

Exogenous shock models in high dimensions

CIRM Workshop, February 22, 2016

J.-F. Mai, S. Schenk, M. Scherer Technische Universität München

Exogenous shock models in high dimensions

Research questions

(a) For which g_1, \ldots, g_d is the following a multivariate distribution function

$$(x_1,\ldots,x_d)\mapsto\prod_{k=1}^d g_k(x_{[k]}),$$

where $x_{[1]} \leq x_{[2]} \leq \ldots \leq x_{[d]}$ is the ordered list of $x_1, \ldots, x_d \in \mathbb{R}$?

- (b) What about stochastic representations?
- (c) Are there interesting examples / applications?

• First observation:

$$(X_1,\ldots,X_d)\sim\prod_{k=1}^d g_k(x_{[k]})$$
 \Rightarrow $g_1(x)=\mathbb{P}(X_k\leq x), \quad \forall k=1,\ldots,d.$

- W.I.o.g. consider a copula framework, i.e. $x_1, \ldots, x_d \in [0, 1]$ and $g_1(x) = x$.
- For which g_2, \ldots, g_d is the following a copula?

$$C(x_1,...,x_d) := x_{[1]} \cdot \prod_{k=2}^d g_k(x_{[k]})$$

• If C is a copula and g_1 any univariate d.f. (resp. \bar{g}_1 any univariate s.f.),

$$C(g_1(x_1), \dots, g_1(x_d)) := g_1(x_{[1]}) \cdot \prod_{k=2}^d g_k \circ g_1(x_{[k]}) \quad (\text{resp. } C(\bar{g}_1(x_1), \dots, \bar{g}_1(x_d)))$$

is a multivariate distribution function (resp. survival function).

Some examples

• Independence: $g_k \equiv id_{[0,1]}$ yields

$$C(x_1,\ldots,x_d)=\prod_{k=1}^d x_k.$$

• Exchangeable Marshall–Olkin copulas have $g_k(x) := x^{a_{k-1}}$, so

$$C(x_1, \dots, x_d) = \prod_{k=1}^d x_{[k]}^{a_{k-1}}$$
 for *d*-monotone $a_0 = 1, a_1, \dots, a_{d-1} \ge 0$.

• **[Durante et al. (2007)]** study copulas with $g_k(x) := g(x), k = 2, ..., d$, i.e.

$$C(x_1,\ldots,x_d) = x_{[1]} \prod_{k=2}^d g(x_{[k]}).$$

Set $\boldsymbol{\mathcal{D}}$ of univariate d.f.'s:

 $\mathcal{D} := \{F : [0,1] \to [0,1] : \text{ continuous, non-decreasing, strictly positive on } (0,1], F(1) = 1\}$ $= \{d.f.s \text{ of absolutely continuous r.v.s on } (0,1) \text{ with possibly an extra atom at } 0\}.$

Bivariate case:

• For $g_1, g_2 : [0, 1] \to [0, 1], g_1(1) = g_2(1) = 1$, consider

 $C(x_1, x_2) := g_1(x_{[1]}) g_2(x_{[2]}).$

• [Durante et al. (2008)]: C is a copula if and only if $g_1 \equiv id_{[0,1]}$ and

(*i*) $g_2(y) - g_2(x) \ge 0$, $x, y \in [0, 1], x < y$.

(*ii*) $g_1(y)g_2(y) - 2g_1(x)g_2(y) + g_1(x)g_2(x) \ge 0$, $x, y \in [0, 1], x < y$.

- Analytical interpretation:
 - \rightarrow (*i*) \Leftrightarrow g_2 is increasing.

 \rightarrow (*ii*) \Leftrightarrow g_2 is continuous, strictly positive on (0, 1], and g_1/g_2 is increasing.

• **Remark**: $g_1/g_2 \in \mathcal{D}$.

