Ruin problems for processes in a changing environment

Dominik Kortschak

23-02-2016, Dominik Kortschak

* Joint work with Stéphane Loisel and Pierre Ribereau

Outline

Motivation and Introduction

Models with heavy tails

Models with light tails

Potential changes in the insurance industry

Property and casualty insurance

- ► Flooding increased precipitation, rise in sea level etc.
- Increase in frequency and severity of floods and storms
- Pests forestry and agriculture

Life and health insurance

- ▶ Change in tropical disease vectors (new diseases or resurgence of diseases that were supposed to have disappeared, e.g. dengue fever, malaria, cholera in North America)
- Mortality rate changes (e.g. increase of respiratory diseases and allergies)

Potential financial areas of vulnerability?

- Reserves (investments and surplus)
- Ratings and solvency

The classical model

$$R_t = u + ct - \sum_{i=1}^{N_t} X_i \qquad t \ge 0$$

 $u \ge 0$ initial capital

c>0 premium intensity

 X_i the size of the *i*-th claim (i.i.d. r.v.s of d.f. F)

N(t) homogeneous Poisson process (λ)

A time dependent Framework

$$R_t = u + p(t) - \sum_{i=1}^{N_t} X_{T_i}$$
 $t \ge 0$

- \mathcal{T}_i ... time of *i*-th claim
- $X_t \dots$ independent random variables with distribution F_t
- N(t) ... inhomogeneous Poisson process with intensity $\lambda(t)$
- $p(t) = (1 + \rho) \int_0^t \lambda(s) \mathbb{E}[X_s] ds...$ collected premiums

Let
$$\Lambda(t)=\int_0^t \lambda(s) \mathrm{d} s$$
 and $R^h(t)=R(\Lambda^{-1}(t))$

- $p(\Lambda^{-1}(t)) = (1+\rho) \int_0^t \mathbb{E}[X_{\Lambda^{-1}(s)}] ds$
- $N_{\Lambda^{-1}(s)}$... homogenous Poisson process
- w.l.o.g. $\lambda(s) = \lambda$

What are we interested in

$$\tau(u) = \inf\{t : R(t) < 0\} \dots \text{ time of ruin }$$

• The ruin probability

$$\psi(u)=\mathbb{P}(\tau(u)<\infty).$$

• Finite time ruin probability up to time T.

$$\psi(u,T) = \mathbb{P}(\tau(u) < T)$$

- How and when does ruin occur?
- How to choose premiums (p(t)) in practice?
- What is a realistic model for the claims X_t ?

What are we interested in

$$\tau(u) = \inf\{t : R(t) < 0\} \dots \text{ time of ruin }$$

• The ruin probability

$$\psi(u)=\mathbb{P}(\tau(u)<\infty).$$

Finite time ruin probability up to time T.

$$\psi(u,T) = \mathbb{P}(\tau(u) < T)$$

- How and when does ruin occur?
- How to choose premiums (p(t)) in practice?
- What is a realistic model for the claims X_t ?

We concentrate on asymptotic results for $\psi(u)$.

Classes of distributions for X_t

Definition (Light-tailed distributions)

A random variable X with values in $\mathbb R$ and distribution F is light-tailed if there exists an s>0 with

$$\hat{F}(s) := \mathbb{E}\left[e^{sX}
ight] < \infty, \quad \hat{F}\dots$$
 moment generating function

 $\mathsf{MDA}(\Lambda)$: exponential, gamma, normal; $\mathsf{MDA}(\Psi)$

Definition (Heavy-tailed distributions)

A random variable X with values in $\mathbb R$ and distribution F is heavy-tailed if for all s>0

$$\hat{F}(s) = \infty$$

 $MDA(\Phi)$: Pareto, Burr; $MDA(\Lambda)$: lognormal, weibull;

