1</sub>, kx<sub>2</sub>) = G(x, y)
If

$$G(x, y) = K(x) K(y) = \exp\left(-\frac{1}{x}\right) \exp\left(-\frac{1}{y}\right)$$

 $\hookrightarrow$  ultimately, normalized maxima of X and Y are independent.

(X, Y) are said to be Asymptotically Independent (AI)

 $\land$  (X, Y) AI  $\Rightarrow$  (X, Y) independent, only the converse is true ...

 $\bigwedge$  (X, Y) may exhibit non-negligible dependence at all observable levels even if AI ! Example : the Gaussian case.

## Dependence measures $\chi$ and $\overline{\chi}$

Let  $(X, Y) \sim F \in D(G)$ , with  $F_X$  and  $F_Y$  margins.

The  $\chi$  parameter

$$\begin{split} \chi &= \lim_{u \to 1} \mathbb{P}\left(F_Y(Y) > u | F_X(X) > u\right) \\ &= \lim_{u \to 1} 2 - \frac{\log \mathbb{P}(F_X(X) \le u, F_Y(Y) \le u)}{\log \mathbb{P}(F_X(X) \le u)} \\ &\equiv \lim_{u \to 1} \chi(u) \end{split}$$

For max-stable distributions, χ(u) = χ
 → same dependence structure ∀u!

•  $\chi = 0 \Rightarrow X$  and Y are Al. •  $\chi > 0 \Rightarrow X$  and Y are **AD**; moreover the value of  $\chi$  quantifies the strength of the extremal dependence.

 $\hookrightarrow \chi$  unable to provide dependence information for AI case !

The  $\overline{\chi}$  parameter

 $\overline{\chi} = \lim_{u \to 1} \frac{2\log\mathbb{P}(F_X(X) > u)}{\log\mathbb{P}(F_X(X) > u, F_Y(Y) > u)} - 1$  $\equiv \lim_{u \to 1} \overline{\chi}(u)$ 

•  $\overline{\chi} = 1 \Rightarrow X$  and Y are AD. •  $-1 \le \overline{\chi} < 1 \Rightarrow X$  and Y are AI; moreover  $\overline{\chi}$  provides a measure that increases with dependence strength.  $\rightarrow$  Example : Gaussian vectors with correlation parameter  $\rho \ne 1$  :  $\overline{\chi} = \rho$ . Motivation : a spatial data set where daily precipitation data from an observational network covering a region S of East-Australia, are analysed for the period 1955-2003.

 31 sites observed from East-Australia during 49 winters (April-September), (Lavery, Joung and Nicholls 1996).



Extremal behaviour?

### Extremal dependencies for the Australian daily precipitations data set

**Spatial context** : strength of the dependence related to the distance *h* between two points in  $\mathbb{R}^2$  s and s + h  $\hookrightarrow$  bivariate extremal dependence tools as a function of the distance :  $\chi_h(u), \chi(h), \overline{\chi}_h(u), \overline{\chi}(h), \eta(h) \dots$ 



Figure 1 : Smoothed values of the empirical estimates of the functions  $\hat{\chi}(h, u)$  (left) and  $\hat{\overline{\chi}}(h, u)$  (right) with u = 0.975.

### Extremal dependencies for the Australian daily precipitations data set

**Spatial context :** strength of the dependence related to the distance *h* between two points in  $\mathbb{R}^2$  *s* and *s*+*h* 

$$\hookrightarrow \chi_h \equiv \lim_{u \to 1} \chi_h(u) \text{ and } \overline{\chi}_h \equiv \lim_{u \to 1} \overline{\chi}_h(u)$$



Figure 2 : Smoothed values of the empirical estimates of the functions  $\hat{\chi}(h, u)$  (left) and  $\hat{\chi}(h, u)$  (right) at different values of the threshold u.

Our goal is to propose an asymptotically justified model for spatial extremes that is able to model a pairwise :

- extremal dependence for sites which are spatially close;
- extremal independence for sites which are spatially distant;
- asymptotic independence for sites which are at intermediate distances.

 $\hookrightarrow$  any potential sub-asymptotic pairwise extremal dependence is taken into account whatever the considered distance . . .

# Outline



#### 2 Extreme spatial processes

- Max-stable processes
- Asymptotically independent processes

3 Proposition of a mixture model

An other approach (work in progress...)

