

Stress tests for lapse risk: correlation and contagion among policyholders' behaviours

Colloque CIRM - Extremes, Copules et Actuariat Marseille, 02/24/2016

Xavier Milhaud, ISFA
Joint work with F. Barsotti and Y. Salhi

A word on the lapse risk

What is the lapse risk?

→ Due to death, maturity, change of premium level, surrender, ...

Why so much interest?

- Among the 3 major risks in life insurance;
- Understand the behaviours, and design new products;
- Predictions: segmentation and risk management (ALM).

Lapse classification in life insurance

The 2 main historical explanations for surrenders are ([Out90])

- liquidity needs → idiosynchratic → structural surrenders;
- ullet economic distress o environment o temporary surrenders.

Current context: never experienced such low interest rates ⇒ impact on the underwriting of new business...

Threat: massive (temporary) surrenders due to ✓ of interest rate.

- Introduction to the problem
- Regulation and current approaches in insurance companies
 - Structural surrenders and segments
 - Issues
 - QIS 5 and Solvency II recommendations
 - (Partial) internal model
- The dynamic contagion process
- 4 Key messages, limits and on-going research

Estimation of structural lapses

Tables with profiles, e.g. yearly structural lapse rates (LR) for 9 segments:

	Bank	Agent	Direct
[0, 4] years	5%	8%	15%
[4,8] years	3%	10%	15%
> 8 years	10%	19%	20%

- → Segment the population with a priori discriminant risk factors.
- → Empirical estimation / model-based estimates (GLM, ...).
- → Associated important assumptions...

Model-based example : logit on spanish Endowments

Crisis not captured (despite financial covariates).

→ GLM / survival models missed something....

Regulation: QIS 5 (EIOPA)

Compute the SCR in 2 steps, and keep the max. b/w (1) and (2).

Step (1): shocks applied to structural LR (misestimation).

 $LR_{up} = \min(100\%, 150\% \times LR) \rightarrow \text{our context!}$ $LR_{down} = \min(0, \max(50\% \times LR, LR - 20\%)).$

Step (2) : mass lapse event, \sim "bank run".

30%-loss of the sum of positive surrender strain over portfolio;

- → Empirics to calibrate mass lapse event is poor;
- → Should be adjusted to the type of life insurance policy...

"Steps (1) AND (2) incorporate temporary lapses"

Internal model and practical approach (S-shaped)

Taux de rachats conjoncturels (RC) en fonction de l'écart entre le taux servi R et le taux concurrent TC

At the end... $LR_{shocked} = min(1, max(0, RS + RC))$.

Still some issues to deal with

- + Pros:
 - easy-to-understand, easy-to-implement,
 - integrates (artificially) copycat behaviours → correlation risk;
- Cons:
 - not fully realistic;
 - this is a static model...(does not depend on time *t*),
 - does not consider the contagion between policyholders...

⇒ We'd like to introduce a model that copes with both correlation and contagion risks to define extreme scenarios.

- 1 Introduction to the problem
- 2 Regulation and current approaches in insurance companies
- The dynamic contagion process
 - An alternative to model contagion : Hawkes processes
 - Extended Hawkes processes : our context
 - Theoretical results
 - Risk management and sensitivities
- Key messages, limits and on-going research

Intensity models - Hawkes process

Intensity models are often used in mortgage prepayments (most of them of Cox-type). Focus here on Hawkes-type processes [HO74].

Counting process s.t.

$$\lambda_t = \lambda_{\infty} + (\lambda_0 - \lambda_{\infty})e^{-\beta t} + \alpha \int_0^t e^{-\beta(t-s)}dN_s,$$

- → Path-dependent stochastic intensity;
- → Piecewise deterministic: "internal" source of excitation:
- → No correlation...

Dynamic contagion process for the lapse intensity

- → Extended Hawkes, [DZ11].
- $\rightarrow (N_t)_{t\geq 0}$: counting process of lapses over the whole portfolio.

$$\lambda_t = \lambda_{\infty} + (\lambda_0 - \lambda_{\infty}) e^{-\beta t} + \sum_{i \geq 1} X_i e^{-\beta (t - T_i)} \mathbf{1}_{T_i \leq t} + \sum_{j \geq 1} Y_j e^{-\beta (t - \hat{T}_j)} \mathbf{1}_{\hat{T}_j \leq t}$$

$$\tag{1}$$

where lapses occur at T_i , and X_i , Y_i are magnitudes of jumps.