Motivation and Introduction

2 Models with heavy tails

Models with light tails

Regularly varying function and distributions

Definition

A function g(x) is regularly varying with index α if for all y > 0

$$\lim_{x\to\infty}\frac{g(yx)}{g(x)}=y^{\alpha}.$$

Definition

A random variable X with distribution function F is regularly varying with index α if $\overline{F}(x)=1-F(x)$ is regularly varying with index $-\alpha$

- Pareto $\overline{F}(x) = (1 + x/d)^{-\alpha}$
- Burr $\overline{F}(x) = (1 + (x/d)^{\gamma})^{-\alpha}$
- log-Gamma distribution

Two concrete models for heavy-tailed claims

Assume X_t is Pareto distributed and

$$\mathbb{E}\left[X_t
ight] = rac{d}{lpha_0 - 1} \left(1 + c_lpha t
ight), \quad p(t) = rac{(1 +
ho)\lambda d(1 + c_lpha t)^2}{2c_lpha(lpha_0 - 1)}$$

Two concrete models for heavy-tailed claims

Assume X_t is Pareto distributed and

$$\mathbb{E}\left[X_t\right] = \frac{d}{\alpha_0 - 1} \left(1 + c_{\alpha}t\right), \quad p(t) = \frac{(1 + \rho)\lambda d(1 + c_{\alpha}t)^2}{2c_{\alpha}(\alpha_0 - 1)}$$

1 Change in shape parameter: $\overline{F}_t^{(1)}(x) = (1+x/d)^{-\alpha_t}$ where

$$\alpha_t = \frac{\alpha_0 - 1}{1 + c_\alpha t} + 1.$$

② Change in scale parameter: $\overline{F}_t^{(2)}(x) = (1+x/d_t)^{-\alpha_0}$ where

$$d_t = d(1 + c_{\alpha}t).$$

• Which model has more risk?

Ruin probabilities

Theorem

$$\psi^{(1)}(u) \sim rac{\pi du^{-0.5}}{2} \sqrt{rac{2(lpha_0 - 1)}{(1 +
ho)\lambda c_lpha}}.$$
 $\psi^{(2)}(u) \sim rac{\lambda}{c_lpha} d^{lpha_0} u^{-rac{lpha_0 - 1}{2}} \int_0^\infty \left(rac{1}{t} + rac{
ho\lambda\mu}{2c_lpha} t
ight)^{-lpha_0} dt.$

- For $\alpha_0 > 2$ Model 1 is more dangerous
- ullet For $lpha_0 <$ 2 Model 2 is more dangerous

The principle of the single big jump heuristic

- The process behaves in a normal way until a single big jump happens.
- Heuristic:

$$\psi(u) = \lambda \int_0^\infty \mathbb{E}\left[\overline{F}_t\left(u + p(t) - \sum_{i=1}^{N_t} X_{\mathcal{T}_i}\right) 1_{\{\tau(u) > t\}}\right] dt$$
$$\approx \lambda \int_0^\infty \overline{F}_t\left(u + p(t) - \mathbb{E}\left[\sum_{i=1}^{N_t} X_{\mathcal{T}_i}\right]\right) dt$$

• D. Denisov, A. B. Dieker, and V. Shneer. Large deviations for random walks under subexponentiality: the big-jump domain. *Ann. Probab.*, 36(5):1946–1991, 2008.

A remark on Model 1 or a Model with infinite mean

We will consider

$$R_t = u + p(t) - \sum_{i=1}^{N_t} Y_i$$

where the Y_i are i.i.d. with distribution function F

Theorem

If X_1, X_2, \ldots are i.i.d. random variables with distribution F(x) that is regularly varying with index $0 < \alpha \le 1$, and regularly varying density f(x). If further p(T) is regularly varying with index $\beta > 1/\alpha$ (continuous and strict monotonic increasing) then

$$\psi(u) \sim \lambda \int_0^\infty \overline{F}(u+p(T))dT \sim \lambda p^{-1}(u)\overline{F}(u) \int_0^\infty (1+t^\beta)^{-\alpha}dt$$

$$p(t) - \sum_{i=1}^{N_t} X_i \sim p(t)$$
 a.s..