## Max-stable processes : the Truncated Extremal Gaussian (TEG) process

Representation of a max stable process with unit Fréchet margins

$$Z(s) = \max_{k \ge 1} \xi_k W_k(s)$$

with  $\{\xi_k, k \ge 1\}$  points of a Poisson process on  $(0, \infty)$  with intensity measure  $\xi^{-2} d\xi$ and  $W_k$  i.i.d. copies of a positive process  $\{W_k(s)\}$  such that  $\mathbb{E}(W(s)) = 1$  for all  $s \in \mathscr{S}$ .

The TEG process (Schlather, 2002; Davison and Gholamrezaee, 2012) :

$$W_k(s) = c \max(0, \varepsilon_k(s)) I_{B_k}(s - U_k)$$

such that  $\varepsilon_k(\cdot)$  a stationary standard Gaussian process with correlation function  $\rho(\cdot)$ ,  $I_B$  is the indicator function of a compact random set  $B \subset \mathscr{S}$ , of which  $(B_k)_k$  are independent replicates and  $(U_k)_k$  are points of a homogeneous Poisson process of unit rate on  $\mathscr{S}$ , independent of the  $\varepsilon_k(\cdot)$ .

We can compute  $\chi_Z(h) = \alpha(h) \left\{ 1 - 2^{-\frac{1}{2}} [1 - \rho(h)]^{\frac{1}{2}} \right\} \in [0, 1]$ where  $\alpha(h) = \mathbb{E}\{|B \cap (h+B)|\}/\mathbb{E}(|B|)$  with  $h = ||s_1 - s_2||$ .

In the sequel, B will be a disc of fixed radius r :  $\alpha(h) \approx 1 - \frac{h}{2r}$  if h < 2r (and 0 otherwise).

#### de Oliveira, 1962

A multivariate vector is AI iff all its pairs of components are AI.

As a consequence, if all the bivariate distributions of a stochastic process are AI, the stochastic process is said to be AI.

#### Bivariate model (Ledford and Tawn, 1996, 1997)

 $\mathbb{P}(X > x, Y > x) = \overline{F}(x, x) \sim \mathcal{L}(x)x^{-1/\eta} \quad \text{when } x \to \infty \text{ where } \mathcal{L} \text{ is a slowly varying function, i.e. satisfying } \mathcal{L}(tx)/\mathcal{L}(x) \to 1 \text{ when } x \to \infty \text{ for all given } t > 0.$ The  $\eta$  parameter, so-called tail dependence coefficient, determines the decay rate of the joint survival function  $\overline{F}(x, x)$  for high values of x. Under Ledford-Tawn model  $\overline{\chi} = 2\eta - 1$ . If  $0 < \eta < 1$ , the variables are Al.

- Example 1 :  $Y(s) = -1/\log(\Phi(Y'(s)))$  with Y'(s) a stationnary Gaussian process with zero mean, unit variance and correlation function  $\rho(h)$ .
- Example 2 :  $Y(s) = -1/\log(1 e^{-1/Z(s)})$  with Z(s) a max stable process.

# Outline



- Proposition of a mixture model
- An other approach (work in progress...)

## Mixture of a max-stable process and an A.I. process

From an original construction of Wadsworth and Tawn (2012) :

Bacro, Gaetan and Toulemonde, JSPI, 2016

$$X(s) = \max(aZ(s), (1-a)Y(s)), \quad a \in [0,1]$$

with Z a TEG process with unit Fréchet margins and Y an asymptotically independent stationary process with unit Fréchet margins.

Only one condition is necessary for the A.I. process  $Y(\cdot)$ : the bivariate distribution function  $F_Y^h(\cdot, \cdot) \equiv F_{Y(s_1), Y(s_2)}(\cdot, \cdot)$  for pairs of sites  $s_1$  and  $s_2$  which are separated by a distance h verifies

$$P(Y(s_1) > y, Y(s_2) > y) \sim y^{-\frac{1}{\eta(h)}} \mathscr{L}_h(y) \text{ as } y \to \infty$$

where  $0 \le \eta(h) < 1$ ,  $\mathcal{L}_h(\cdot)$  a slowly varying function, that is  $\mathcal{L}_h(\cdot)$  satisfies  $\mathcal{L}_h(xt)/\mathcal{L}(t) \to 1$  as  $t \to \infty$  for all fixed x > 0.