Necessary condition:

• Assume that $(U_1, \ldots, U_d) \sim x_{[1]} \cdot \prod_{k=2}^d g_k(x_{[k]})$. Then

$$g_j(x) = \frac{x \cdot \prod_{k=2}^j g_k(x)}{x \cdot \prod_{k=2}^{j-1} g_k(x)}$$

=
$$\frac{\mathbb{P}(\max\{U_1, \dots, U_j\} \le x)}{\mathbb{P}(\max\{U_1, \dots, U_{j-1}\} \le x)} \implies x \cdot \prod_{i=2}^j g_i(x) = \mathbb{P}(\max\{U_1, \dots, U_j\} \le x).$$

- So it is necessary that $x \cdot \prod_{i=2}^{j} g_i(x) \in \mathcal{D}$ for all j = 2, ..., d.
- But we need more.

Theorem 1: The following statements are equivalent:

(i) $C(x_1, ..., x_d) = x_{[1]} \cdot \prod_{k=2}^d g_k(x_{[k]})$ is a copula.

(ii) For all $0 < x < y \le 1$, $(k, j) \in \mathbb{N}_0 \times \mathbb{N}$ with $k + j \le d$ we have

$$\sum_{i=0}^{j} \binom{j}{i} (-1)^{i} \prod_{\ell=1}^{i} g_{\ell+k}(x) \prod_{\ell=i+1}^{j} g_{\ell+k}(y) \ge 0.$$

(iii) For $m = 1, \ldots, d$ we have $G_m \in \mathcal{D}$, where

$$G_m(x) := \prod_{i=0}^{m-1} g_{d-m+1+i}^{(-1)^i \binom{m-1}{i}}(x), \quad x \in [0,1] \quad \text{(with } x = 0 \text{ as limit and } g_1(x) = x\text{)}.$$

Research questions

(a) For which g_1, \ldots, g_d is the following a multivariate distribution function

$$(x_1,\ldots,x_d)\mapsto\prod_{k=1}^d g_k(x_{[k]}),$$

where $x_{[1]} \leq x_{[2]} \leq \ldots \leq x_{[d]}$ is the ordered list of $x_1, \ldots, x_d \in \mathbb{R}$?

(b) What about stochastic representations?

(c) Are there interesting examples / applications?

Theorem 2:

Let (i)–(iii) of Theorem 1 be valid. For each $E \subset \{1, \ldots, d\}$ consider a r.v. Z_E s.t.

- the distribution function of Z_E equals $G_{|E|}$,
- all Z_E are independent.

With an arbitrary univariate survival function \bar{g}_1 , define the random vector (X_1, \ldots, X_d) by the following "exogenous shock model":

 $X_k := \min \{ \bar{g}_1^{-1}(Z_E) : k \in E \}, \quad k = 1, \dots, d.$

 \Rightarrow The survival function of (X_1, \ldots, X_d) is given by $C(\bar{g}_1(x_1), \ldots, \bar{g}_1(x_d))$.

Remark: Conversely, any choice for the laws $G_1, \ldots, G_d \in \mathcal{D}$ of the Z_E uniquely determines associated functions g_2, \ldots, g_d .

With \bar{g}_1 a continuous survival function on $(0, \infty)$ consider

 $X_k := \min \{ \bar{g}_1^{-1}(Z_E) : k \in E \}, \quad k = 1, \dots, d.$

- The Z_E are abs. continuous on (0, 1) with potential extra atom at 0.
- The $\bar{g}_1^{-1}(Z_E)$ are abs. continuous on $(0, \infty)$ with possible extra atom at ∞ .
- $\bar{g}_1^{-1}(Z_E) = \text{arrival time point of exogenous shock killing all components in E.}$
- X_k = first time point when a shock kills component k.
- **Example:** $\bar{g}_1(x) = \exp(-x)$ and $G_m(x) = x^{\lambda_m}$ for some $\lambda_m > 0$ $\Rightarrow \bar{g}_1^{-1}(Z_E)$ exponential with rate $\lambda_{|E|}$ $\Rightarrow g_k(x) = x^{a_k}$ for special sequences (a_2, \dots, a_d) .

