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Potential changes in the insurance industry

@ Property and casualty insurance

» Flooding - increased precipitation, rise in sea level etc.

> Increase in frequency and severity of floods and storms
» Pests - forestry and agriculture

@ Life and health insurance

» Change in tropical disease vectors (new diseases or resurgence of

diseases that were supposed to have disappeared, e.g. dengue fever,
malaria, cholera in North America)

» Mortality rate changes (e.g. - increase of respiratory diseases and
allergies)

@ Potential financial areas of vulnerability?

> Reserves (investments and surplus)
» Ratings and solvency
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The classical model

reserve R,

////// v

ruin
4

time

N
Re=u+ct—>» Xi t>0
i=1
u >0 initial capital
¢ >0 premium intensity
Xi  the size of the i-th claim (i.i.d. r.v.s of d.f. F)
N(t) homogeneous Poisson process ()
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A time dependent Framework

Re = u—+p(t ZXT t>0

@ 7;...time of i-th claim

@ X;... independent random variables with distribution F;

@ N(t)... inhomogeneous Poisson process with intensity A(t)
(]

p(t)y=(1+p fo s)E[Xs]ds... collected premiums

Let A(t) = [ A(s)ds and RA(t) = R(A"1(t))

° P(/\_l(t)) =(1+0) g E [Xp-1(5] ds
® Np-1(s) - .. homogenous Poisson process

o w.log. A(s)=
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What are we interested in

7(u) = inf{t: R(t) < 0}... time of ruin

@ The ruin probability

P(u) = P(r(u) < o0).
@ Finite time ruin probability up to time T.

Y(u, T) =P(r(u) < T)

e How and when does ruin occur?
@ How to choose premiums (p(t)) in practice?

@ What is a realistic model for the claims X;?
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What are we interested in
7(u) = inf{t: R(t) < 0}... time of ruin
@ The ruin probability
P(u) = P(7(u) < 00).
@ Finite time ruin probability up to time T.
Y(u, T) =P(r(u) < T)

e How and when does ruin occur?
@ How to choose premiums (p(t)) in practice?

@ What is a realistic model for the claims X;?
We concentrate on asymptotic results for ¢ (u).
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Classes of distributions for X;

Definition (Light-tailed distributions)

A random variable X with values in R and distribution F is light-tailed if
there exists an s > 0 with

A

F(s):=E [esx} < 00, F... moment generating function

MDA(A): exponential, gamma, normal; MDA(V)

Definition (Heavy-tailed distributions)

A random variable X with values in R and distribution F is heavy-tailed if
for all s > 0

(s) =0

3
MDA(®): Pareto, Burr; MDA(A): lognormal, weibull;

D. Kortschak (kortschakdominik@gmail.com) Motivation and Introduction 7-20



© Models with heavy tails
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Regularly varying function and distributions
Definition
A function g(x) is regularly varying with index « if for all y > 0

im 80%) _ o
x—=00 g(x)

Definition
A random variable X with distribution function F is regularly varying with
index o if F(x) =1 — F(x) is regularly varying with index —«

e Pareto F(x) = (1+ x/d)~®
o Burr F(x) = (1+ (x/d)Y)~@
@ log-Gamma distribution
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Two concrete models for heavy-tailed claims

Assume X; is Pareto distributed and

d (14 p)Ad(L+ cat)?

E [Xt] = (1 + Cat)7 p(t) - 2Ca(Oéo _ ]_)

ag— 1
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Two concrete models for heavy-tailed claims

Assume X; is Pareto distributed and

2
d (I+cat), p(t)= - +22A(221—+1;at)

E[X:] =
[Xi] ap—1

@ Change in shape parameter: fgl)(x) = (1+ x/d)~*t where

ag — 1
= 1.
“t 1-1-c05tjL

@ Change in scale parameter: F?)(x) = (1+ x/d¢)~* where

dt = d(]. + Cat).
@ Which model has more risk?
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Ruin probabilities

Theorem

(1) - 7TdU_0’5 2(&0 — 1)
yu) 2 \@+pha

an— o) —ap
¢(2)(u) ) Cidaou— 02 : / (1 s p)\_ﬂt) dt.
« 0

t  2c,

@ For ap > 2 Model 1 is more dangerous

@ For ap < 2 Model 2 is more dangerous
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The principle of the single big jump heuristic

@ The process behaves in a normal way until a single big jump happens.