### Mixture of a TEG process and an A.I. process



Figure 3 : Simulation of the max-mixture process with  $a \in \{0, 0.25, 0.50, 0.75, 1\}$ . *B* is a disc with a fixed radius r = 0.25. An exponential correlation function with parameter  $\rho_1 = 0.2$  is chosen for the underlying Gaussian process involved in the TEG process. For the AI process, a Gaussian random field is considered with a spherical correlation function with parameter  $\rho_2 = 0.8$ .

### Mixture of a max-stable process and an A.I. one

Joint probability of exceedances : information on dependence.

$$P(X(s_1) > z, X(s_2) > z) \quad = \quad \frac{a\chi_Z(h)}{z} + \left(\frac{z}{1-a}\right)^{-\frac{1}{\eta_Y(h)}} \mathscr{L}_h\left(\frac{z}{1-a}\right) + \mathscr{O}\left(\frac{1}{z^2}\right).$$

With the specific choice of the TEG process for Z(.) with fixed radius r, we obtain

$$\chi_X(h) = a\chi_Z(h) = a\left(1 - \frac{h}{2r}\right) \left\{1 - 2^{-\frac{1}{2}} [1 - \rho_1(h)]^{\frac{1}{2}}\right\} \text{ if } h < 2r \text{ (and 0 otherwise)}.$$

Summing up, pairs of sites separated by a distance h are asymptotically dependent if h is smaller than 2r and asymptotically independent otherwise.



Computation of  $\overline{\chi}_X$  to go further...

#### Mixture of a max-stable process and an A.I. one

• If 
$$h < 2r$$
,  $\chi_X(h) > 0$ ,  $\overline{\chi}_X(h) = 1$  A.D.

• If 
$$h \ge 2r$$
,  $\chi_X(h) = 0$ ,  $\overline{\chi}_X(h) = \overline{\chi}_Y(h) < 1$  A.I.

• If  $\overline{\chi}_{Y}(h)$  is such that  $\overline{\chi}_{Y}(h) = 0$  for h > R' > 2r, then if h > R' > 2r,  $\chi_{X}(h) = 0$ ,  $\overline{\chi}_{X}(h) = \overline{\chi}_{Y}(h) = 0$  Exact Independence

Here, it corresponds to the case of a process  $Y(\cdot)$  with a correlation function  $\rho_2(\cdot)$  such that  $\rho_2(h) = 0$  when h > R' (spherical correlation function for example).



### Simulation study

#### Bacro, Gaetan and Toulemonde, JSPI, 2016

 $X(s) = \max(aZ(s), (1-a)Y(s)), \quad a \in [0,1]$ 

with Z a max-stable process with unit Fréchet margins and Y an asymptotically independent stationary process with unit Fréchet margins.

- Parameter of the mixture  $a (a \in \{0, 0.25, 0.5, 0.75, 1\})$ .
- Parameters of the TEG process.
  - the radius r (r = 0.25).
  - the correlation parameter  $\rho_1$  ( $\rho_1 = 0.2$ ). Here we have chosen the exponential correlation function :  $\exp(-h/\rho_1)$ .
- Parameter of the AI process *Y* where *Y* is a transformed Gaussian process with unit Fréchet margins.
  - the correlation parameter  $\rho_2$  ( $\rho_2 = 0.8$ ). Here we have chosen the spherical correlation function :  $1 (1.5h)/\rho_2 + (0.5h)/\rho_2^3$  if  $h < \rho_2$  and 0 otherwise.

### Inference

Censored composite likelihood approach on pairwise sites separated by a distance  $h < \delta$ .

• Given a high threshold value *u* : the dependence model for an adequate representation of the data.

For any  $(s_i, s_j)$  such  $d(s_i, s_j) < \delta$ , pairwise contribution  $L(x_{ik}, x_{jk}; \psi) = \begin{cases} \frac{\partial^2}{\partial x_i \partial x_j} G(x_i, x_j; \psi) & \text{if } \max(x_i, x_j) > u \\ G(u, u; \psi) & \text{if } \max(x_i, x_j) \leq u \end{cases}$ 

with  $G(\cdot,\cdot)$  the bivariate distribution of the spatial model. The pairwise log-likelihood is defined by

$$pl(\psi) = \sum_{k=1}^{M} \sum_{i=1}^{N-1} \sum_{j>1}^{N} \omega_{ij} \log L(x_{ik}, x_{jk}; \psi).$$

### Simulation study

- 49 random sites.
- 1000 time observations of the process.

 $\Rightarrow\,$  Estimation of the four parameters by the method of composite likelihood.

