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Spectral measure characterization

We will say X ∼ S (α,Λ, δ; j), j = 0, 1 if its joint characteristic function is
given by

φ(u) = E exp(i〈u,X〉) = exp

(
−
∫
S
ω (〈u, s〉|α; j) Λ(ds) + i〈u, δ〉

)
,

where

ω(t|α; j) =


|t|α[1 + i sign (t) tan πα

2
(|t|1−α − 1)] α 6= 1, j = 0

|t|α[1− i sign (t) tan πα
2

] α 6= 1, j = 1

|t|[1 + i sign (t) 2
π log |t|] α = 1, j = 0, 1.

The 1-parameterization is more commonly used, but discontinuous in α.
0-parameterization is a continuous parameterization.
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Projection parameterization

Every one dimensional projection 〈u,X〉 = u1X1 + u2X2 + · · ·+ udXd has a
univariate stable distribution, with a constant index of stability α and
skewness β(u), scale γ(u) and shift δ(u) that depend on the direction u.

We will call the functions β(·), γ(·) and δ(·) the projection parameter
functions. They determine the joint distribution via the Cramér-Wold
device, so we can parameterize X by these projection parameter functions:
X ∼ S (α, β(·), γ(·), δ(·); j), j = 0 or j = 1.

In this section, we will always assume that d = 2 and X has normalized
components: γ(1, 0) = γ(0, 1) = 1.

Will sometimes use polar notation: γ(θ) := γ(cos θ, sin θ) to specify a
scale funtion on the unit circle.
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Spectral measure Λ(·) and scale function γ(·)

independent
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isotropic
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pos. linear dep.
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pos. associated

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

γα(θ),   α = 1.5

Alparslan & Nolan (American U) Luminy 23 Feb 2016 9 / 27



Outline

1 Multivariate stable

2 Dependence measure ηp

3 Sample dependence measure η̂p

4 Related topics

Alparslan & Nolan (American U) Luminy 23 Feb 2016 10 / 27



Definition
Set γ⊥(u) = (|u1|α + |u2|α)1/α (independence), p ∈ [1,∞]

ηp = ηp(X1,X2) = ‖γα(u1, u2)− γα⊥(u1, u2)‖Lp(S,du). (1)

Here du is (unnormalized) surface area on S.

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

θ

|γ1
α(θ)− γ2

α(θ)|

Alparslan & Nolan (American U) Luminy 23 Feb 2016 11 / 27



Definition
Set γ⊥(u) = (|u1|α + |u2|α)1/α (independence), p ∈ [1,∞]

ηp = ηp(X1,X2) = ‖γα(u1, u2)− γα⊥(u1, u2)‖Lp(S,du). (1)

Here du is (unnormalized) surface area on S.

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

θ

|γ1
α(θ)− γ2

α(θ)|

Alparslan & Nolan (American U) Luminy 23 Feb 2016 11 / 27



Properties of ηp

X has independent components if and only if ηp = 0 for some (every)
p ∈ [1,∞].

α can be any value in (0, 2) and X can have symmetric or
non-symmetric components, and it can be centered or shifted.

ηp is symmetric: ηp(X1,X2) = ηp(X2,X1).

ηp measures how far the scale function of X is from the scale function
of a stable r. vector with independent components: when X is
symmetric, earlier work shows

sup
x∈R2

|f (x)− f⊥(x)| ≤ kα‖γ(·)− γ⊥(·)‖.
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Properties of ηp (continued)

The p-norm in (1) is evaluated as an integral over the unit circle S,
not all of R2. In polar coordinates,

ηp =

(
2

∫ π

0
|γα(cos θ, sin θ)− γα⊥(cos θ, sin θ)|p dθ

)1/p

, (2)

where the interval of integration has been reduced by using the fact
that γ(·) is π-periodic

ηp ≥ 0 by definition, not measuring positive/negative dependence,
just distance from independence. Don’t think there is a general way
of assigning a sign, e.g. rotate the indep. components case by π/4
and the resulting distribution bunches around both the lines y = x
and y = −x for large values of |X|.
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Properties of ηp (continued)

The definition makes sense in the Gaussian case: when α = 2, the
scale function for a bivariate Gaussian distribution with correlation ρ
is γ(u)2 = 1 + 2ρu1u2 and γ⊥ = 1. Then ηpp = |2ρ|p

∫
S |u1u2|

pdu, so
ηp = kp|ρ|.
In elliptically contoured/sub-Gaussian case, can get an integral
expression that can be evaluated numerically.