Bounds

Theorem

- $F \dots$ distribution with regularly varying density f(x) (index α)
- F_t . . . distribution with $F_t(x) \ge F(x)$, $\forall x > 0, t > 0$
- p(t)... regularly varying with index $\beta > 1/\alpha$
- $\exists \gamma > 0 : \forall \delta > \exists, x_{\delta} > 0 \text{ and all } y > x > x_{\delta}$ $\overline{F}_t(y) \ge (1 - \delta)(x/y)^{\gamma} \overline{F}_t(x)$

Then for the risk process

$$R_t = u + p(t) - \sum_{i=1}^{N_t} X_{\mathcal{T}_i}$$

we have that

$$\lambda \int_0^\infty \overline{F}_t(u+p(t))dt \lesssim \psi(u) \lesssim \lambda \int_0^\infty \overline{F}(u+p(t))dt.$$

A note on Model 2

Theorem

If X_1, X_2, \ldots are i.i.d. random variables with distribution F(x) that is regularly varying with index $\alpha > 1$, mean μ , and regularly varying density f(x) then

$$\psi(u) \sim \lambda \int_0^\infty \overline{F}\left(\frac{u}{t} + \frac{\rho}{2}t\right) dt \sim \lambda \sqrt{u} \ \overline{F}(\sqrt{u}) \int_0^\infty \left(\frac{1}{t} + \frac{\rho}{2}t\right)^{-\alpha} dt$$
 (1)

Motivation and Introduction

2 Models with heavy tails

Models with light tails

Light tailed case

- For Exponential distribution Model 1 and 2 equivalent.
- We will consider the process

$$S_t = \sum_{i=1}^{N_t} \mu(\mathcal{T}_i) X_i - (1+
ho) \int_0^t \mu(s) \mathrm{d}s$$

- $X_i \dots$ iid random variables
- ullet $\mu(t)\dots$ multiplicative change over time
- ullet N_t homogeneous Poisson process with rate 1
- $\kappa(t, \theta) = \log \left(\mathbb{E} \left[e^{\theta S_t} \right] \right)$
- $p(t) = (1 + \rho) \int_0^t \mu(s) ds$.

Theorem

If

- $\mathbb{E}[X_1] = 1$ and there exists an $s_0 \leq \infty$ with $\lim_{t \to s_0} \varphi(t) = \infty$.
- $\mu(x)$ is strict monotone increasing and is regularly varying with index $\alpha > 0$ Further $\mu'(x)/(\alpha\mu(x)) \sim x$ (i.e. μ has a regularly varying density).
- F(x) has density f(x) and for all $s < s_0$, $\lim_{x \to \infty} e^{sx} \overline{F}(x) = \lim_{x \to \infty} e^{sx} f(x) = 0$.
- For all $\theta < s_0$

$$\lim_{x\to\infty}e^{\theta x}\sup_{t>0}\frac{F(x+t)}{\overline{F}(t)}=0.$$

then

$$\mathbb{P}(\tau(u) < \infty) \sim \frac{\rho e^{-\gamma \frac{u}{\mu(t_0)} + \kappa(t_0, \theta^*)}}{\sqrt{\varphi'(\gamma) - (1+\rho)} \sqrt{(\alpha+1) \int_0^1 s^{\alpha} \left(\varphi'(\gamma s^{\alpha}) - (1+\rho)\right) ds}}$$

We are following ideas from

 N. G. Duffield and N. O'Connell. Large deviations and overflow probabilities for the general single-server queue, with applications. Math. Proc. Cambridge Philos. Soc., 118(2):363–374, 1995.

