NONPARAMETRIC COPULA ESTIMATION UNDER CENSORING

Svetlana Gribkova, Olivier Lopez

Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie Paris 6 ANR Project Lolita (Dynamic Models for human Longevity with Lifestyle Adjustments)

CIRM, February 23th 2016

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

COUPLES OF LIFETIMES

CIRM, 23/02/16 1 / 27

OUTLINE

INTRODUCTION

2 GENERALIZING THE EMPIRICAL COPULA

- How to deduce an estimator of ℭ from an estimator of F
- Estimation of F
- Asymptotic theory

3 Smooth estimators

- Two strategies
- Asymptotic properties
- Practical illustration

イロト イポト イヨト イヨト

OBSERVATIONS

BIVARIATE RIGHT-CENSORED AND LEFT-TRUNCATED DATA

We observe *n* i.i.d. copies $(Y_i, Z_i, \mu_i, \nu_i, \delta_i, \gamma_i)_{1 \le i \le n}$, with

$$\begin{cases} Y_i = \inf(T_i, C_i), \\ Z_i = \inf(U_i, D_i), \end{cases}$$

where C_i and D_i are censoring variables, and

$$\begin{cases} \delta_i = \mathbf{1}_{T_i \leq C_i}, \\ \gamma_i = \mathbf{1}_{U_i \leq D_i}, \end{cases}$$

where $Y_i \ge \mu_i$ and $Z_i \ge \nu_i$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

EXAMPLES

- T = lifetime of a man, U = lifetime of his wife
- Examples of applications : pricing and/or reserving of pensions contracts with reversion clause.
- T and U are not independent.
- T = time between the occurrence of a claim and when its amount is settled, U = total amount paid by the insurer.
- Application : reserving in non-life insurance.
- Once again, *T* and *U* are not independent.

EXAMPLES

- T = lifetime of a man, U = lifetime of his wife
- Examples of applications : pricing and/or reserving of pensions contracts with reversion clause.
- T and U are not independent.
- *T* = time between the occurrence of a claim and when its amount is settled, *U* = total amount paid by the insurer.
- Application : reserving in non-life insurance.
- Once again, *T* and *U* are not independent.

Sklar's theorem

SKLAR'S THEOREM - DISTRIBUTION FUNCTIONS

Let (T, U) be absolutely continuous variables with d.f. F, $F_T(t) = \mathbb{P}(T \le t), F_U(u) = \mathbb{P}(U \le u)$. There exists a unique copula function \mathfrak{C} such that

$$F(t, u) = \mathfrak{C}(F_T(t), F_U(u)).$$

SKLAR'S THEOREM - SURVIVAL FUNCTIONS

Let (T, U) be absolutely continuous variables with survival function S_F , $S_T(t) = \mathbb{P}(T > t)$, $S_U(u) = \mathbb{P}(U > u)$. There exists a unique copula function \mathfrak{C}_S such that

$$S_F(t, u) = \mathfrak{C}_S(S_T(t), S_U(u)).$$

Moreover,

$$\mathfrak{C}_{\mathcal{S}}(u,v)=u+v-1+\mathfrak{C}(1-u,1-v).$$

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

AIM OF THIS WORK

- Let F(t, u) = ℙ(T ≤ t, U ≤ u) denote the bivariate distribution function of (T, U).
- Let $\hat{F}(t, u)$ denote an estimator of F of the type

$$\hat{F}(t,u) = \sum_{i=1}^{n} W_{i,n} \mathbf{1}_{Y_i \leq t, Z_i \leq u}.$$

- Questions :
 - How to estimate \mathfrak{C} with at hand \hat{F} ?
 - Asymptotic properties ?

OUTLINE

INTRODUCTION

2 GENERALIZING THE EMPIRICAL COPULA

- How to deduce an estimator of C from an estimator of F
- Estimation of F
- Asymptotic theory

3 Smooth estimators

- Two strategies
- Asymptotic properties
- Practical illustration

GENERALIZING THE EMPIRICAL COPULA

• Due to Sklar's theorem,

$$\mathfrak{C}(u, v) = F(F_T^{-1}(u), F_U^{-1}(v)).$$

• Let
$$\hat{F}_T(t) = \hat{F}(t,\infty)$$
 and $\hat{F}_U(u) = \hat{F}(\infty,u)$.

