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Multivariate regularly varying time series

@ We will deal with a stationary multivariate regularly varying
time series (X¢)tez, Xt € R,
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Multivariate regularly varying time series

@ We will deal with a stationary multivariate regularly varying
time series (X¢)tez, Xt € R,

@ The multivariate regular variation is equivalent to existence of
a so-called “spectral tail process” (©¢)cz, such that
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for a random variable Y which is Par(«a)-distributed and
independent of (O¢):cz (cf. Basrak & Segers (2009)).
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Multivariate regularly varying time series

@ We will deal with a stationary multivariate regularly varying
time series (X¢)tez, Xt € R,

@ The multivariate regular variation is equivalent to existence of
a so-called “spectral tail process” (©¢)cz, such that
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for a random variable Y which is Par(«a)-distributed and
independent of (O¢)sez (cf. Basrak & Segers (2009)). This,

in turn, is equivalent to ||Xo|| being regularly varying with
index o and
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Example and aim

@ Think for example of Random Difference Equations with
Xt - Atth]_ + Bt7 t e Z,

for random i.i.d. (A;, B;), t € Z, with A; € R¥*9 B, ¢ RY.

= Under assumptions of Kesten (1973) the stationary solution is
a multivariate regularly varying time series.
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Example and aim

@ Think for example of Random Difference Equations with
Xt - Atth]_ + Bt’7 t e Z,

for random i.i.d. (As, By), t € Z, with A, € R?*9 B, ¢ RY.

= Under assumptions of Kesten (1973) the stationary solution is
a multivariate regularly varying time series.

@ Our aim: Estimation of the distribution of @, in particular
fort =1.

@ The distribution of @1 is of particular importance if (X;)tez is
Markovian, because in this case the joint distribution of
(©o,®1) (together with o) determines the whole structure of __
(©¢)tez (cf. J. & Segers (2014))! ;
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Motivation
Asymptotic theory

The straightforward thing to do...

For the estimation of the law of ©1, use for A € B?

Pl X calix P(IX||€A||X0||>X)Wpe A
<HX 7 € A| Il > ) P =) ((©1eA),

as x — oo (if P(@1 € 0A) = 0) to motivate the estimator

Forward estimator

> Ly, a2}
Por(A) = L for P(©; € A),
St x>t

based on the observations (X1, ..., X,) with suitable threshold u,
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Motivation
Asymptotic theory

... but we know more about (O;);c7!

The stationarity assumption about (X;):cz implies some properties
of the spectral tail process (O¢)tez.

“Time change formula” (Basrak & Segers (2009))

Let (®¢)tcz be a spectral tail process of a stationary time series.
For all i,s,t € Z with s < 0 < t and for all bounded and
measurable functions f : (R):=5+1 — R with f(ys,...,y:) = 0 if
¥o=0:

O, O
E(f(Oarir... O :E(f< > o a>,
( ( aF t+ )) ||@_I|| ||@_I|| || H

(Remember that « is the index of regular variation of the
underlying time series (X¢)tez.)
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Application to the estimation of P(©; € A)

Motivation
Asymptotic theory

From the last slide:

E(f(Ossi,- .., Op1)) = E(" (Hs_s,.u’ ||§_,H) He_,ua) J

For A € BY with 0 ¢ A set f(yo) = 1a(yo). Then

P(@1€A) = E(f(O41))

- &(r (o) 10-1)
= & (1 (o) 10
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Motivation
Asymptotic theory

The not so straightforward thing to do...

For the estimation of the law of ©1, use

Xo O\ (IX_]\
£ (“A <HX—01H> ( ol > Xoll > X)
E (14 () (Bah) " 1o (I%ol))
P(Xol > %)

= P(@; € A)

as x — 0o, to motivate the

Backward estimator

27:211{||x,-||>un}]1{ X, GA}( il )a

1X;—11l

Pob(A) =

oo Lx > un)

based on the observations (Xi,...,X,) with suitable threshold uj,
Cf. Drees, Segers and Warchot (2015) for univariate setting! ‘
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Motivation
Asymptotic theory

Why this?

In the following, let d = 2 and concentrate on sets
Aye={x €R?: x| >y, p(x) < t},

where (x) € [0, 27] denotes the angle between x and the positive
x-axis. Compare

) >t L(ixi>uny 1 Pl sy p(Xia)<t }
Pn,f(Ay,t): 1
>0 L un) )
with
1'1 1 - ]]_ ”X—lH @
- > ie2 L{ix; 1> un} {Hﬂxn >y¢(x)<t}<nxo>
'Dnb A -
BTyt e L5 un)
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Variance comparison

Motivation
Asymptotic theory

Let y be large. For an extreme value of || X;|| it is rare that

[ Xis1ll > y||Xi|| and more likely that || X;]| > y||X;_1]|, which
heuristically suggests a smaller variance of latter estimator for
higher values of y.
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Motivation
Asymptotic theory

Variance comparison

Let y be large. For an extreme value of || X;|| it is rare that

[ Xis1ll > y||Xi|| and more likely that || X;]| > y||X;_1]|, which
heuristically suggests a smaller variance of latter estimator for
higher values of y.

