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1.1. Archimedean survival copula

A survival copula is defined as

C(u1, . . . ,un) = P(U1 > 1− u1, . . . ,Un > 1− un),

where U1, . . . ,Un are n (dependent) uniforms on (0,1).

Such a copula is Archimedean if

C(u1, . . . ,un) = ψ(ψ−1(u1) + . . .+ ψ−1(un))

for some univariate survival function ψ (called Archimedean
generator).

A survival function ψ may be an Archimedean generator iff ψ
is a n-monotone function.
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1.2. Schur-constant model

For continuous positive random variables (e.g. lifetimes in
reliability, claim interarrival times in insurance): see

R.E. Barlow, M.B. Mendel (1993), paper in a book,
L. Caramellino, F. Spizzichino (1996), JMA 56, 153-163,
R.B. Nelsen (2005), BJPS 19, 179-190,
Y. Chi, J. Yang, Y. Qi (2009), IME 44, 398-408, . . .

Definition.

(X1, . . . ,Xn) forms a Schur-constant model if

P(X1 > x1, . . . ,Xn > xn) = S(x1 + . . .+ xn),

for some univariate survival function S (called Schur-constant).
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The model is a special case of exchangeable vector.

All the lower dimensional subvectors of (X1, . . . ,Xn) are also
Schur-constant.

The model translates a property of indifference relative to
aging -or no-aging-:

Xi − xi |(X > x) =d Xj − xj |(X > x).

The function S is both Schur-convex and Schur-concave,
hence the appellation of Schur-constant.
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Characterization 1.

A survival function S may be a Schur-constant generator iff
S is a n-monotone function.

S can then be written as

S(x) = E
(

1− x
Z

)n−1

+
,

where Z =d X1 + . . .+ Xn. And reciprocally.

Thus, a Schur-constant model is such that

P(X1 > x1, . . . ,Xn > xn) = E
(

1− x1 + . . .+ xn

Z

)n−1

+

.
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Characterization 2.

A Schur-constant model has the radial representation
X1
X2
...

Xn

 =d Z


U1
U2
...

Un


where

* Z is independent of the Ui ’s, and
* (U1, . . . ,Un) is a Schur-constant vector of sum 1 with

P(U1 > u1, . . . ,Un > un) = [1− (u1 + . . .+ un)]n−1
+ .
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1.3. Schur-constant versus Archimedean

Schur-constant models and Archimedean copulas are closely
related. Indeed:

(i) The copula of a Schur-constant model of generator S is
Archimedean with the same generator S.

(ii) If (U1, . . . ,Un) form a Archimedean copula of generator
ψ, then [ψ−1(1− U1), . . . , ψ−1(1− Un)] forms a Schur-constant
model with the same generator ψ.
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2.1. Discrete Schur-constant models

For discrete random variables valued in N0 = {0,1,2 . . .}:

A. Castañer, M.M. Claramunt, C. Lefèvre, S. Loisel (2015),
JMA 140, 343-362.

Definition.

(X1, . . . ,Xn) forms a Schur-constant model if

P(X1 ≥ x1, . . . ,Xn ≥ xn) = S(x1 + . . .+ xn),

for some univariate survival function S : N0 → [0,1] (called
Schur-constant generator).
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Probabilities on subvectors are directly obtained.
For instance:

Property.

For (x1, . . . , xj) ∈ N j
0,

P(x1 ≤ X1 < x1 + h1, . . . , xj ≤ Xj < xj + hj)

= (−1)j ∆1,h1 . . .∆j,hj S(x1 + . . .+ xj),

P(X1 = x1, . . . ,Xj = xj) = (−1)j ∆jS(x1 + . . .+ xj),

Let Tj = X1 + . . .+ Xj (partial sums). For 0 ≤ tj−k+1 ≤ . . . ≤ tj ,

P(Tj−k+1 = tj−k+1, . . . ,Tj = tj) = (−1)j ∆jS(tj)
(

tj−k+1 + j − k
j − k

)
.

Claude Lefèvre Discrete Schur-Constant Models



1. Preliminaries: the continuous case
2. Discrete Schur-constancy

3. Monotone survival functions
4. Schur-constant interarrival models

2.1. Discrete Schur-constant models
2.2. The special geometric case

A function f (x) : N0 → R is said to be n-monotone if

(−1)j∆j f (x) ≥ 0, j = 0, . . . ,n,

Characterization 1.

A survival function S may be a Schur-constant generator iff
S is a n-monotone function on N0.

Equivalently, the associated p.m.f. p is a (n − 1)-monotone
function on N0.
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S can then be written as

S(x) = E
[(

Z − x + n − 1
n − 1

)
/

(
Z + n − 1

n − 1

)]
,

where Z =d X1 + . . .+ Xn with a p.m.f.

P(Z = z) = (−1)n
(

Z + n − 1
n − 1

)
∆nS(z).

Thus, a Schur-constant model is such that

P(X1 ≥ x1, . . . ,Xn ≥ xn) =

E
[(

Z − (x1 + . . .+ xn) + n − 1
n − 1

)
/

(
Z + n − 1

n − 1

)]
.
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Characterization 2.