Define

$$\hat{\mathfrak{C}}(u,v)=\hat{F}(\hat{F}_T^{-1}(t),\hat{F}_U^{-1}(u)),$$

same idea as in Deheuvels (1979) who defined the empirical copula.

• Works if \tilde{F} defines a true distribution function.

GENERALIZING THE EMPIRICAL COPULA

• Due to Sklar's theorem,

$$\mathfrak{C}(u, v) = F(F_T^{-1}(u), F_U^{-1}(v)).$$

• Let
$$\hat{F}_T(t) = \hat{F}(t,\infty)$$
 and $\hat{F}_U(u) = \hat{F}(\infty,u)$.

Define

$$\hat{\mathfrak{C}}(u,v)=\hat{F}(\hat{F}_T^{-1}(t),\hat{F}_U^{-1}(u)),$$

same idea as in Deheuvels (1979) who defined the empirical copula.

• Works if \hat{F} defines a true distribution function.

ALTERNATIVE PROCEDURE

Another estimator :

$$\tilde{\mathfrak{E}}(u,v) = \sum_{i=1}^{n} W_{i,n} \mathbf{1}_{\hat{F}_{\mathcal{T}}(Y_i) \leq u, \hat{F}_U(Y_i) \leq v}.$$

- $\tilde{\mathfrak{C}}$ is not a copula function in this case.
- $\tilde{\mathfrak{C}}$ is close to $\hat{\mathfrak{C}}$ (the difference is $O_P(n^{-1})$) if both are defined.

BIVARIATE DISTRIBUTION OF (T, U)

- Many estimators of $F(t, u) = \mathbb{P}(T \le t, U \le u)$ exist (see e.g. Campbell et Földes, 1982, Dabrowska, 1988, van der Laan, 1994, Prentice, Moodie, Wu, 2004, Lopez, 2013...).
- Many of them do not define probability distributions (for example, they put negative masses to some observations).

PARTICULAR CASES

- Case 1 : $(C, D) \perp (T, U)$ and C and D are linked through a known copula \mathbb{C} .
- Lopez and Saint Pierre (2012) :

$$W_{i,n} = \frac{1}{n} \frac{\delta_i \gamma_i}{\mathbb{C}(\hat{S}_C(Y_i), \hat{S}_D(Z_i))},$$

where $S_C(t) = \mathbb{P}(C \ge t)$, $S_D(t) = \mathbb{P}(D \ge t)$, and \hat{S}_C and \hat{S}_D their Kaplan-Meier estimates.

- Case 2 : $C = D + \varepsilon$, with ε an observed variable.
- Gribkova, Lopez, Saint Pierre (2013) :

$$W_{i,n} = \frac{1}{n} \frac{\delta_i \gamma_i}{\hat{S}_C(\max(Y_i, Z_i - \varepsilon_i))}.$$

ASSUMPTIONS

Assume that

 $\mathbb{H}_n(t, u) := \sqrt{n}(\hat{F}(t, u) - F(t, u)) \rightsquigarrow \mathbb{G}_F(t, u)$ in $I^{\infty}(\mathbb{R}^2)$, where $\mathbb{G}_F(t, u)$ is a tight gaussian process and \rightsquigarrow denotes the weak convergence.

• Let $(T^*, C^*, U^*, D^*) = (F_T(T), F_T(C), F_U(U), F_U(D))$, and let $W^*_{i,n}$ denote the weights of the estimator the distribution of (T^*, U^*) similar to \hat{F} , but based on $Y^* = \inf(T^*, C^*)$, $Z^* = \inf(U^*, D^*)$, $\delta^* = \mathbf{1}_{T^* \leq C^*}$ and $\gamma^* = \mathbf{1}_{U^* \leq D^*}$. Assume that $W_{i,n} = W^*_{i,n}$.