- 5 different values of a
- 500 simulations
- Discriminate between asymptotic independence, asymptotic dependence or a mixture of this thanks to the CLIC ?

$$\label{eq:clic} \textit{CLIC} = -2 \left[ pl(\widehat{\psi}) - \mathrm{tr} \{ \widehat{H}^{-1} \widehat{J} \} \right].$$

|                    | Gaussian | MM  | TEG |
|--------------------|----------|-----|-----|
| $MM_0$ (Gaussian)  | 346      | 154 | 0   |
| MM <sub>0.25</sub> | 0        | 500 | 0   |
| $MM_{0.50}$        | 0        | 500 | 0   |
| MM <sub>0.75</sub> | 0        | 498 | 2   |
| $MM_1$ (TEG)       | 0        | 100 | 400 |

Table 1 : Model selection based on the CLIC. The simulation study is based on 500 replications of 1000 independent copies of a MM<sub>a</sub> model with  $\rho_1 = 0.2$ ,  $\rho_2 = 0.8$ , r = 0.25 and  $a \in \{0, 0.25, 0.50, 0.75, 1\}$ .

## Application : Coming back to the Australian rainfall data ....

Motivation : a spatial data set where daily rainfall totals 24h data from an observational network covering a region S of East-Australia, are analysed for the period 1955-2003.

 31 sites observed from East-Australia during 49 winters (April-September), (Lavery, Joung and Nicholls 1996).



## Application : Coming back to the Australian rainfall data ...

• Model  $A_1$  : the MM model X(.)

$$X(s) = \max(aZ(s), (1-a)Y(s)), \quad a \in [0,1]$$

with

- a the max-mixture proportion;
- Z(·) a TEG process based on a gaussian process with an exponential correlation function exp(−h/ρ<sub>1</sub>) and compact random set B choosen as a disc with a fixed radius r;
- Y(·) a Gaussian random field with unit Fréchet margins and a spherical correlation function 1 − <sup>1</sup>/<sub>2</sub> <sup>h</sup>/<sub>ρ2</sub> + <sup>1</sup>/<sub>2</sub> (<sup>h</sup>/<sub>ρ2</sub>)<sup>3</sup> I<sub>{h≤ρ2}</sub>
- Model  $A_2$ : the X(.) process specified in  $A_1$  but with exponential correlation function  $\exp(-h/\rho_2)$ .
- Model A<sub>3</sub> : a max-mixture model as in A<sub>1</sub> but in which Y(.) is an inverse max-stable process.
- Model B : the Z(.) process specified in  $A_i$ , i = 1, 2.
- Model  $C_1$ : the Y(.) process specified in  $A_1$
- Model C<sub>2</sub> : the Y(.) process specified in A<sub>2</sub>
- Model C<sub>3</sub> : the Y(.) process specified in A<sub>3</sub>

Gwladys Toulemonde / CIRM / 2016

| Model                 | $\widehat{ ho}_1$ | $\hat{r}_1$  | $\widehat{ ho}_2$ | $\hat{r}_2$ | â            | CLIC     |
|-----------------------|-------------------|--------------|-------------------|-------------|--------------|----------|
| <i>A</i> <sub>1</sub> | 78.71             | 833.76       | 1448.52           | -           | 0.38         | 575518.3 |
|                       | (9.80)            | (77.70)      | (57.72)           |             | (0.02)       |          |
| A2                    | 101.03            | 658.94       | 841.08            | -           | 0.38         | 575515.9 |
|                       | (13.93)           | (54.26)      | (51.23)           |             | (0.02)       |          |
| A <sub>3</sub>        | 210.07            | 211.15       | 2164.57           | 1400.11     | 0            | 575183.7 |
|                       | $(10^{-13})$      | $(10^{-13})$ | (140.85)          | (95.08)     | $(10^{-13})$ |          |
| В                     | 147.09            | 1706.55      | -                 | -           | -            | 580455   |
|                       | (6.17)            | (213.31)     |                   |             |              |          |
| $C_1$                 | -                 | -            | 814.81            | -           | -            | 580351.3 |
|                       |                   |              | (19.34)           |             |              |          |
| <i>C</i> <sub>2</sub> | -                 | -            | 429.68            | -           | -            | 578445.3 |
|                       |                   |              | 12.38             |             |              |          |
| <i>C</i> <sub>3</sub> | -                 | -            | 2084.84           | 1447.33     | -            | 575188.3 |
|                       |                   |              | (139.76)          | (106.76)    |              |          |

 Table 2 :
 Summary of the fitted models based on the daily exceedances from the

 Australian data.
 Standard errors are reported in parentheses.

