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Research questions

(a) For which g1, . . . , gd is the following a multivariate distribution function

(x1, . . . , xd) 7→
d∏

k=1

gk
(
x[k]

)
,

where x[1] ≤ x[2] ≤ . . . ≤ x[d] is the ordered list of x1, . . . , xd ∈ R?

(b) What about stochastic representations?

(c) Are there interesting examples / applications?
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Analytical characterizations

• First observation:

(X1, . . . , Xd) ∼
d∏

k=1

gk
(
x[k]

)
⇒ g1(x) = P(Xk ≤ x), ∀k = 1, . . . , d.

• W.l.o.g. consider a copula framework, i.e. x1, . . . , xd ∈ [0, 1] and g1(x) = x.

• For which g2, . . . , gd is the following a copula?

C(x1, . . . , xd) := x[1] ·

d∏
k=2

gk
(
x[k]

)
• If C is a copula and g1 any univariate d.f. (resp. ḡ1 any univariate s.f.),

C
(
g1(x1), . . . , g1(xd)

)
:= g1

(
x[1]

)
·

d∏
k=2

gk ◦ g1
(
x[k]

) (
resp. C

(
ḡ1(x1), . . . , ḡ1(xd)

))
is a multivariate distribution function (resp. survival function).
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Some examples

• Independence: gk ≡ id[0,1] yields

C(x1, . . . , xd) =

d∏
k=1

xk.

• Exchangeable Marshall–Olkin copulas have gk(x) := xak−1, so

C(x1, . . . , xd) =

d∏
k=1

xak−1
[k] for d-monotone a0 = 1, a1, . . . , ad−1 ≥ 0.

• [Durante et al. (2007)] study copulas with gk(x) := g(x), k = 2, . . . , d, i.e.

C(x1, . . . , xd) = x[1]

d∏
k=2

g(x[k]).
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Analytical characterizations

Set D of univariate d.f.’s:

D := {F : [0, 1]→ [0, 1] : continuous, non-decreasing, strictly positive on (0, 1], F(1) = 1}
= {d.f.’s of absolutely continuous r.v.’s on (0, 1) with possibly an extra atom at 0}.
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Analytical characterizations

Bivariate case:

• For g1, g2 : [0, 1]→ [0, 1], g1(1) = g2(1) = 1, consider

C(x1, x2) := g1(x[1]) g2(x[2]).

• [Durante et al. (2008)]: C is a copula if and only if g1 ≡ id[0,1] and

(i) g2(y) − g2(x) ≥ 0, x, y ∈ [0, 1], x < y.

(ii) g1(y) g2(y) − 2 g1(x) g2(y) + g1(x) g2(x) ≥ 0, x, y ∈ [0, 1], x < y.

• Analytical interpretation:

→ (i) ⇔ g2 is increasing.

→ (ii) ⇔ g2 is continuous, strictly positive on (0, 1], and g1/g2 is increasing.

• Remark: g1/g2 ∈ D.
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Analytical characterizations

Necessary condition:

• Assume that (U1, . . . ,Ud) ∼ x[1] ·
∏d

k=2 gk
(
x[k]

)
. Then

g j(x) =
x ·

∏ j
k=2 gk

(
x
)

x ·
∏ j−1

k=2 gk
(
x
)

=
P(max{U1, . . . ,U j} ≤ x)
P(max{U1, . . . ,U j−1} ≤ x)

⇒ x ·
j∏

i=2

gi(x) = P(max{U1, . . . ,U j} ≤ x).

• So it is necessary that x ·
j∏

i=2
gi(x) ∈ D for all j = 2, . . . , d.

• But we need more.
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Analytical characterizations

Theorem 1: The following statements are equivalent:

(i) C(x1, . . . , xd) = x[1] ·
∏d

k=2 gk
(
x[k]

)
is a copula.

(ii) For all 0 < x < y ≤ 1, (k, j) ∈ N0 × N with k + j ≤ d we have
j∑

i=0

(
j
i

)
(−1)i

i∏
`=1

g`+k(x)
j∏

`=i+1

g`+k(y) ≥ 0.