(日) (同) (三) (三) (三) (○) (○)

ASYMPTOTIC DISTRIBUTION

$n^{1/2}$ -consistency

Suppose that F has continuous marginal distribution functions and partial derivatives of its copula function exist and are continuous. Then the censored empirical copula process $\{\mathbb{Z}_n(u,v) = n^{1/2}(\hat{\mathfrak{C}}(u,v) - \mathfrak{C}(u,v)), 0 \le u, v \le 1\}$ converges weakly in $I^{\infty}([0,1]^2)$ to the tight Gaussian process,

$$\mathbb{Z}_{\mathfrak{C}}(u,v) = \mathbb{Z}_{\mathfrak{C}}^*(u,v) - \partial_1 \mathfrak{C}(u,v) \mathbb{Z}_{\mathfrak{C}}^*(u,1) - \partial_2 \mathfrak{C}(u,v) \mathbb{Z}_{\mathfrak{C}}^*(1,v),$$

where

$$\mathbb{Z}^*_{\mathfrak{C}}(u,v) = \mathbb{G}_F(F_T^{-1}(u),F_U^{-1}(v)).$$

- Tools : essentially Hadamard differentiability.
- Weaker versions : if $\sup_{t,u\in\mathcal{T}\times\mathcal{U}} |\hat{F}(t,u) F(t,u)| = O_P(\eta_n)$, then $\sup_{u,v\in F_T^{-1}(\mathcal{T})\times F_U^{-1}(\mathcal{U})} |\hat{\mathfrak{C}}(u,v) - \mathfrak{C}(u,v)| = O_P(\eta_n)$.

OUTLINE

I INTRODUCTION

2 GENERALIZING THE EMPIRICAL COPULA

- How to deduce an estimator of ℭ from an estimator of F
- Estimation of F
- Asymptotic theory

3 Smooth estimators

- Two strategies
- Asymptotic properties
- Practical illustration

TWO STRATEGIES

• First procedure : consider a smooth estimator *F*, i.e.

$$\hat{F}_1(t,u) = \sum_{i=1}^n W_{i,n} K\left(\frac{t-Y_i}{h}\right) K\left(\frac{u-Z_i}{h}\right),$$

where $K(u) = \int_{-\infty}^{u} k(x) dx$, with *k* positive function with integral equal to 1 and $h \to 0$, and deduce an estimator $\tilde{\mathfrak{C}}_1$.

• Second procedure : Omelka, Gijbels and Veraverbeke (2009) proposed to transform the observations to make the procedure less sensitive to the marginal distributions, defining $\tilde{\mathfrak{C}}_2(u, v)$ as :

$$\sum_{i=1}^{n} W_{i,n} K\left(\frac{\Phi^{-1}(u) - \Phi^{-1}(\hat{F}_{T}(Y_{i}))}{h}\right) K\left(\frac{\Phi^{-1}(v) - \Phi^{-1}(\hat{F}_{U}(Z_{i}))}{h}\right)$$

with Φ a distribution function.

TWO STRATEGIES

• First procedure : consider a smooth estimator *F*, i.e.

$$\hat{F}_1(t,u) = \sum_{i=1}^n W_{i,n} K\left(\frac{t-Y_i}{h}\right) K\left(\frac{u-Z_i}{h}\right),$$

where $K(u) = \int_{-\infty}^{u} k(x) dx$, with *k* positive function with integral equal to 1 and $h \to 0$, and deduce an estimator $\tilde{\mathfrak{C}}_1$.

• Second procedure : Omelka, Gijbels and Veraverbeke (2009) proposed to transform the observations to make the procedure less sensitive to the marginal distributions, defining $\tilde{\mathfrak{C}}_2(u, v)$ as :

$$\sum_{i=1}^{n} W_{i,n} K\left(\frac{\Phi^{-1}(u) - \Phi^{-1}(\hat{F}_{T}(Y_{i}))}{h}\right) K\left(\frac{\Phi^{-1}(v) - \Phi^{-1}(\hat{F}_{U}(Z_{i}))}{h}\right) + C_{i,n} K\left(\frac{\Phi^{-1}(v) - \Phi^{-1}(v) - \Phi^{-1}(v)}{h}\right) + C_{i,n} K\left(\frac{\Phi^{-1}(v) - \Phi^{-1}(v)}{h}\right) + C_{i,n$$

with Φ a distribution function.

THEORETICAL RESULTS

• Let
$$\mathbb{Z}_n^i(u, v) = n^{1/2}(\tilde{\mathfrak{C}}_i(u, v) - \mathfrak{C}(u, v))$$
 for $i = 1, 2$.

$n^{1/2}$ -CONSISTENCY

Under some assumptions,

$$\sup_{u,v} |\mathbb{Z}_n^i(u,v) - \mathbb{Z}_n(u,v)| = o_P(1),$$

and the asymptotic distribution can then be deduced from the previous theorem.