## Application : Coming back to the Australian rainfall data ....

| Model                 | $\widehat{ ho}_1$ | $\hat{r}_1$  | $\widehat{ ho}_2$ | $\hat{r}_2$ | â            | CLIC        |
|-----------------------|-------------------|--------------|-------------------|-------------|--------------|-------------|
| $A_1$                 | 78.71             | 833.76       | 1448.52           | -           | 0.38         | 330         |
|                       | (9.80)            | (77.70)      | (57.72)           |             | (0.02)       |             |
| A <sub>2</sub>        | 101.03            | 658.94       | 841.08            | -           | 0.38         | 328         |
|                       | (13.93)           | (54.26)      | (51.23)           |             | (0.02)       |             |
| A <sub>3</sub>        | 210.07            | 211.15       | 2164.57           | 1400.11     | 0            |             |
|                       | $(10^{-13})$      | $(10^{-13})$ | (140.85)          | (95.08)     | $(10^{-13})$ |             |
| B                     | 147.09            | 1706.55      | -                 | -           | -            | <b>5267</b> |
|                       | (6.17)            | (213.31)     |                   |             |              |             |
| <i>C</i> <sub>1</sub> | -                 | -            | 814.81            | -           | -            | 5163        |
|                       |                   |              | (19.34)           |             |              |             |
| <i>C</i> <sub>2</sub> | -                 | -            | 429.68            | -           | -            | 3257        |
|                       |                   |              | 12.38             |             |              |             |
| <i>C</i> <sub>3</sub> | -                 | -            | 2084.84           | 1447.33     | -            | 0           |
|                       |                   |              | (139.76)          | (106.76)    |              |             |

 Table 3 : Summary of the fitted models based on the daily exceedances from the

 Australian data. Standard errors are reported in parentheses.



Figure 4 : Empirical and fitted values for  $\hat{\chi}(h, u)$  and  $\hat{\overline{\chi}}(h, u)$ . Empirical values are computed using the validation data set and models are fitted using the  $q_u$  quantile exceedances. Top row : u = 0.9; bottom row : u = 0.95.

### Empirical and fitted values for the conditional probabilities

Conditional probabilities  $\Pr(Z(s) > z, s \in \mathcal{G} | Z(s_1) > z)$  with z such that  $\Pr(Z(s_1) > z) = 1 - p$  for different values of p.



Gwladys Toulemonde / CIRM / 2016



Figure 5 : Empirical and fitted values for the conditional probabilities  $Pr(Z(s) > z, s \in \mathcal{S} | Z(s_1) > z)$ . Top row :  $\mathcal{S} = \{s_2, s_3, s_6, s_8, s_{10}\}$  (near sites data set); middle row  $\mathcal{S} = \{s_{11}, s_{13}, s_{14}, s_{15}, s_{18}\}$  (medium sites data set); bottom row :  $\mathcal{S} = \{s_{25}, s_{26}, s_{27}, s_{28}, s_{29}\}$  (far sites data set).

# To sum up this first part

- Difficulty to detect the kind of extremal dependence in data
- The kind of extremal dependence may evolve with distances
- We propose a flexible model for spatial extreme analysis (AD, AI according to distances)
- Inference by censored composite likelihood
- Good results on simulation data and on the real data set

Pursuing the same goal...

# Outline



- 2 Extreme spatial processes
- Proposition of a mixture model
- An other approach (work in progress...)

## Wadsworth and Tawn (2013)

#### Model

$$P(X_P > n^{\gamma}, Y_P > n^{\beta}) = L(n; \gamma, \beta) n^{-\kappa(\gamma, \beta)}$$

where L is a univariate slowly varying function in  $n, n \to \infty$ , for all  $(\beta, \gamma) \in \mathbb{R}^2_+ \setminus \{(0,0)\}$ , and the function  $\kappa(\beta, \gamma) > 0$  maps the different marginal growth rates to the joint tail decay rate.