- **1** Structural surrender forces λ_0 , and λ_{∞} (constant here),
- Temporary surrenders, with
 - endogenous shocks : contagion, internal;
 - exogenous shocks: history of $\hat{N}_t \rightarrow$ dynamic dependence, source of **correlation** in our setting (to be defined later).

Cause of correlation: interest rate movements

- → Consider a contract with
 - guaranteed return R^g > 0 : minimum profitability,
 - **credited rate** R_t^c : encompasses R^g + potential profit benefit.

At the contract inception, $R^g \simeq 0$ for most of life insurers in 2015. Moreover, we have $R_0^c = R^g$.

 \rightarrow Let $(r_t)_{t\geq 0}$ be the interest rate with GBM dynamics (μ, σ) .

Q : in critical scenarios, how the surrender decision could be affected by the level of r_t ?

Look at the following standardized spread:

$$RG_t^0 := \frac{r_t - R_0^c}{R_0^c}$$

- \rightarrow Makes sense to \nearrow the propensity to lapse when $RG_t^0 \nearrow$;
- \rightarrow Say that policyholders would exercise their option to surrender at time \hat{T}_1 being the first time RG_t^0 hits a constant barrier B > 0.
- \rightarrow Assume that the company can then adjust the credited rate R_t^c depending on the interest rate level (to avoid massive lapses).

This defines the new standardized spread RG_t^1 , given by

$$RG_t^1 = \frac{r_t - R_{\widehat{T}_1}^c}{R_{\widehat{T}_1}^c} = \frac{r_t - r_{\widehat{T}_1}}{r_{\widehat{T}_1}}, \qquad \widehat{T}_1 \leq t < \infty.$$

Next adjustment will be operated as soon as $RG_t^1 = B$, and so on...

 \Rightarrow These events thus characterize the sequence $(\hat{T}_j)_{j=0,1,\dots}$ s.t.

$$\hat{T}_{j+1} = \inf\{t > 0, RG_t^j = B\},$$
 (2)

with $\hat{T}_0 = 0$ for convenience.

 $(\hat{N}_t = \sum_{j \geq 1} \mathbf{1}_{\hat{T}_j \leq t}$: counting process associated to such events.)

Adjustments of the credited rate

Dynamic contagion process: intensity process λ_t

Dynamic contagion process: counting process N_t

About external jumps at \hat{T}_j

- $\rightarrow (r_t)_{t\geq 0}$ follows a GBM (log $(r_t/r_0) = (\mu \sigma^2/2)t + \sigma W_t$).
- $\rightarrow (\hat{T}_i)_{i=0,1,...}$ are hitting times of the process RG_t .
- \Rightarrow The events \hat{T}_j can also be characterized as follows

$$\hat{T}_j = \hat{T}_{j-1} + \inf\{t \ge 0, \quad \mu t + \sigma W_t = \log(1+B)\}.$$

 \Rightarrow Inter-arrival times $\Delta \hat{T}_j = \hat{T}_j - \hat{T}_{j-1}$ are i.i.d., with distribution F ([SK91]):

$$\Delta \hat{T}_j \sim IG(\theta_1, \theta_2),$$

with $\theta_1 = 2 \log(1+B)/(2\mu - \sigma^2)$, $\theta_2 = \log(1+B)^2/\sigma^2$.

 $\rightarrow \lambda_t, (\lambda_t, N_t), (\lambda_t, N_t, \widehat{N}_t)$ not Markovian.

$$\rightarrow \hat{T}_j = \sum_{k=1}^j \Delta \hat{T}_k$$
.

Introduce $P(\hat{T}_i \leq t) = F^{j*}(t)$.