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

イロト イポト イヨト イヨト 二日

ASSUMPTIONS ON THE COPULA FUNCTION

BEHAVIOR CLOSE TO THE BOUNDARIES

Assume that € is twice continuously differentiable on]0,1[², and that

$$\frac{\partial^2 \mathfrak{C}(u,v)}{\partial u^2} = O\left(\frac{1}{u(1-u)}\right), \quad \frac{\partial^2 \mathfrak{C}(u,v)}{\partial v^2} = O\left(\frac{1}{v(1-v)}\right),$$
$$\frac{\partial^2 \mathfrak{C}(u,v)}{\partial u \partial v} = O\left(\frac{1}{\sqrt{uv(1-u)(1-v)}}\right).$$

• See Omelka et al. (2009)

ASSUMPTIONS ON THE CENSORING

Essentially, we require asymptotic i.i.d. representations of the type

$$\sum_{i=1}^{n} [W_{in} - W_i]\psi(Y_i, Z_i) = \frac{1}{n} \sum_{i=1}^{n} \eta^{\psi}(Y_i, Z_i, \delta_i, \gamma_i) + R_n(\psi),$$

where $\sup_{\psi \in \mathcal{F}} |R_n(\psi)| = o_P(n^{-1/2})$, $E[\eta^{\psi}(Y_i, Z_i, \delta_i, \gamma_i)] = 0$, and $nW_i = \lim_{n \to \infty} nW_{i,n}$.

 In the particular case C = D, and under the assumption C ⊥ (T, U), such representations go back to Stute (1996), since they are derived from the Kaplan-Meier estimator.

ASSUMPTIONS ON THE CENSORING

- To obtain n^{1/2}-consistency on [0, 1]², we require assumptions on the tails of the distribution of (T, U) and (C, D).
- Example in the case C = D:

$$\int \frac{dF(t,u)}{S_C(\max(t,u))} < \infty,$$

$$\int \frac{\mathcal{C}^{1/2+\varepsilon}(\max(t,u))dF(t,u)}{[S_C(\max(t,u))]} < \infty,$$

where C is a function that tends to infinity when $t \to \infty$.

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

COUPLES OF LIFETIMES

CIRM, 23/02/16 19 / 27

REAL DATA EXAMPLE

- 11 947 contracts from a Canadian insurer, observed between December 29th, 1988 and December 31st, 1993.
- 98,2% observations are censored.
- Copula models have been proposed to study this population (Frees et al., 1996, Carriere, 2000, Luciano et al., 2008...)

GOODNESS-OF-FIT

• Idea : evaluate $T_n = d(\hat{\mathfrak{C}}(u, v), \mathfrak{C}_{\hat{\theta}}(v))$, and reject H_0 if $T_n > s_{\alpha}$.

• Critical value computed by bootstrap to ensure $\mathbb{P}(T_n > s_{\alpha}) \approx \alpha$.

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

< ロ > < 同 > < 回 > < 回 > < 回 > <

GOODNESS-OF-FIT

• Idea : evaluate $T_n = d(\hat{\mathfrak{C}}(u, v), \mathfrak{C}_{\hat{\theta}}(v))$, and reject H_0 if $T_n > s_{\alpha}$.

• Critical value computed by bootstrap to ensure $\mathbb{P}(T_n > s_{\alpha}) \approx \alpha$.

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

COUPLES OF LIFETIMES

CIRM, 23/02/16 21 / 27

イロト イポト イヨト イヨト 二日

GOODNESS-OF-FIT

$$H_0: \ \mathfrak{C} \in \{\mathfrak{C}_{\theta} : \theta \in \Theta\},\$$

against

۵

$$H_1: \mathfrak{C} \notin \{\mathfrak{C}_{\theta} : \theta \in \Theta\}.$$

• Idea : evaluate $T_n = d(\hat{\mathfrak{C}}(u, v), \mathfrak{C}_{\hat{\theta}}(v))$, and reject H_0 if $T_n > s_{\alpha}$.

• Critical value computed by bootstrap to ensure $\mathbb{P}(T_n > s_{\alpha}) \approx \alpha$.

イロト イポト イヨト イヨト 二日

Goodness-of-fit based on $\hat{\mathfrak{C}}$ - Canadian dataset

• Compare (using $\|\cdot\|_{\infty}$) the nonparametric copula with the one from the parametric model.