Schematic overview: dimension = 2

 g_1 g_2 \sim $Z_E, |E| = 1$ g_1/g_2 \sim $Z_E, |E| = 2$

Schematic overview: dimension = 3

 g_1 g_2 g_3 ~ $Z_E, |E| = 1$ g_1/g_2 g_2/g_3 ~ $Z_E, |E| = 2$ g_1g_3/g_2^2 ~ $Z_E, |E| = 3$

Schematic overview: dimension = *d*

Challenge: Dimensionality reduction?

Exogenous shock models in high dimensions

Stochastic representations de Finetti representation

Let $H = \{H_t\}_{t \in [t_0, t_1]}$ be an increasing additive process with $H_{t_0} = 0$ and $H_{t_1} = \infty$, i.e. $\Psi_t(x) := -\log (\mathbb{E}[\exp(-xH_t)])$ defines a family of Bernstein functions $\{\Psi_t\}_{t \ge 0}$.

- Draw one sample $\mathcal{F}(\omega)$ from the random d.f. $\mathcal{F} := \left\{1 e^{-H_t}\right\}_{t \in [t_0, t_1]}$.
- Let $X_1, X_2, \ldots \in (t_0, t_1)$ be i.i.d. random variables drawn from $\mathcal{F}(\omega)$.

 \Rightarrow The univariate survival function of X_k is given by

$$\bar{g}_1(x) := \mathbb{P}(X_k > x) = \mathbb{E}\left[e^{-H_x}\right] = \exp\left(-\Psi_x(1)\right), \quad x \ge 0.$$

 \Rightarrow The survival copula of (X_1, \ldots, X_d) has form *C* with g_2, \ldots, g_d given by

$$g_k(x) := \exp\left(-\Psi_{\bar{g}_1^{-1}(x)}(k) + \Psi_{\bar{g}_1^{-1}(u)}(k-1)\right), \quad k = 2, \dots, d.$$

Research questions

(a) For which g_1, \ldots, g_d is the following a multivariate distribution function

$$(x_1,\ldots,x_d)\mapsto\prod_{k=1}^d g_k(x_{[k]}),$$

where $x_{[1]} \leq x_{[2]} \leq \ldots \leq x_{[d]}$ is the ordered list of $x_1, \ldots, x_d \in \mathbb{R}$?

- (b) What about stochastic representations?
- (c) Are there interesting examples / applications?

Examples Marshall–Olkin copulas

- Let $H = \{H_t\}_{t \ge 0}$ be a Lévy subordinator. This means
 - $\rightarrow \Psi_t = t \cdot \Psi_1$ for some fixed Bernstein function Ψ_1 .
 - \rightarrow $g_k(x) = x^{a_k}$ for a sequence $(1, a_2, \dots, a_d)$ being *d*-monotone.
 - \rightarrow C in Th. 3 is the survival copula of an **exchangeable Marshall–Olkin law**.
- Th. 2 with $\bar{g}_1(x) = \exp(-x)$ yields the [Marshall–Olkin (1967)] representation, in which arrival times of exogenous shocks are exponentially distributed.

• Proposition:

 $C(x_1, ..., x_d) = x_{[1]} \cdot \prod_{k=2}^d g_k(x_{[k]})$ is an extreme-value copula \Leftrightarrow it is the survival copula of an exchangeable Marshall-Olkin law.

Examples Sato-frailty copulas

- Let $H = \{H_t\}_{t \ge 0}$ be an increasing Sato process. This means
 - → $\Psi_t(x) = \Psi_{sd}(x t^H)$ for some H > 0 and some fixed, self-decomposable Bernstein function $\Psi_{sd} = \Psi_1$.
 - → With $\varphi := \exp(-\Psi_{sd})$ denoting the Laplace transform of the associated self-decomposable law on $(0, \infty)$

$$C(x_1, \dots, x_d) = C_{\varphi}(x_1, \dots, x_d) = x_{[1]} \cdot \prod_{k=2}^d g_{k,\varphi}(x_{[k]}),$$

with $g_{k,\varphi}(x) = \frac{\varphi(k \varphi^{-1}(x))}{\varphi((k-1) \varphi^{-1}(x))}.$

• Theorem 4: ("Kimberling-type" copula-characterization of SD laws)

 C_{φ} is a copula for all $d \ge 2$ $\Leftrightarrow \varphi$ is the Laplace transform of a self-decomposable law on $(0, \infty)$.