Theorem

Let (X¢)tez be a stationary multivariate regularly varying time series. Under

(including 3-mixing, continuity of P®1, assumptions
about duration and moments of extremal clusters), for yo > 0, yp > 0, the
process

(PortAv.) = P (k> v, 0(%1) < t] Xl > un))
nvy ~ «
X s ]
('Dﬂ,b(AY,t) - E (( onlﬂ ) Tk \IXoH >7,0(X0)<t}

with v, = P(||Xo|| > un) converges weakly in £>° to a centered Gaussian process.

y2>yo,t€[0,27]

[ Xoll > un
y>5o,t€[0,27]
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Motivation
Asymptotic theory

Generalized tail array sums

For the theory: Observe (Xo, ..., Xp+1) and write estimators as

" Ld, (X - i1 Yy (X
lenl Y7t( n, ) and Pn,b(Ay,t) — Zl—nl Y7t( n, )
Zi:l X(Xn,i) Zi:l X(Xn,i)

'E)n,f(Ay,t) =

for functions

X(Xni) = Lyxi>13> Py ,e(Xn,i) = {HX,-||>1 Dl el

Xl

wy,t(xn,i) =

1
{11, L >y x, )<t}< “
of
Xpi = (Xi—1,Xj, Xit1)/tn - Ljx;|>umy € RO

= Use theory of Drees and Rootzén (2010) (cf. also Drees and
Rootzén (2016)) to show convergence of empirical processes.
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Simulations
Summary / Outlook

Simulations

@ The variance of the limiting expressions are in general quite
complicated which makes comparisons between the two
estimators difficult.

@ In dimension d = 1 it possible to show that the backward
estimator has lower variance if y > 1 (cf. Drees, Segers &
Warchot (2015))
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Simulations
Summary / Outlook

Simulations

@ The variance of the limiting expressions are in general quite
complicated which makes comparisons between the two
estimators difficult.

@ In dimension d =1 it possible to show that the backward
estimator has lower variance if y > 1 (cf. Drees, Segers &
Warchot (2015))

Example: The following simulations where done to estimate
P(1©1]| > y,¢(©1) < 1.57)

for a random difference equation of the form
Xe=A X1 +By, teZ,

where the distribution of ¢(@1) is uniform on [0, 27], ||©1]| ist
distributed like the absolute value of a standard normal r.v. and 4
both are independent (cf. Buraczewski et al. (2009)). The value o )
« is equal to 2.
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Simulations
Summary / Outlook

RMSEs of forward and backward estimator Relative efficiency of backward estimator
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Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of
P(]|®1]] > y,¢(©1) < 1.57) for different values of y. Based on 5.000 simulations of]
observations of length n = 1.000, setting u, as the 95%-quantile of the observations

of |X¢||. Right: Ratio of RMSEs of forward and backward estimator.
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RMSEs of forward and backward estimator Relative efficiency of backward estimator
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Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of
P(]|®1]] > y,¢(©1) < 1.57) for different values of y. Based on 5.000 simulations of]
observations of length n = 1.000, setting u, as the 99%-quantile of the observations

of |X¢||. Right: Ratio of RMSEs of forward and backward estimator.
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@ That the backward estimator needs knowledge of « is of
course a drawback in applications.

@ Solution: Plug-in an estimator for «, e.g. Hill-estimator.
Under slightly stronger assumptions we can show that
asymptotic normality of the estimator still holds.

@ The next slide shows the estimators for the same model as
before, but « is now estimated by the Hill-estimator based on
the exceedances of || X|| over up,.
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Simulations

@ That the backward estimator needs knowledge of « is of
course a drawback in applications.

@ Solution: Plug-in an estimator for «, e.g. Hill-estimator.
Under slightly stronger assumptions we can show that
asymptotic normality of the estimator still holds.

@ The next slide shows the estimators for the same model as
before, but « is now estimated by the Hill-estimator based on
the exceedances of || X|| over uj.
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Simulations with estimated o
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Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of
P(]|®1]] > y,¢(©1) < 1.57) for different values of y. Based on 5.000 simulations of]
observations of length n = 1.000, setting u, as the 95%-quantile of the observations

of |X¢||. Right: Ratio of RMSEs of forward and backward estimator.
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Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of
P(]|®1]] > y,¢(©1) < 1.57) for different values of y. Based on 5.000 simulations of]
observations of length n = 1.000, setting u, as the 99%-quantile of the observations

of |X¢||. Right: Ratio of RMSEs of forward and backward estimator.
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Summary / Outlook

@ The "time change formula” can also in the multivariate
setting be useful to improve estimation.
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Simulations
Summary / Outlook

@ The "time change formula” can also in the multivariate
setting be useful to improve estimation.

@ However, expressions of estimator variances become much
more tedious and more specific assumptions are needed to
allow for comparisions

= Look at special models like RDEs for concrete statements.
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Simulations
Summary / Outlook

@ The "time change formula” can also in the multivariate
setting be useful to improve estimation.

@ However, expressions of estimator variances become much
more tedious and more specific assumptions are needed to
allow for comparisions

= Look at special models like RDEs for concrete statements.

= Look at behavior at other lags than t = 1 and estimation of
joint distributions in order to reflect dynamics of the spectral
tail process.
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Thank you for your attention!

Simulations
Summary / Outlook
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Conditions to ensure asymptotic normality |

Q@ P(O1 € d{x e R* | [|x]| > y,p(x) < t}) =0,
V' y > min(yo, o), t € [0, 27]

@ The exist sequences /, — 00, r, = o(nv,)"/?) such that
ln = o(rn), rava — 0 and the mixing coefficients

Bnk = sup E( sup \P(BIBL,l)—P(BN)

1<I<n—k—1  \BEB! ., .,

Bl = o((Xns)i<i<))

satisfy B,,,/n% — 0.
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Conditions to ensure asymptotic normality |l

@ For all k € {0,...,r,} there exists
sn(k) = P([[Xkll > un | [[Xol| > un)

such that lim,_, sp(k) = s(k) € R exists and

ningozsn(k) = s(k) < .

k=1 k=1

n 00

rn 246
E (Z]l{xi>un}> = O(rnvn)
i=1

for some § > 0.
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