Using  $\alpha = \frac{\beta}{\beta + \gamma}$ , under the assumption that  $\kappa$  is differentiable and that

$$\lim_{n \to \infty} \frac{L(n; \alpha + \log x / \log n, 1 - \alpha + \log y / \log n)}{L(n; \alpha, 1 - \alpha)} = 1,$$

they deduced the tail representation :

$$P(X_P > n^{\alpha}x, Y_P > n^{1-\alpha}y) = n^{-\kappa(\alpha, 1-\alpha)} x^{-\kappa_1(\alpha)} y^{-\kappa_2(\alpha)}$$
$$L\left(n; \alpha + \frac{\log(x)}{\log(n)}, 1-\alpha + \frac{\log(y)}{\log(n)}\right)$$

where  $\{\kappa_1(\alpha), \kappa_2(\alpha)\} = \left\{\frac{\partial \kappa}{\partial \beta}, \frac{\partial \kappa}{\partial \gamma}\right\}|_{(\alpha, 1-\alpha)}$ .

- Allowing the components to grow at different rates
- Permiting extrapolation into regions where not all components are simultaneously extreme
- Ray independence
- Non parametric approach.

- Allowing the components to grow at different rates
- Permiting extrapolation into regions where not all components are simultaneously extreme
- Ray independence and ray dependence
- Non parametric approach and semi parametric approach.

#### Proposed tail model - Joint work with Bacro and Dalhoumi

Let  $(X_P, Y_P)$  be a random vector with standard Pareto marginal distributions and assume that for  $(\beta, \gamma) \in \mathbb{R}^2_+ \setminus \{0\}$  and  $(x, y) \in [1, \infty)^2$ :

 $Pr(X_P > n^{\beta}x, Y_P > n^{\gamma}y) = \mathcal{L}(n^{\beta}x, n^{\gamma}y)n^{-\kappa(\beta, \gamma)}x^{\frac{-\kappa(\beta, \gamma)}{2\beta}}y^{\frac{-\kappa(\beta, \gamma)}{2\gamma}}$ 

where  $\kappa$  is the function from the Wadsworth-Tawn model and  $\mathscr{L}$  is a bivariate slowly varying function, i.e for  $(x, y) \in [1, \infty)^2$  for any  $(\beta, \gamma) \in \mathbb{R}^2_+ \setminus \{0\}$  we have

$$\lim_{\min(n^{\beta},n^{\gamma})\to\infty}\frac{\mathscr{L}(n^{\beta}x,n^{\gamma}y)}{\mathscr{L}(n^{\beta},n^{\gamma})} = \lim_{n\to\infty}\frac{\mathscr{L}(n^{\beta}x,n^{\gamma}y)}{\mathscr{L}(n^{\beta},n^{\gamma})} = g_{(\beta,\gamma)}(x,y)$$

with  $g_{(\beta,\gamma)}$  verifies a non-standard zero-order homogeneity : for any c > 0 and  $(x, y) \in (0, \infty)^2$ ,  $g_{(\beta,\gamma)}(c^{\beta}x, c^{\gamma}y) = g_{(\beta,\gamma)}(x, y)$ .

### Connections to existing theory for asymptotic independence and sum up

- Assuming the ray independence condition, and setting x = y = 1, our model corresponds to the Wadsworth and Tawn model (2013).
- For  $(\beta, \gamma) = (1, 1)$ , as  $\kappa(1, 1) = \frac{1}{\eta}$  we recognize the Ledford and Tawn (1996, 1997) model and the Ramos and Ledford model (2009).

#### To sum up this work in progress

- Allowing the components to grow at different rates
- Permiting extrapolation into regions where not all components are simultaneously extreme
- Ray independence and ray dependence
- Non parametric approach and semi parametric approach.

To a spatial approach ? With different kinds of dependence according to distances ?

#### References :

- Bacro, J.N., Gaetan, C., and Toulemonde, G. (2016). A flexible dependence model for spatial extremes. *J. Statis. Plann. Inference.* In Press.
- Davison, A.C., Gholamrezaee (2012). Geostatistics of extremes. Proc. Royal Soc. London, A, 468 :581-608.
- Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate analysis. Biometrika, 83 :169-187.
- Ledford, A. W. et Tawn, J. A. (1997), Modelling dependence within joint tail regions, J. R. Stat. Soc. Ser. B, 59(2) :475-499.
- Ramos, A., Ledford, A., (2009). A new class of models for bivariate joint tails. J. R. Stat. Soc. Ser. B Stat Methodol. 71, 219-241.
- Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5 :33-44.
- Wadsworth, J., Tawn, J. (2012). Dependence modelling for spatial extremes. Biometrika, 99 :253-272.
- Wadsworth, J., Tawn, J., (2013). A new representation for multivariate tail probabilities. Bernoulli 19, 2689-2714.