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1.1. Archimedean survival copula

A survival copula is defined as
C(ut,...,un) =PUy >1 —uq,...,Us>1—up),

where Uy, ..., U, are n (dependent) uniforms on (0, 1).

Such a copula is Archimedean if

C(ut,...,up) = V(R (uy) + ...+ ¢ (un)

for some univariate survival function v (called Archimedean
generator).

A survival function ¢ may be an Archimedean generator iff v
is a n-monotone function.
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1.2. Schur-constant model

For continuous positive random variables (e.g. lifetimes in
reliability, claim interarrival times in insurance): see
R.E. Barlow, M.B. Mendel (1993), paper in a book,
L. Caramellino, F. Spizzichino (1996), JMA 56, 153-163,
R.B. Nelsen (2005), BJPS 19, 179-190,
Y. Chi, J. Yang, Y. Qi (2009), IME 44, 398-408, ...

Definition.
(X1,...,Xn) forms a Schur-constant model if

P(X1 > Xx1,..., X0 > Xn) = S(X1 + ... + Xn),

for some univariate survival function S (called Schur-constant).
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The model is a special case of exchangeable vector.

All the lower dimensional subvectors of (Xj, ..., Xj) are also
Schur-constant.

The model translates a property of indifference relative to
aging -or no-aging-:

X = x|(X > X) =4 X — /(X > X).

The function S is both Schur-convex and Schur-concave,
hence the appellation of Schur-constant.
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Characterization 1.

A survival function S may be a Schur-constant generator iff
S is a n-monotone function.

S can then be written as
X n—1
an:E@—?L ,
where Z =4 Xj + ... + X,. And reciprocally.
Thus, a Schur-constant model is such that

n—1
P<X1>X1,.--,xn>xn>:E<1_X1+---+Xn> |

Z +
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Characterization 2.

A Schur-constant model has the radial representation

Xi Uy
X U
'2 —y 7 '2
Xn Un

where
* Z is independent of the U;’s, and
*(Us, ..., Up) is a Schur-constant vector of sum 1 with

P(Uy > up,. .., Un > tp) = [1 = (U + ...+ up)] T
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1.3. Schur-constant versus Archimedean

Schur-constant models and Archimedean copulas are closely
related. Indeed:

(i) The copula of a Schur-constant model of generator S is
Archimedean with the same generator S.

(i) If (Uy, ..., Up) form a Archimedean copula of generator
¥, then [y~ (1 — Uy), ..., (1 — Up)] forms a Schur-constant
model with the same generator 1.
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2.1. Discrete Schur-constant models

For discrete random variables valued in Ny = {0,1,2...}:

A. Castaner, M.M. Claramunt, C. Lefévre, S. Loisel (2015),
JMA 140, 343-362.

Definition.
(X1,...,Xn) forms a Schur-constant model if

for some univariate survival function S : Ny — [0, 1] (called
Schur-constant generator).
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Probabilities on subvectors are directly obtained.
For instance:

Property.

For (x1,...,x) € NJ,

P(X1 < X7 < Xq +h177x_/§)(]<xf+h/)
— (—1)jA1,h1 ~--Aj,h,-S(X1 +-"+Xf)’
P(Xy = X1,..., X = x) = (1) AIS(xq + ...+ X)),

Let T, = Xi + ...+ X; (partial sums). For0 < t;_x¢ < ... < 8,

bkt +Jj— k)

P(Tjokit = Gkt -os T = 1) = (=1Y A/S(t) ( j—k
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A function f(x) : Np — R is said to be n-monotone if

(-1YAlf(x) >0, j=0,...,n,

Characterization 1.

A survival function S may be a Schur-constant generator iff
S is a n-monotone function on Nj.

Equivalently, the associated p.m.f. pis a (n — 1)-monotone
function on N.
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S can then be written as

where Z =4 Xy + ... + X, with a p.m.f.

Z+n-1
n—1

P(Z=2z)= (—1)”( )A”S(z).

Thus, a Schur-constant model is such that

P(X1 > X1,...,Xn > Xp) =
[(F ey 2oy
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Characterization 2.

A Schur-constant model has the ‘discrete radial’
representation that is of doubly mixed multinomial form, namely

(Xi,.... Xn) =g MM(Z; Uy, ..., Up),

where
* Z is independent of the U;’s, and

*(Uy, ..., Up) is a continuous Schur-constant vector of sum
1 with

P(U1 ZU1)"'7UHZUH):[1_(U1+"'+un)]ii1'
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2.2. The special geometric case

The Schur-constancy generalizes the lack of memory of
geometrics.