A Schur-constant model has the ’discrete radial’
representation that is of doubly mixed multinomial form, namely

(X1, . . . ,Xn) =d MM(Z ; U1, . . . ,Un),

where
* Z is independent of the Ui ’s, and
* (U1, . . . ,Un) is a continuous Schur-constant vector of sum

1 with

P(U1 ≥ u1, . . . ,Un ≥ un) = [1− (u1 + . . .+ un)]n−1
+ .
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2.2. The special geometric case

The Schur-constancy generalizes the lack of memory of
geometrics.

Property 1.

In a Schur-constant model, the components Xi , 1 ≤ i ≤ n,
are independent if and only if they are geometrically distributed.
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Property 2.

An infinite sequence of random variables {Xi , i ≥ 1} with
finite mean is Schur-constant iff for all j ≥ 1, (X1, . . . ,Xj) has a
mixed geometric distribution, namely

P(X1 ≥ x1, . . . ,Xj ≥ xj) = E

[(
Θ

Θ + 1

)x1+...+xj
]
,

where Θ = limn→∞ Tn/n a.s.
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3.1. Representations

Discrete monotone distributions: see
Lefèvre and Loisel (2013), JAP 50, 827-847.

The previous results allow us to characterize n-monotone
survival function S.

(1) Such a function admits a general representation

S(x) = E
{(

Z − x + n − 1
n − 1

)
/

(
Z + n − 1

n − 1

)}
,

for some random variable Z valued in N whose p.m.f. is

P(Z = z) = (−1)n
(

z + n − 1
n − 1

)
∆nS(z).
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(2) S is the survival function of a r.v. X whose distribution is
of doubly mixed binomial, namely

X =d MB(Z ,1− U1/(n−1)),

where U is uniform on (0,1), and Z is independent of U.
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3.2. Examples

Bernoulli model

X is a Bernoulli random variable of survival function

S(0) = 1, S(1) = p, S(x) = 0, x ≥ 2.

→ S(x) is n-monotone iff p ≤ 1/n.
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Stop-loss model

X has a survival function of stop-loss type

S(x) =
(k − x)t

+

k t , x ∈ N,

where k and t are positive integers.

→ S(x) is (t + 1)-monotone.

Proof. Based on the expansion

(k − x)t
+

t!
=

t−1∑
i=0

αi(t)
(

k − x + i
t

)
,

where {αi(t), 0 ≤ i ≤ t − 1} is a symmetric p.m.f.
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Other models

* Power-type: for k positive integer and t positive real,

S(x) = [1− (x/k)t ]+, x ∈ N.

→ S(x) is 2-monotone iff t ≤ 1.

* Gompertz-type: for θ positive real,

S(x) = exp[θ(1− ex )], x ∈ N.

→ S(x) is n-monotone iff θ ≥ θn = . . .

* Logarithmic, Benford, Pareto . . . . . . . . . . . .
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4.1. Claim counting process

We introduce an associated counting process as

N(t) =
n∑

i=1

I(Ti ≤ t), t ∈ N,

where Ti = X1 + . . .+ Xi and {X1, . . . ,Xn} is Schur-constant.

In insurance, suppose that a maximum number of n claims
can arise in a portfolio. Let Ti denote the claim arrival time of
the i-th claim. Then, N(t) represents the total number of claims
that occur until time t .
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Property 1.

(1) For t ≥ 0,

P[N(t) = n] = P(Tn ≤ t), with Tn =d Z ,

P[N(t) = k ] = (−1)k ∆kS(t + 1)

(
t + k

k

)
, 0 ≤ k ≤ n − 1.

(2) For 0 ≤ t1 ≤ . . . ≤ tk ≤ t ,

P[T1 = t1, . . . ,Tk = tk |N(t) = k ] = 1/
(

t + k
k

)
, 1 ≤ k ≤ n − 1.

(Given N(t) = k , the arrival times are obtained by throwing k
undistinguishible balls in t + 1 urns (the instants 0, . . . , t)).
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Property 2.

In an infinite Schur-model, N(t) has a mixed negative
binomial distribution

N(t) =d MNB[t + 1,1/(Θ + 1)],

where Θ is the limit defined as before. Explicitly,

P[N(t) = k ] =

(
t + k

k

)
E

[(
1

Θ + 1

)k ( Θ

Θ + 1

)t+1
]
, k ≥ 0.
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4.2. Random payment process

A compound Schur-constant sum of discounted claims:

R(t) =

N(t)∑
i=1

Ci

Ti∏
j=1

vj =
n∑

i=1

I(Ti ≤ t) Ci

Ti∏
j=1

vj , t ∈ N,

where Ti = X1 + . . .+ Xi is the i-th payment time, Ci is the
claim amount at Ti , independent of the payment times, and vj is
a deterministic discount factor for the period (j − 1, j).

Our purpose is to determine the Laplace transform of R(t),
in terms of the Laplace transform of Ci .

. . . . . . . . . . . . . . . . . . Not presented here . . . . . . . . . . . . . . . . . .
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4.3. Insurance risk process

A discrete-time risk model in which claims occur according
to a Schur-constant counting process N(t):

U(t) = h(t)−
N(t)∑
i=1

Ci , t ∈ N,

where the claim amounts Ci are independent of the claim
arrival process (but may be dependent), and the cumulated
premiums until time t are given by an increasing function h(t).

Ruin occurs when the reserves U(t) become negative. Our
purpose is to derive a formula for φ(t), the probability of
non-ruin until time t .

. . . . . . . . . . . . . . . . . . Not presented here . . . . . . . . . . . . . . . . . .
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