(iii) For m = 1, . . . , d we have Gm ∈ D, where

Gm(x) :=
m−1∏
i=0

g
(−1)i (m−1

i )
d−m+1+i (x), x ∈ [0, 1] (with x = 0 as limit and g1(x) = x).
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Research questions

(a) For which g1, . . . , gd is the following a multivariate distribution function

(x1, . . . , xd) 7→
d∏

k=1

gk
(
x[k]

)
,

where x[1] ≤ x[2] ≤ . . . ≤ x[d] is the ordered list of x1, . . . , xd ∈ R?

(b) What about stochastic representations?

(c) Are there interesting examples / applications?
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Stochastic representations
Exogenous shock model representation

Theorem 2:

Let (i)–(iii) of Theorem 1 be valid. For each E ⊂ {1, . . . , d} consider a r.v. ZE s.t.

• the distribution function of ZE equals G|E|,

• all ZE are independent.

With an arbitrary univariate survival function ḡ1, define the random vector
(X1, . . . , Xd) by the following “exogenous shock model”:

Xk := min
{
ḡ−1

1 (ZE) : k ∈ E
}
, k = 1, . . . , d.

⇒ The survival function of (X1, . . . , Xd) is given by C
(
ḡ1(x1), . . . , ḡ1(xd)

)
.

Remark: Conversely, any choice for the laws G1, . . . ,Gd ∈ D of the ZE
uniquely determines associated functions g2, . . . , gd.
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Stochastic representations
Exogenous shock model representation

With ḡ1 a continuous survival function on (0,∞) consider

Xk := min
{
ḡ−1

1 (ZE) : k ∈ E
}
, k = 1, . . . , d.

• The ZE are abs. continuous on (0, 1) with potential extra atom at 0.

• The ḡ−1
1 (ZE) are abs. continuous on (0,∞) with possible extra atom at ∞.

• ḡ−1
1 (ZE) = arrival time point of exogenous shock killing all components in E.

• Xk = first time point when a shock kills component k.

• Example: ḡ1(x) = exp(−x) and Gm(x) = xλm for some λm > 0
⇒ ḡ−1

1 (ZE) exponential with rate λ|E|
⇒ gk(x) = xak for special sequences (a2, . . . , ad).
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Stochastic representations
Exogenous shock model representation

Schematic overview: dimension = 2

g1 g2 ∼ ZE, |E| = 1

g1/g2 ∼ ZE, |E| = 2
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Stochastic representations
Exogenous shock model representation

Schematic overview: dimension = 3

g1 g2 g3 ∼ ZE, |E| = 1

g1/g2 g2/g3 ∼ ZE, |E| = 2

g1 g3/g2
2 ∼ ZE, |E| = 3
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Stochastic representations
Exogenous shock model representation

Schematic overview: dimension = d

g1 g2 g3 . . . gd |E| = 1

g1/g2 g2/g3 . . . gd−1/gd |E| = 2

g1 g3/g2
2 . . . gd−2 gd/g2

d−1 |E| = 3

...

∏d−1
i=0 g(d−1

i ) (−1)i

i+1 |E| = d

Challenge: Dimensionality reduction?
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Stochastic representations
de Finetti representation

Theorem 3:

Let H = {Ht}t∈[t0,t1] be an increasing additive process with Ht0 = 0 and Ht1 = ∞, i.e.
Ψt(x) := − log

(
E
[
exp

(
− x Ht

)])
defines a family of Bernstein functions {Ψt}t≥0.

• Draw one sample F (ω) from the random d.f. F :=
{
1 − e−Ht

}
t∈[t0,t1]

.

• Let X1, X2, . . . ∈ (t0, t1) be i.i.d. random variables drawn from F (ω).

⇒ The univariate survival function of Xk is given by

ḡ1(x) := P(Xk > x) = E
[
e−Hx

]
= exp

(
− Ψx(1)

)
, x ≥ 0.

⇒ The survival copula of (X1, . . . , Xd) has form C with g2, . . . , gd given by

gk(x) := exp
(
− Ψḡ−1

1 (x)(k) + Ψḡ−1
1 (u)(k − 1)

)
, k = 2, . . . , d.
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Research questions

(a) For which g1, . . . , gd is the following a multivariate distribution function

(x1, . . . , xd) 7→
d∏

k=1

gk
(
x[k]

)
,

where x[1] ≤ x[2] ≤ . . . ≤ x[d] is the ordered list of x1, . . . , xd ∈ R?

(b) What about stochastic representations?