 \rightarrow Denote by $h(t) = E[\hat{N}_t] = \sum_{j=0}^{\infty} P(\hat{N}_t \ge j)$, thus

$$h(t) = \sum_{j=0}^{\infty} F^{j*}(t).$$
 (3)

The CDF F^{j*} is still IG, with mean $j\theta_1$ and shape $j\theta_2$.

Moments of the lapse intensity

 \rightarrow Let

$$m(t,\theta) = E[e^{\theta \lambda_t}],$$

and $m^{(n)}(t,\theta)$: n^{th} derivative of m with respect to θ . We have

$$m^{(n)}(t,0) = E[\lambda_t^n].$$

 \rightarrow Denote respectively $\xi(t,\theta)$ and $\widehat{\xi}(t,\theta)$ the m.g.f. of

$$Z_t = \sum_{i=1}^{N_t} X_i e^{\beta T_i}$$
 and $\widehat{Z}_t = \sum_{i=1}^{\widehat{N}_t} Y_j e^{\beta \widehat{T}_j}$. (4)

 Z_t , \widehat{Z}_t are discounted compound renewal processes ([LGFW10]).

Similarly, $\xi^{(n)}(t,\theta)$ and $\widehat{\xi}^{(n)}(t,\theta)$ refer to the n^{th} derivative $\xi(t,\theta)$ and $\widehat{\xi}(t,\theta)$ with respect to θ .

 $\rightarrow \lambda_t$ can be written in the following form

$$\lambda_t = (\lambda_{\infty} + (\lambda_0 - \lambda_{\infty})e^{-\beta t}) + e^{-\beta t}Z_t + e^{-\beta t}\widehat{Z}_t.$$

⇒ We can then derive

- the m.g.f. of Z_t and \widehat{Z}_t ;
- ② the m.g.f. of λ_t in function of those of Z_t and \widehat{Z}_t ;

⇒ At the end, we obtain a recursive formula.

(1) Moment generating functions of Z_t and \widehat{Z}_t

The m.g.f. ξ and $\widehat{\xi}$ of Z_t and \widehat{Z}_t are given by **recursive formulas**:

$$E[e^{\theta Z_t}] = \xi(t,\theta) = ... + \int_0^t ... \xi(t-u,\theta e^{\beta u}) \, m^{(1)}(u,0) \, du$$
 (5)

$$E[e^{\theta\widehat{Z}_t}] = \widehat{\xi}(t,\theta) = \dots + \int_0^t \dots \widehat{\xi}(t-u,\theta e^{\beta u}) \, dh(u), \tag{6}$$

- → We can derive the moments of the renewal processes;
- \rightarrow The first moment of the intensity λ_t is key (self-excited);
- \rightarrow Recall that $h(t) = E[\hat{N}_t] = \sum_{i=0}^{\infty} F^{i*}(t)$.

(2) Moment generating function of λ_t

Proposition. For n > 1, the n^{th} derivative of the surrender intensity m.g.f. is given recursively :

$$m^{(n)}(t,\theta) = K(t,\lambda_0,\lambda_\infty) m^{(n-1)}(t,\theta)$$

$$+ \sum_{i=0}^{n-1} G(i,n) \left(I_i(t,\theta) + \widehat{I}_i(t,\theta) \right) m^{(i)}(t,\theta),$$
(7)

with I_k and J_k for $\{k = 1, 2, ...\}$ given by

$$I_{k}(t,\theta) = I_{k-1}^{(1)}(t,\theta) + H(I_{k-1}(t,\theta))\xi^{(1)}(t,\theta e^{-\beta t}),$$

$$\widehat{I}_{k}(t,\theta) = \widehat{I}_{k-1}^{(1)}(t,\theta) + H'(\widehat{I}_{k-1}(t,\theta))\widehat{\xi}^{(1)}(t,\theta e^{-\beta t}).$$

Application: expected intensity process

 \rightarrow The expectation $E[\lambda_t]$ is given by

$$m^{(1)}(t,0) = \left(\lambda_0 - \frac{\beta\lambda_\infty}{\beta - 1/\gamma}\right)e^{-(\beta - \frac{1}{\gamma})t} + \frac{\beta\lambda_\infty}{\beta - 1/\gamma} + \frac{1}{\delta}\int_0^t e^{-(\beta - \frac{1}{\gamma})(t-s)}h'(s)ds.$$

Remark: $m^{(1)}(t,0)$ comprises an infinite series associated with the external jumps component $(h'(s) = \sum_{i=0}^{\infty} f^{j*}(s))$.

