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Order statistics Concentration Hill estimator

Order statistics

@ X(1) = ... = X, order statistics of an i.i.d. sample Xi,..., X, ~ F.

® Y(1) = ... > Y, order statistics of an exponential sample.

Rényi representation (Rényi 1953)

n n
d (E, E, E,
(Y(,,),...,Y(,-),‘..,Y(l))=(7,.‘., Tk”ZTk)
k=i k=1
where Ej, ..., E, are independent exponentially distributed random variables.

Adaptive estimation

@ E[Y(y] =2, 1/i ~In(n/k) and Var[Y(y] = 27, 1/ ~ 1/k

Quantile and tail quantile functions
F<(p) =inf{x: F(x) = p},pe (0,1) and U(t) = F< (1 —1/t),t e (1,0)

Representation for order statistics

(Xays - s Xim) 2 (Uoexp)(Yay) - - - (U0 exp)(Yimy)) -
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Concentration of measure phenomenon

Concentration of measure phenomenon

Any function of many independent random variables that does not
depend too much on any of them is concentrated around its mean value.

e Markov inequality: X >0, P{X > t} < EX/t.
o Chebyschev inequality: P {|X — EX| > t} < Var X/t2.
e Gaussian vectors: X ~ N (0,1) and Z = g(X)

e Poincaré inequality: Var[Z] < E [[|Vg][?]

Entropy

X positive v.a.
Ent[X] =E[XInX] —EXInEX

e Gross log-Sobolev inequality: Ent [Z?] < 2E||Vg][?
e Cirelson’s inequality: if ||[Vg|| < L

P{Z > EZ + t} < exp (—17/(2L?))
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Gaussian order statistics

) g(Xl,...,Xn) = X(k)
the kth order statistic is a smooth function of independent variables.
° ||Vgl| =1
o If X,' '\'/\/(0, 1),
@ Poincaré inequality = Var [X(k)] <1
o EVT = Var[Xy)] = O(1/Inn)
o Classical statistics = Var[X(,/2)] = O(1/n)

We do not understand (clearly) in which way the order statistics are
smooth functions of the sample.
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Variance bounds for order statistics

Poincaré inequality (Talagrand, 1991; Bobkov & Ledoux, 1997)

Let g be a differentiable function on R", and Z = g(E, ..., E,) where
El, ey E,, ~iid. 5Xp(1). Then

Var[Z] < 4E [IIVgllz]

Application to order statistics
4 1 1
£ = = -
MEEGLS Z [ ] k <1 i k> . [h(x<k))2]

@ Hazard rate h: if F has a positive density f, h = f/(1 — F)

@ Thanks to Efron-Stein’s inequality (Efron & Stein, 1981 ; Steele, 1986), the
factor 4 can be improved by a factor 2 if h is non-drecreasing (Boucheron & T.,
2012)

@ Tight variance bounds for Gaussian order statistics (Boucheron & T., (2012)).



Order statistics Hill estimator Adaptive estimation

Bernstein-type inequality for order statistics

Bernstein-type inequality (Bobkov & Ledoux, 1997)

Assume max; |0;g| < o0 and let v be the supremum of ||Vg||?. Then, for
all 0 < § < 1/2, with probability > 1 — 24,

|Z —EZ| < +/8vIn(1/6) + max|0ig|In(1/0) .

@ 4v is the variance factor
@ max; |0;g]| is the scale factor.

Application to order statistics
If h is non-decreasing,, with probability > 1 — 24,

8 1 1 In(1/5)
Xy —BXiw| < $ G [hmmz] /)4 i o)

@ Variance factor = variance bound
@ Can be also obtained from the modified log-Sobolev inequality (Massart, 2000 ;
Wu, 2000)
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Model

o Fréchet domain: U is v (> 0)-regularly varying, i.e.

U(t) = c(t)t" exp <f 77(Ss)ds>

with lim;_q c(t) = ¢ and lim;_,o n(t) = 0.
@ Model: von Mises condition

U(t) = ct” exp (J: 77(55)d5>

with ¢ a constant and lim;_,o, n(t) = 0.
@ Hill estimator (1975), v > 0
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Representations for Hill estimator

Under von Mises condition, Hill estimators (3(k))2<k<n represented as
smooth functions of exponential variables.

Proposition (Boucheron & T., 2015)

2)

=
==

Rao
[la

1 & (B
- Z f ('y + n(e”*y(k“))) du .
k i=170

[l

1& (B .
— Z J (v +n(eTYen)) du .
k i=1+0

with
@ Fi,..., Ex independent exponentially distributed random variables

® Y(it1) and Y(x41) the (i + 1)th and the (k + 1)th largest order
statistics of an exponential sample.
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Hill Plot

Order statistics

Hill estimates

Figure: (k) as a function of k computed on a sample of size 10" from Cauchy
distribution (v = 1)
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Order statistics

Why an adaptive choice of k?