Model	Test statistic	95% quantile	p-value
Clayton	7.6e ⁻⁴	2.08e ⁻³	0.391
Frank	3.6e ⁻⁴	9.2e ⁻⁴	0.416
Nelsen 4.2.20	1.16e ⁻⁴	1.37e ⁻³	0.103

TABLE: Goodness-of-fit procedure based on the empirical copula for three copula models (Clayton, Frank, Nelsen 4.2.20), p-values obtained by bootstrap.

NONPARAMETRIC COPULA DENSITY ESTIMATION

 Copula density estimation (right-hand side : Omelka, Gijbels, Veraverke transformation)

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

COUPLES OF LIFETIMES

CIRM, 23/02/16 23 / 27

CHOICE OF THE BANDWIDTH FOR THE SMOOTH VERSION

- Among the parametric models we considered, Frank's copula seems the most appropriate.
- The estimated copula density also "looks like" the density of a Frank copula.
- Let $\mathfrak{C}_{\hat{\theta}}$ the copula function estimated assuming that Frank's model holds.
- We consider a finite set of bandwidth \mathcal{H} .

• We select \hat{h} as the minimizer of a distance $d(\tilde{\mathfrak{C}}_h, \mathfrak{C}_{\hat{\theta}})$.

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

CHOICE OF THE BANDWIDTH FOR THE SMOOTH VERSION

- Among the parametric models we considered, Frank's copula seems the most appropriate.
- The estimated copula density also "looks like" the density of a Frank copula.
- Let $\mathfrak{C}_{\hat{\theta}}$ the copula function estimated assuming that Frank's model holds.
- We consider a finite set of bandwidth \mathcal{H} .
- We select \hat{h} as the minimizer of a distance $d(\tilde{\mathfrak{C}}_h, \mathfrak{C}_{\hat{\theta}})$.

CONCLUSION

- Results for estimating a copula function based on an estimator *F* : if one wishes to consider another estimate, one has simply to check the conditions on the weights *W_{i,n}*.
- More details :

S. Gribkova, O. Lopez (2015) *Nonparametric copula estimation under bivariate censoring*, to appear in Scand. Journ. of Stat.

- Extensions, further work :
 - taking covariates into account;
 - for longevity issues in insurance, take into account the fact that the marginal distributions and the dependence structure evolve from one generation to another;
 - for non-life insurance applications, considering the heterogeneity of the individuals (clustering).

< ロ > < 同 > < 回 > < 回 > < 回 > <

CONCLUSION

- Results for estimating a copula function based on an estimator *F* : if one wishes to consider another estimate, one has simply to check the conditions on the weights *W_{i,n}*.
- More details :

S. Gribkova, O. Lopez (2015) *Nonparametric copula estimation under bivariate censoring*, to appear in Scand. Journ. of Stat.

- Extensions, further work :
 - taking covariates into account;
 - for longevity issues in insurance, take into account the fact that the marginal distributions and the dependence structure evolve from one generation to another;
 - for non-life insurance applications, considering the heterogeneity of the individuals (clustering).

・ロト ・ 戸 ト ・ ヨ ト ・ 日 ト

CONCLUSION

- Results for estimating a copula function based on an estimator *F* : if one wishes to consider another estimate, one has simply to check the conditions on the weights *W_{i,n}*.
- More details :

S. Gribkova, O. Lopez (2015) *Nonparametric copula estimation under bivariate censoring*, to appear in Scand. Journ. of Stat.

- Extensions, further work :
 - taking covariates into account;
 - for longevity issues in insurance, take into account the fact that the marginal distributions and the dependence structure evolve from one generation to another;
 - for non-life insurance applications, considering the heterogeneity of the individuals (clustering).

< ロ > < 同 > < 回 > < 回 > < 回 > <

EXAMPLE OF APPLICATION IN NON-LIFE INSURANCE

- Online insurance subscription.
- Two duration variables :
 - T = lifetime of the subscribed contract
 - U = time at which the contract will be effective

- Specific form of the censoring.
- Presence of covariates that have influence on the dependence structure (conditional copulas)

S. GRIBKOVA, O. LOPEZ (LSTA-UPMC)

COUPLES OF LIFETIMES

CIRM, 23/02/16 26 / 27

Thank you for your attention !

3

590

イロト イポト イヨト イヨト