(c) Are there interesting examples / applications?
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Examples
Marshall–Olkin copulas

• Let H = {Ht}t≥0 be a Lévy subordinator. This means

→ Ψt = t · Ψ1 for some fixed Bernstein function Ψ1.

→ gk(x) = xak for a sequence (1, a2, . . . , ad) being d-monotone.

→ C in Th. 3 is the survival copula of an exchangeable Marshall–Olkin law.

• Th. 2 with ḡ1(x) = exp(−x) yields the [Marshall–Olkin (1967)] representation,
in which arrival times of exogenous shocks are exponentially distributed.

• Proposition:

C(x1, . . . , xd) = x[1] ·
∏d

k=2 gk
(
x[k]

)
is an extreme-value copula

⇔ it is the survival copula of an exchangeable Marshall-Olkin law.
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Examples
Sato-frailty copulas

• Let H = {Ht}t≥0 be an increasing Sato process. This means

→ Ψt(x) = Ψsd(x tH) for some H > 0 and some fixed, self-decomposable
Bernstein function Ψsd = Ψ1.

→ With ϕ := exp(−Ψsd) denoting the Laplace transform of the associated
self-decomposable law on (0,∞)

C(x1, . . . , xd) = Cϕ(x1, . . . , xd) = x[1] ·

d∏
k=2

gk,ϕ
(
x[k]

)
,

with gk,ϕ(x) =
ϕ
(
k ϕ−1(x)

)
ϕ
(
(k − 1)ϕ−1(x)

).
• Theorem 4: (“Kimberling-type” copula-characterization of SD laws)

Cϕ is a copula for all d ≥ 2
⇔ ϕ is the Laplace transform of a self-decomposable law on (0,∞).
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Examples
Sato-frailty copula gk(u) = ϕ

(
k ϕ−1(u)

)
/ϕ

(
(k − 1)ϕ−1(u)

)
• Laplace exponent of Gamma-distributed r.v.:

Ψsd(x) = β log(1 +
x
η

), x, β, η > 0.

• There is a (unique) increasing Sato process {Ht}t≥0 s.t.

ϕ(x) := E[exp(−x H1)] = exp(−Ψsd(x)), x ≥ 0.

• The corresponding bivariate Sato-frailty copula Cϕ is

Cϕ(x1, x2) =
x[1](

2 − x1/β
[2]

)β .
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Examples
Sato-frailty copula Cϕ(x1, x2) = x[1]/

(
2 − x1/β

[2]
)β
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Examples
The Dirichlet copula

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

• For c > 0, let H(c) = {H(c)
t }t∈[0,1] be specified via {Ψ(c)

t }t∈(0,1) as

Ψ
(c)
t (x) :=

∫ ∞

0

(
1 − e−x u) eu c (1−t) − e−u c

u (1 − e−u)
du.

→ The random d.f. F = Fc =
{
1 − e−H(c)

t

}
t∈[0,1]

is a Dirichlet process.

→ The resulting copula in Th. 3 is called Dirichlet copula:

C(x1, . . . , xd) = Cc(x1, . . . , xd) = x[1] ·
∏
k=2

c x[k] + k − 1
c + k − 1

.

→ Kendall’s τ, Spearman’s ρS , and tail-dependence are

τ =
2 c + 3

3(c + 1)2 , ρS =
1

c + 1
, LTDC = UTDC =

1
c + 1

.

→ Theorem 5: (Radially symmetric exogenous shock models)

The copula C(x1, . . . , xd) = x[1] ·
∏d

k=2 gk
(
x[k]

)
is radially symmetric

⇔ C = Cc is a Dirichlet copula for some c ∈ [0,∞].
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The Dirichlet copula

• Dirichlet process is known in non-parametric Bayesian statistics.

• It is an interesting model for a distorted random number generator.

• [Ferguson (1973)]: Simulation (X1, . . . , Xd) from Dirichlet copula Cc is easy:

→ Simulate X1 ∼ U(0, 1).

→ For k = 2, . . . , d simulate Xk as follows:

(i) Simulate discrete random variable N ∈ {1, . . . , k} with

P(N = i) =
1

c + k − 1
, i = 1, . . . , k − 1, P(N = k) =

c
c + k − 1

.

(ii) If N = k simulate Xk ∼ U(0, 1), else set Xk := XN.
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