@ Heuristic:

/\/0 E [ <U+P ;XT> 1{7’(u)>t}]
)\/OOO t (u—i—p(t )

ZXT
@ D. Denisov, A. B. Dieker, and V. Shneer. Large deviations for random
walks under subexponentiality: the big-jump domain. Ann. Probab.,
36(5):1946-1991, 2008.

%
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A remark on Model 1 or a Model with infinite mean
We will consider

Ni
Re=u+p(t) =) Y
i=1

where the Y; are i.i.d. with distribution function F

Theorem

If X1, X2, ... are i.i.d. random variables with distribution F(x) that is
regularly varying with index 0 < o < 1, and regularly varying density f(x).

If further p(T) is regularly varying with index 5 > 1/« (continuous and
strict monotonic increasing) then

P(u) ~ )\/000 F(u+ p(T))dT ~ X\p~ 1 (u)F(v) /000(1 + th)~dt

N
p(t) = > Xi~p(t) as.
i=1
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Bounds

Theorem
e F ... distribution with regularly varying density f(x) (index o)
o F;... distribution with F¢(x) > F(x), Vx > 0,t >0
e p(t)... regularly varying with index § > 1/«
@ Iy>0:Vd>d, xs>0andally >x> x;
Fe(y) = (1= 8)(x/y) Fe(x)

Then for the risk process

we have that

A/OOO Folu+ p(t))dt < o(u) < A/Ooo Flu + p(t))de.
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A note on Model 2

Theorem

If X1, Xz, ... are i.i.d. random variables with distribution F(x) that is

regularly varying with index o > 1, mean p, and regularly varying density
f(x) then

g/)(u)w)\/ooof<%+§t> dtw)\\/ﬂf(\/ﬂ)/ooo (%—th)_adt (1)1
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© Models with light tails
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Light tailed case

@ For Exponential distribution Model 1 and 2 equivalent.

@ We will consider the process

Z w(T)Xi = (1+ p) /0 u(s)ds

X; ... iid random variables

w(t) ... multiplicative change over time

N homogeneous Poisson process with rate 1
o(t) = E [eX],

K(t,0) = log (E [egsf])

p(t) = (L +p) [y p(s)ds
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Theorem

If
e E[Xi] =1 and there exists an sp < oo with lims_s, ©(t) = oo.

@ u(x) is strict monotone increasing and is regularly varying with index
a>0

Further 1/ (x)/(cu(x)) ~ x (i.e. p has a regularly varying density).
® F(x) has density f(x) and for all s < s,
limy—y00 € F(x) = limy_00 €*f(x) = 0.

@ Forall 6 < sy

: F(x+ t)
lim ™ sup ———
X—00 t>0 F(t)
then
pe Y itigy T{(10:07)

P(7(u) < 00) ~

VI — Aoy (a+1) I s (¢(r5%) — (1+p)) ds
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We are following ideas from

@ N. G. Duffield and N. O’Connell. Large deviations and overflow
probabilities for the general single-server queue, with applications.
Math. Proc. Cambridge Philos. Soc., 118(2):363-374, 1995.

N¢ t
5= Y W(TIXi— (14 9) [ le)a
i=1 0

o r(t,0) = log(E [exp(6S:)])
k(t,0) = /0 e(Ou(s))ds —t — (1 + ,0)/ p(s)ds.