Examples

Sato-frailty copula $g_k(u) = \varphi(k \varphi^{-1}(u)) / \varphi((k-1) \varphi^{-1}(u))$

• Laplace exponent of Gamma-distributed r.v.:

$$\Psi_{\mathsf{sd}}(x) = \beta \, \log(1 + \frac{x}{\eta}), \quad x, \beta, \eta > 0.$$

• There is a (unique) increasing Sato process $\{H_t\}_{t\geq 0}$ s.t.

$$\varphi(x) := \mathbb{E}[\exp(-xH_1)] = \exp(-\Psi_{\mathsf{sd}}(x)), \quad x \ge 0.$$

• The corresponding bivariate Sato-frailty copula C_{φ} is

$$C_{\varphi}(x_1, x_2) = \frac{x_{[1]}}{(2 - x_{[2]}^{1/\beta})^{\beta}}.$$

Examples

Sato-frailty copula $C_{\varphi}(x_1, x_2) = x_{[1]}/(2 - x_{[2]}^{1/\beta})^{\beta}$

Examples The Dirichlet copula

For c > 0, let $H^{(c)} = \{H_t^{(c)}\}_{t \in [0,1]}$ be specified via $\{\Psi_t^{(c)}\}_{t \in (0,1)}$ as $\Psi_t^{(c)}(x) := \int_0^\infty (1 - e^{-xu}) \frac{e^{u c (1-t)} - e^{-u c}}{u (1 - e^{-u})} du.$

- → The random d.f. $\mathcal{F} = \mathcal{F}_c = \left\{1 e^{-H_t^{(c)}}\right\}_{t \in [0,1]}$ is a **Dirichlet process**.
- \rightarrow The resulting copula in Th. 3 is called **Dirichlet copula**:

$$C(x_1,\ldots,x_d) = C_c(x_1,\ldots,x_d) = x_{[1]} \cdot \prod_{k=2} \frac{c x_{[k]} + k - 1}{c + k - 1}.$$

 \rightarrow Kendall's τ , Spearman's ρ_S , and tail-dependence are

$$\tau = \frac{2c+3}{3(c+1)^2}, \qquad \rho_S = \frac{1}{c+1}, \qquad \text{LTD}_C = \text{UTD}_C = \frac{1}{c+1}.$$

→ **Theorem 5: (Radially symmetric exogenous shock models)** The copula $C(x_1, ..., x_d) = x_{[1]} \cdot \prod_{k=2}^d g_k(x_{[k]})$ is radially symmetric $\Leftrightarrow C = C_c$ is a Dirichlet copula for some $c \in [0, \infty]$.

Examples The Dirichlet copula

- Dirichlet process is known in non-parametric Bayesian statistics.
- It is an interesting model for a distorted random number generator.
- **[Ferguson (1973)]**: Simulation (X_1, \ldots, X_d) from Dirichlet copula C_c is easy:
 - \rightarrow Simulate $X_1 \sim \mathcal{U}(0, 1)$.
 - \rightarrow For k = 2, ..., d simulate X_k as follows:
 - (i) Simulate discrete random variable $N \in \{1, ..., k\}$ with

$$\mathbb{P}(N=i) = \frac{1}{c+k-1}, \quad i = 1, \dots, k-1, \quad \mathbb{P}(N=k) = \frac{c}{c+k-1}.$$

(ii) If N = k simulate $X_k \sim \mathcal{U}(0, 1)$, else set $X_k := X_N$.

References

[Mai, Schenk, Scherer (2016a)]:

"Exchangeable exogenous shock models", Bernoulli 22, 1278–1299.

[Mai, Schenk, Scherer (2016b)]:

"Two novel characterizations of self-decomposability on the half-line", Journal of Theoretical Probability, forthcoming.

[Mai, Schenk, Scherer (2016c)]:

"Analyzing model robustness via a distortion of the stochastic root: a Dirichlet prior approach", working paper.