•

$$S_t = \sum_{i=1}^{N_t} \mu(\mathcal{T}_i) X_i - (1+\rho) \int_0^t \mu(t) dt$$

• $\kappa(t, \theta) = \log(\mathbb{E}\left[\exp(\theta S_t)\right])$

$$\kappa(t, heta) = \int_0^t arphi(heta \mu(s)) \mathrm{d}s - t - heta(1 +
ho) \int_0^t \mu(s) \mathrm{d}s.$$

• θ_t ... the solution to $\kappa_{\theta}(t, \theta_t) = u \; (\theta_t \; \text{depends on} \; u)$

- Define family of processes $S_t^s = \sum_{i=1}^{N_t^s} \mu(\mathcal{T}_i^s) X_{\mathcal{T}_i^s}^s p(t)$
- N_t^s . . . inhomogeneous Poisson process (on [0,T) ($\mu(T)\theta_s=s_0$) with intensity

$$\lambda^{s}(t) = \mathbb{E}\left[e^{\mu(s)\theta_{s}X_{1}}\right] = \varphi(\mu(t)\theta_{s})$$

• X_t^s ... stochastic process independent of N_t^s For $(r \neq t)$ X_t^s independent from X_r^s X_t^s has distribution function $F_{\theta_s\mu(t)}(x)$ where $(\theta > 0)$

$$F_{\theta}(x) = \frac{1}{\varphi(\theta)} \mathbb{E}\left[e^{\theta X_1} \mathbb{1}_{\{X_1 \leq u\}}\right]$$

•

$$dS_t^s = e^{\theta_s S_t - \kappa(t, \theta_s)} dS_t \quad t \leq T$$

• $\mathbb{E}\left[S_s^s\right] = u$

Denote with $h(t) = h_u(t) = \theta_t u - \kappa(t, \theta_t)$ then

$$\mathbb{P}(S_s > u) = e^{-h_u(s)} \mathbb{E}\left[e^{-\theta_s(S_s^s - u)} 1_{\{S_s^s > u\}}\right] \approx e^{-h_u(s)}$$

$$\mathbb{P}(\sup_{s > 0} S_s > u) \approx e^{-\inf_s h_u(s)}.$$

Define $(t_0, \theta^*) = (t_0(u), \theta^*(u))$ as the pair (t_0, θ_{t_0}) where t_0 minimizes h(t). We can show that

$$h'(t_0) = \kappa_t(t_0, \theta^*) = 0.$$

or

$$\varphi(\theta^*\mu(t_0)) - 1 - (1+\rho)\theta^*\mu(t_0) = 0.$$

 $\gamma = \theta^* \mu(t_0)$ $t_0 = t_0(u)$ is regularly varying with index $1/(\alpha + 1)$ and $\theta^* = \theta^*(u)$ depends on u.

Heuristic:

- Ruin occurs around t₀
- ullet Most likely path to ruin is when S_t behaves like $S_t^{t_0}$

The further proof depends on 4 Lemmas

- $\tau(u) = \inf\{t : S_t > u\}.$
- $S_t^* = S_t^{t_0} (S_t^* \text{ depends on } u!)$

Lemma

Let s > 0 then for some $u_s > 0$ and all $u > u_s$

$$\begin{split} & \mathbb{P}(|\tau(u) - t_0| < s\sqrt{t_0}) \\ & = \mathbb{E}\left[e^{-\theta^* S_{\tau^*(u)^*}^* + \kappa(\tau^*(u), \theta^*)} \mathbf{1}_{\left\{|\tau^*(u) - t_0| < s\sqrt{t_0}\right\}}\right] \\ & = e^{-\gamma \frac{u}{\mu(t_0)} + \kappa(t_0, \theta^*)} \mathbb{E}\left[e^{-\frac{\gamma}{\mu(t_0)}(S_{\tau^*(u)}^* - u)} e^{\kappa(\tau^*(u), \theta^*) - \kappa(t_0, \theta^*)} \mathbf{1}_{\left\{|\tau^*(u) - t_0| < s\sqrt{t_0}\right\}}\right] \\ & = e^{-h_u(t_0)} \mathbb{E}\left[e^{-\frac{\gamma}{\mu(t_0)}(S_{\tau^*(u)}^* - u)} e^{\kappa(\tau^*(u), \theta^*) - \kappa(t_0, \theta^*)} \mathbf{1}_{\left\{|\tau^*(u) - t_0| < s\sqrt{t_0}\right\}}\right] \end{split}$$