Property 1.

In a Schur-constant model, the components X, 1 < i < n,
are independent if and only if they are geometrically distributed.
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Property 2.

An infinite sequence of random variables {X;, i > 1} with
finite mean is Schur-constant iff for all j > 1, (Xy,..., Xj) has a
mixed geometric distribution, namely

e} X1+ +Xj

P(Xi>xq,....X; > x)=E <

where © = lim,_,, Tp/n a.s.
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3.1. Representations

Discrete monotone distributions: see
Lefévre and Loisel (2013), JAP 50, 827-847.

The previous results allow us to characterize n-monotone
survival function S.

(1) Such a function admits a general representation

sor-{(F2 7S

for some random variable Z valued in N whose p.m.f. is

Z4+n-1
n—1

P(Z =2z)=(-1)" ( ) A"S(2).
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(2) Sis the survival function of a r.v. X whose distribution is
of doubly mixed binomial, namely

X =g MB(Z,1 - UV("D),

where U is uniform on (0, 1), and Z is independent of U.
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3.2. Examples

Bernoulli model

X is a Bernoulli random variable of survival function

S(0)=1, S(1)=p, Sx)=0, x>2.

— S(x) is n-monotone iff p < 1/n.
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Stop-loss model
X has a survival function of stop-loss type

(k—x)%
Kt

where k and t are positive integers.

S(x) = xeN,
— S(x) is (t + 1)-monotone.
Proof. Based on the expansion
k—x) k—x+i
(t|)+ - Zo‘f(t)< t >
‘ i=0

where {a;(t), 0 <i < t— 1} is a symmetric p.m.f.
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Other models
* Power-type: for k positive integer and t positive real,
S(x)=[1 - (x/k)]+, xe€N.
— S(x) is 2-monotone iff t < 1.
* Gompertz-type: for 6 positive real,
S(x) = exp[d(1 — €")], xe€N.
— S(x) is n-monotone iff § > 0, = ...

* Logarithmic, Benford, Pareto ............
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4.1. Claim counting process

We introduce an associated counting process as
n
N(t)=> ITi<t), teN,
i=1

where T; = Xy +...+ X;and {Xj, ..., Xy} is Schur-constant.

In insurance, suppose that a maximum number of n claims
can arise in a portfolio. Let T; denote the claim arrival time of
the i-th claim. Then, N(t) represents the total number of claims
that occur until time t.
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Property 1.
(1) Fort > 0,

PIN(t) = n] = P(T, < t), with Tp =4 Z,

P[N(t):k]:(—1)kAkS(t+1)<Hl;k>, 0<k<n-—1.
2)Foro<t <...<K <t
k

(Given N(t) = k, the arrival times are obtained by throwing k
undistinguishible balls in t + 1 urns (the instants 0, ..., t)).

Claude Lefevre Discrete Schur-Constant Models



4.1. Claim counting process

4.2. Random payment process

. X 4.3. Insurance risk process
4. Schur-constant interarrival models : P

Property 2.

In an infinite Schur-model, N(t) has a mixed negative
binomial distribution

N(t) =g MNB[t+1,1/(© +1)],

where O is the limit defined as before. Explicitly,

PIN(t) = k] = (tJ;k)E <@l1>k<ei1)m], k> 0.

Claude Lefevre Discrete Schur-Constant Models



4.1. Claim counting process
4.2. Random payment process

. X 4.3. Insurance risk process
4. Schur-constant interarrival models : P

4.2. Random payment process

A compound Schur-constant sum of discounted claims:

Zc,ﬂv, Z/T<tC,Hv,, N,

where T; = Xj + ... + X; is the i-th payment time, C; is the
claim amount at T;, independent of the payment times, and v; is
a deterministic discount factor for the period (j — 1, ).

Our purpose is to determine the Laplace transform of R(t),
in terms of the Laplace transform of C;.

.................. Not presented here ..................
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4.3. Insurance risk process

A discrete-time risk model in which claims occur according
to a Schur-constant counting process N(t):

N(t)
Uity=h(t)=> Ci, teN,
i=1

where the claim amounts C; are independent of the claim
arrival process (but may be dependent), and the cumulated
premiums until time t are given by an increasing function h(t).

Ruin occurs when the reserves U(t) become negative. Our
purpose is to derive a formula for ¢(t), the probability of
non-ruin until time ¢.

.................. Not presented here ..................
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