Trick to get closed-form expressions: convolution of exponential and inverse gaussian r.v.

$$ightarrow E[N_t] = E\left[\int_0^t \lambda_s ds
ight] = \int_0^t m^{(1)}(s,0) ds.$$

Limiting behaviour of the lapse intensity

We can also compute the limit of this expectation:

$$\lim_{t \to \infty} E[\lambda_t] = \frac{\beta \lambda_{\infty}}{\beta - 1/\gamma} + \frac{1}{\delta \theta_1 (\beta - 1/\gamma)}.$$
 (8)

- → The limiting behavior of the lapse intensity first moment strongly depends on the limit of the last term in the previous result.
- \rightarrow Serfozo [2009] for such results.

Mean intensity process (# simu : 20 000)

Application to risk management - calibration

Some parameters can be calibrated from practitioners' knowledge:

- λ_0 (initial force of lapse) is a constant.
 - ⇒ Exponential underlying lifetime distribution before lapse.
- λ_{∞} can be fixed by the risk managers as their goal...
 - \Rightarrow When the time horizon is given, this can be easily fixed.
- B depicts the sensitivity of PH to opportunities (experts).

Some parameters (e.g. GBM) should be calibrated from empirical data / history whenever possible.

Others relate to the management : β (ability to reassure the PH), γ , δ tie in with the mean size (SI) of lapsed contracts...

Stress tests: comparison with SII and S-shaped

- → Within the Solvency II framework : run-off, 1-year horizon.
- → With regard to financial context : focus on the upper-shock.
- → Risk measures under consideration: VaR and TVaR.

		Solvency II Standard formula		S-shaped curve (ONC)		Hawkes counting process			Dynamic contagion process		
Pa	arameters	Risk level	Shocks	Risk level	Shocks	$E[N_t]$	VaR_{α}	$TVaR_{\alpha}$	$E[N_t]$	VaR_{α}	$TVaR_{\alpha}$
	10%								455	1028	1142
В	30%	75	112	75	375	291	776	837	312	818	930
	50%								293	778	886
	0.1								2461	4286	4559
δ	0.5	75	112	75	375	291	776	837	702	1460	1594
	1.5								455	1028	1142

Table: Impact of contagion and correlation on $VaR_{\alpha}(N_t)$, $TVaR_{\alpha}(N_t)$ at level $\alpha = 99.5\%$, in a 1-year time horizon (t = 250).

Conclusion on stress tests

- → The shock in SII looks neither consistent nor realistic.
- → Stress tests in most of companies seem to be **underestimated**.
- \rightarrow OK for extreme scenarios (reserving), not so realistic in classical regime (pricing).
- → PH' sensitivity to IR movements is obviously not linear...
- → External component has a limited impact, provided that mean size of the external jumps is low ⇒ portfolio composition is crucial!

Key messages

Integrate only main risk factors + **correlation** + **contagion**.

Perspectives:

- Calibration on a real-life portfolio;
- Use a martingale approach to retrieve the whole distribution of lapses N_t,
- Extend this approach with an adapted interest rate model.

References

Angelos Dassios and Hongbiao Zhao, *A dynamic contagion process*, Advances in Applied Probability **43** (2011), no. 3, 814–846.

Alan G Hawkes and David Oakes, *A cluster process representation of a self-exciting process*, Journal of Applied Probability (1974), 493–503.

G. Léveillé, J. Garrido, and Y. Fang Wang, *Moment generating functions of compound renewal sums with discounted claims*, Scandinavian Actuarial Journal **2010** (2010), no. 3, 165–184.

Jean François Outreville, Whole-life insurance lapse rates and the emergency fund hypothesis, Insurance: Mathematics and Economics 9 (1990), 249–255.

SE Shreve and I Karatzas, *Brownian motion and stochastic calculus*, Newyork Berlin. Heidelberg. London Paris Tokyo (1991).