Distribution

g
)
1

-=-t4

Standardized RMSE

== t10

o
s
1

Figure: Estimated standardised RMSE as a function of k for samples of size 10*
from Student'’s distributions with different degrees of freedom v = 1,2, 4,10.
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. . .
Bias-variance dilemma

Problem

How to choose the number k of order statistics in the computation of J(k)?

v

Risk of (k)

E[(v = 3(0)*] = Var B(0)] + (v ~ ER(K)]? -

@ Bias
* o Yik+1)
Ey(k)—v = E U e v (eMkmeY) dv] —-E U ’de]
0 1
Optimal choice of k depends on 7 (unknown). J

o Conditional bias given exp (Y(k+1)) =t

b(t) = tfoo TI(V)dV

v2

is a smooth function of Y, ).
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Variance bounds for 7(k)

o Vkn (3(kn) — EA(ky)) = N(0,73), if (ko) intermediate.
o Var [Y(kn)] ~ v2/kn.
o Define the non-increasing function 7j(t) = sup,, |7(s)|.

Proposition (Boucheron & T. (2015))
If F belongs to the Fréchet domain and satisfies the von Mises condition then

2
_Q%E [ﬁ (eY(k+1))] < Var[(k)] — 77 < Q%E [ﬁ (eY(k+1))] + %]E [ﬁ (eY(k+1))2] .

w

Proposition (Boucheron & T. (2015))

Assume 7 is regularly varying with index p < 0, then for all intermediate

sequence (kp)n,
kn Var(3(kn)) — 2y

noo o n(n/k) 1-p2
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Bernstein-type inequalities for (k)

@ /Inlogon<4<J<n.

@ 0<d<1/2
o T = exp(Y(J+1)).

Proposition (Boucheron & T., 2015)
For ¢ < i < k < J, with probability > 1 — 9,

o (v + 35(T)) s
A() -GG | 7)< T (“@w)

Adaptive estimation

Proposition (Boucheron & T., 2015)
If J7(T) < 292 Inln n, the, for £ < k < J, with probability > 1 — §,

L<i<n

max Vi) —E[RG) | T < v (1 +34/(2InIn n)/J) (c1«/2|n|og2n+ c{)

+ (1 +3y/(2InIn n)/J) \/8121n(2/6)

+v (1 +34/(2InlIn n)/J)

In(2/6)
Vi
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Adaptive estimation
@ Hall and Welsh (1985): under the following assumption
F(x) = (1 + Dx"1 + o(xp/w)) ,
the optimal choice of k is equivalent to
K(C, D,p)nQ‘pWIH‘pD

where C and D are constants > 0 and p < 0 unknown second order
parameter.

@ Drees et Kaufmann (1998)

@ Grama and Spokoiny (2008)

@ Carpentier and Kim (2014)

Minimax lower bound

For any 7, there exists a distribution P such that P belongs the Fréchet
domain and 7j(t) < ~t”, then, with large probability,

vininn

lol/(1+21pl)
=7z G ( ) 3




Order statistics Concentration Hill estimator Adaptive estimation

Adaptive version of 74

Ly =[c2Inn]
k® = k +/2kIn(1/6) + 21In(1/6)
@ rp,=+2lInInn

~

kn(ra) = max {k € {ln, ..., n}: VE(n/K®) < m}

@ z5, = ciy/2Inlog, n+ ¢ +4/81In(2/8) + %
ra(8) =10 (ra + (1 + 3rn/v/kn) 25,0

Pivotal index

kn(ra) = max {k € {ln,...,n}: Vki(n/k®) < Wr,,}

Selected index (Boucheron & T., 2015)

kn = max{k: by <k<netVie {lo... Kk} A0) —AK)| < '"<W">}

15/20



Order statistics

Hill estimates

Concentration

Hill estimator

Hlustration

1.0

10% 10° 10*

Adaptive estimation

Figure: Cauchy distribution(y = 1). Hill estimators as functions of k and
adaptive estimator for a sample of size 10° and § = 1/20.
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Analysis of f?(;,,)

Theorem (Boucheron & T., 2015)
@ With probability > 1 — 36,

where a4, n) — 0 as n — co.

Adaptive estimation
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Analysis of f?(;,,)

Corollary (Boucheron & T., 2015)
If there exist C > 0 and p < 0 such that for all n, k

y-Eal < ¢ ()"

then, with probability > 1 — 46,

/(12151
< s, (W) (1 + a6 n)

[y —4(kn) .
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A calibration problem for Cauchy distribution
(v=1)
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Adaptive estimation

Concentration Hill estimator

Order statistics

A calibration problem for Cauchy distribution
(v=1)
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rn = 4/In(In(n)) (blue aera).

Thank you for your attention!
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