Multivariate stable X = (X1, . . . ,Xd) has mutually independent
components if and only if all pairs are independent, so the
components of X are mutually independent if and only if
ηp(Xi ,Xj) = 0 for all i > j .
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Covariation in terms of γ(·)

For α > 1, the covariation is

[X1,X2]α =

∫
S
s1s

<α−1>

2 Λ(ds)

=
1

α

∂γα(u1, u2)

∂u1

∣∣∣∣
(u1=0,u2=1)

.

Thus the covariation depends only on the behavior of γ(·, ·) near the
point (1, 0). If X1 and X2 are independent, then [X1,X2]α = 0 ; but the
converse is false.

Short diversion: when can covariation be 0?
If Λ1 is any measure supported on Q1 ∪ Q3, then covariation ≥ 0.
If Λ2 is any measure supported on Q2 ∪ Q4, then covariation ≤ 0.
Covariation of c1Λ1 + c2Λ2 = c1 covariation Λ1 + c2 covariation Λ2.
So by choosing c1, c2 > 0 appropriately we can get 0 covariation with
many, many different measures.
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Co-difference in terms of γ(·)

The co-difference is defined for symmetric α-stable vectors, and can be
written as

τ = γα(1, 0) + γα(0, 1)− γα(1,−1),

for any α ∈ (0, 2). If X1 and X2 are independent, then τ = 0, but again
the converse is false.

Short diversion: when can co-difference be 0? Many ways, as on previous
page when α > 1; when α ≤ 1, can only have τ ≥ 0.
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Envelope of scale function γα(·)
Find γαmin(·) = min γα(·), γαmax(·) = max γα(·) like Pickand’s function
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Sample measure η̂2

Use max. likelihood estimation of the marginals and set α̂ = (α1 + α2)/2,
normalize each component.

For angles 0 ≤ θ1 < θ2 < · · · < θm ≤ π, define γ̂j = γ̂(cos θj , sin θj) = ML
estimate of the scale of the projected data set 〈Yi , (cos θj , sin θj)〉,
i = 1, . . . , n

Define

η̂2 =

 m∑
j=1

(
γ̂α̂j − γα̂⊥,j

)21/2

,

where γα̂⊥,j is the scale in direction θj when components are independent.
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Uniform grid with m = 6 directions

θ
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Suggest uniform grid in first and second quadrant that avoid 0, π/2, π
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Get critical values by simulation, depends on α, the skewness parameters
β1 and β2 of the marginals, grid size and sample size n.

The power to detect dependence increases as the grid size increases, but
only for a while. The power plateaus near 5 points in each quadrant.

Fast approximation to critical values based on χ2(1) distribution.
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Power calculation via simulation, α = 1.5, 5 grid points
per quadrant, 1000 simulations

indep. indep. indep. exact
n isotropic 	 π/4 	 π/8 	 π/16 linear dep.

25 0.191 0.322 0.243 0.213 1
50 0.223 0.624 0.381 0.183 1

100 0.344 0.918 0.644 0.214 1
200 0.636 0.998 0.937 0.440 1
300 0.874 1 0.997 0.627 1
400 0.960 1 1 0.791 1
500 0.989 1 1 0.893 1
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Dimension d > 2
Generated d = 10 dim data: 3 components were strongly dependent, 3
were somewhat dependent, other 4 were independent. Then permuted the
components. Can we find the structure?

Compute pairwise η̂2 and plot as a grayscale image (left), then cluster
(right).

Ordered,  n= 150 Ordered, n= 4000

Random order, n= 4000 Reordered, n= 4000
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Time series - plot η̂2(Xi ,Xi+j) similar to ACF plot
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model selection - see dependence in an AR(1) simulated time series
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Time series - robustness
ACF is sensitive to extremes

η̂2 ACF

Lag

n= 1000   alpha= 1.575   beta= 0
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Székely and Rizzo (2007, 2009) defined a distance covariance based on
weighted L2 difference of joint empirical characteristic function and
product of marginal empirical distribution function. It is very general,
characterizes independence. Simulations shows that it also works well with
bivariate stable data. In fact, it is a bit more powerful than the above η2.
(We do not understand this.)

Domain of attraction modifications Have to use bootstrap samples to
compute critical values, noticeably less power.

Similar measure of dependence for multivariate extreme value laws -
difference between tail dependence function and the one corresponding to
independence.
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