0

@ 0; ... the solution to kg(t,d:) = u (0; depends on u)
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Define family of processes S; = Zf\fl w(T?) X5 — p(t)

N ... inhomogeneous Poisson process (on [0, T) (u(T)0s = sp) with
intensity

N(e) = B |5 | — o(u(t)0s)

X{ ... stochastic process independent of N7
For (r # t) X{ independent from X7
X¢ has distribution function Fy_,,+)(x) where (6 > 0)

1
FG(X) = mE [eexl 1{X1§u}}

dS; = el rtllds, ¢ < T

E[Si]=u
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Denote with h(t) = h,(t) = 0:u — k(t, 6;) then

P(Ss > u) = e MR 6_95(55_“)1{s:>u}] ~ e huls)

P(sup Ss > u) v e~ s huls)
s>0

Define (t, 0*) = (to(u), 0*(u)) as the pair (to, f¢,) where ty minimizes
h(t). We can show that

h,(to) = Ht(to,tg*) =0.

or
@(0%p(to)) — 1 — (1 + p)0” u(to) = 0.

v = 0"u(to)
to = to(u) is regularly varying with index 1/(a + 1) and 0* = 6*(u)
depends on wu.
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Heuristic:

@ Ruin occurs around ty

@ Most likely path to ruin is when S; behaves like S;°

The further proof depends on 4 Lemmas

o 7(u) =inf{t:S; > u}.

o Sy =S (S; depends on u!)
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Lemma

Let s > 0 then for some us > 0 and all u > us

P(|7(u) — to| < sv/to)

_ —0% 5%, e FR(T7(u),0%)

=1 [e “ 1{|T*(U)—to|<5\/5}}

Yty (10 ) [ o i) (57x () =) gr(r* (u),0%)—ri(to,6*

_ )
- 1{|T*(u)—to|<s\/5}j|

— efhu(to)E [e_ﬁto)(s:*(u)—u)eﬁ(r*(u),e*)fn(to,g*)1{|T*(u)_t0|<s\/5}j|

Lemma

There exists a function R(s) with lims_, R(s) = 0 such that

P(|7(u) — to| > sv/to, 7(u) < 00) < R(s)e_’yﬁto)"‘”(tove*)_
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Lemma

im sup T [ #0570~ (7 (0)07) (10"}
u—00 {|T
P o (1).0°) {10 0"
— E[en( (u).0")—r(t0,6%)q
¢'(v) = (1+p) {Ir
lim inf E [e‘ﬁro)(simr“)e“(f*(u),e*)—n(to,e*
u—o0

*(U)—t0|<s\/5}]
*(u)—r0|<sm}] + RS
)

Ll (u—sl<sy 5} |

— #E [e/i(’r*(u),e*)—n(to,a*

) I
¢'(v) = (1 +p) 1{IT*(u)—to|<s\/5}} R

where limg o0 RY = lims_,o0 Rl = 0.
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Lemma

There exists functions RY and R; with lims_eo RY = lims_ oo RS’ = 0 such
that

limsupE [eH(T*(U),H*)—n(tO,e*
u—oo

)1{\7*(u)—to|<s\/5}:|
< ¢'(v) — (1 +p)
V0 +1) [ s (¢'(ys%) — (1 +p)) ds

liminf E [e“(T*(U)ﬂ*)—n(to,a*

u—o0

+RY.

)1{\7'*(u)—to|<s\/5}:|
¢'(v) —(1+p)

>
V0 +1) [ s (¢'(ys?) — (1 +p)) ds

+RL
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Conclusions and Remarks
@ Similar heuristics as in the stationary case hold.

@ In the heavy tailed case: When change in shape parameter or infinite
mean models, net profit condition can be violated.

@ Hard to (numerical) check quality of asymptotic results

Further work

@ Connection to queueing models

@ Include premium rules for risk models
@ More realistic models
°

Efficient numerical methods
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Thank you for the attention
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