Lemma

There exists a function R(s) with $\lim_{s\to\infty} R(s) = 0$ such that

$$\mathbb{P}(|\tau(u)-t_0|>s\sqrt{t_0},\tau(u)<\infty)\leq R(s)e^{-\gamma\frac{u}{\mu(t_0)}+\kappa(t_0,\theta^*)}$$

Lemma

$$\begin{split} &\limsup_{u \to \infty} \mathbb{E} \left[e^{-\frac{\gamma}{\mu(t_0)} (S^*_{\tau^*(u)} - u)} e^{\kappa(\tau^*(u), \theta^*) - \kappa(t_0, \theta^*)} 1_{\left\{ |\tau^*(u) - t_0| < s\sqrt{t_0} \right\}} \right] \\ &= \frac{\rho}{\varphi'(\gamma) - (1 + \rho)} \mathbb{E} \left[e^{\kappa(\tau^*(u), \theta^*) - \kappa(t_0, \theta^*)} 1_{\left\{ |\tau^*(u) - t_0| < s\sqrt{t_0} \right\}} \right] + R^u_s \\ &\liminf_{u \to \infty} \mathbb{E} \left[e^{-\frac{\gamma}{\mu(t_0)} (S^*_{\tau^*(u)} - u)} e^{\kappa(\tau^*(u), \theta^*) - \kappa(t_0, \theta^*)} 1_{\left\{ |\tau^*(u) - t_0| < s\sqrt{t_0} \right\}} \right] \\ &= \frac{\rho}{\varphi'(\gamma) - (1 + \rho)} \mathbb{E} \left[e^{\kappa(\tau^*(u), \theta^*) - \kappa(t_0, \theta^*)} 1_{\left\{ |\tau^*(u) - t_0| < s\sqrt{t_0} \right\}} \right] + R^l_s \end{split}$$

where $\lim_{s\to\infty} R_s^u = \lim_{s\to\infty} R_s^l = 0$.

Lemma

There exists functions R^u_s and R^l_s with $\lim_{s\to\infty} R^u_s = \lim_{s\to\infty} R^l_s = 0$ such that

$$\begin{split} & \limsup_{u \to \infty} \mathbb{E} \left[e^{\kappa(\tau^*(u),\theta^*) - \kappa(t_0,\theta^*)} \mathbf{1}_{\left\{ | \tau^*(u) - t_0| < s\sqrt{t_0} \right\}} \right] \\ & \leq \frac{\sqrt{\varphi'(\gamma) - (1+\rho)}}{\sqrt{(\alpha+1)\int_0^1 s^\alpha \left(\varphi'(\gamma s^\alpha) - (1+\rho) \right) ds}} + R_s^u. \\ & \liminf_{u \to \infty} \mathbb{E} \left[e^{\kappa(\tau^*(u),\theta^*) - \kappa(t_0,\theta^*)} \mathbf{1}_{\left\{ | \tau^*(u) - t_0| < s\sqrt{t_0} \right\}} \right] \\ & \geq \frac{\sqrt{\varphi'(\gamma) - (1+\rho)}}{\sqrt{(\alpha+1)\int_0^1 s^\alpha \left(\varphi'(\gamma s^\alpha) - (1+\rho) \right) ds}} + R_s^l. \end{split}$$

Conclusions and Remarks

- Similar heuristics as in the stationary case hold.
- In the heavy tailed case: When change in shape parameter or infinite mean models, net profit condition can be violated.
- Hard to (numerical) check quality of asymptotic results

Further work

- Connection to queueing models
- Include premium rules for risk models
- More realistic models
- Efficient numerical methods

Thank you for the attention