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Simulations and Outlook

Multivariate regularly varying time series

We will deal with a stationary multivariate regularly varying
time series (Xt)t∈Z, Xt ∈ Rd .

The multivariate regular variation is equivalent to existence of
a so-called “spectral tail process” (Θt)t∈Z, such that
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w⇒ L(Y ·Θ−n, . . . ,Y ·Θm), x →∞,

for a random variable Y which is Par(α)-distributed and
independent of (Θt)t∈Z (cf. Basrak & Segers (2009)). This,
in turn, is equivalent to ‖X0‖ being regularly varying with
index α and
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Simulations and Outlook

Example and aim

Think for example of Random Difference Equations with

Xt = AtXt−1 + Bt , t ∈ Z,

for random i.i.d. (At ,Bt), t ∈ Z, with At ∈ Rd×d ,Bt ∈ Rd .

⇒ Under assumptions of Kesten (1973) the stationary solution is
a multivariate regularly varying time series.

Our aim: Estimation of the distribution of Θt , in particular
for t = 1.

The distribution of Θ1 is of particular importance if (Xt)t∈Z is
Markovian, because in this case the joint distribution of
(Θ0,Θ1) (together with α) determines the whole structure of
(Θt)t∈Z (cf. J. & Segers (2014))!
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Motivation
Asymptotic theory

The straightforward thing to do...

For the estimation of the law of Θ1, use for A ∈ Bd

P

(
X1

‖X0‖
∈ A

∣∣∣ ‖X0‖ > x

)
=

P
(

X1
‖X0‖ ∈ A, ‖X0‖ > x

)
P(‖X0‖ > x)

w⇒ P(Θ1 ∈ A), x →∞

as x →∞ (if P(Θ1 ∈ ∂A) = 0) to motivate the estimator

Forward estimator

P̂n,f (A) :=

∑n−1
i=1 1{‖Xi‖>un}1

{
Xi+1
‖Xi‖
∈A
}∑n−1

i=1 1{‖Xi‖>un}
for P(Θ1 ∈ A),

based on the observations (X1, . . . ,Xn) with suitable threshold un.
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Motivation
Asymptotic theory

... but we know more about (Θt)t∈Z!

The stationarity assumption about (Xt)t∈Z implies some properties
of the spectral tail process (Θt)t∈Z.

“Time change formula” (Basrak & Segers (2009))

Let (Θt)t∈Z be a spectral tail process of a stationary time series.
For all i , s, t ∈ Z with s ≤ 0 ≤ t and for all bounded and
measurable functions f : (Rd)t−s+1 → R with f (ys , . . . , yt) = 0 if
y0 = 0:

E (f (Θs+i , . . . ,Θt+i )) = E

(
f

(
Θs

‖Θ−i‖
, . . . ,

Θt

‖Θ−i‖

)
‖Θ−i‖α

)
.

(Remember that α is the index of regular variation of the
underlying time series (Xt)t∈Z.)
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Application to the estimation of P(Θ1 ∈ A)

From the last slide:

E (f (Θs+i , . . . ,Θt+i )) = E

(
f

(
Θs

‖Θ−i‖
, . . . ,

Θt

‖Θ−i‖

)
‖Θ−i‖α

)
.

For A ∈ Bd with 0 /∈ A set f (y0) = 1A(y0). Then

P (Θ1 ∈ A) = E (f (Θ0+1))

= E

(
f

(
Θ0

‖Θ−1‖

)
‖Θ−1‖α

)
= E

(
1A

(
Θ0

‖Θ−1‖

)
‖Θ−1‖α

)
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Motivation
Asymptotic theory

The not so straightforward thing to do...

For the estimation of the law of Θ1, use

E

(
1A

(
X0

‖X−1‖

)(
‖X−1‖
‖X0‖

)α ∣∣∣ ‖X0‖ > x

)

=
E
(
1A

(
X0
‖X−1‖

)(
‖X−1‖
‖X0‖

)α
1(x ,∞)(‖X0‖)

)
P(‖X0‖ > x)

w⇒ P(Θ1 ∈ A)

as x →∞, to motivate the

Backward estimator

P̂n,b(A) :=

∑n
i=2 1{‖Xi‖>un}1

{
Xi

‖Xi−1‖
∈A
} (‖Xi−1‖

‖Xi‖

)α
∑n

i=2 1{‖Xi‖>un}

based on the observations (X1, . . . ,Xn) with suitable threshold un.
Cf. Drees, Segers and Warcho l (2015) for univariate setting!
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Motivation
Asymptotic theory

Why this?

In the following, let d = 2 and concentrate on sets

Ay ,t = {x ∈ R2 : ‖x‖ > y , ϕ(x) ≤ t},

where ϕ(x) ∈ [0, 2π] denotes the angle between x and the positive
x-axis. Compare

P̂n,f (Ay ,t) =

∑n−1
i=1 1{‖Xi‖>un}1

{ ‖Xi+1‖
‖Xi‖

>y ,ϕ(Xi+1)≤t
}∑n−1

i=1 1{‖Xi‖>un}

with

P̂n,b(Ay ,t) =

∑n
i=2 1{‖Xi‖>un}1

{
‖Xi‖
‖Xi−1‖

>y ,ϕ(Xi )≤t
} (‖X−1‖

‖X0‖

)α
∑n

i=2 1{‖Xi‖>un}
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Motivation
Asymptotic theory

Variance comparison

Let y be large. For an extreme value of ‖Xi‖ it is rare that
‖Xi+1‖ > y‖Xi‖ and more likely that ‖Xi‖ > y‖Xi−1‖, which
heuristically suggests a smaller variance of latter estimator for
higher values of y .

Theorem

Let (Xt)t∈Z be a stationary multivariate regularly varying time series. Under
suitable conditions (including β-mixing, continuity of PΘ1 , assumptions
about duration and moments of extremal clusters), for y0 ≥ 0, ỹ0 > 0, the
process

√
nvn


(
P̂n,f (Ay ,t)− P

(
‖X1‖
‖X0‖ > y , ϕ(X1) ≤ t

∣∣∣ ‖X0‖ > un
))

y≥y0,t∈[0,2π](
P̂n,b(Aỹ ,t)− E

((
‖X−1‖
‖X0‖

)α
1{ ‖X0‖
‖X−1‖

>ỹ ,ϕ(X0)≤t}

∣∣∣ ‖X0‖ > un

))
ỹ≥ỹ0,t∈[0,2π]


with vn = P(‖X0‖ > un) converges weakly in `∞ to a centered Gaussian process.
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Motivation
Asymptotic theory

Generalized tail array sums

For the theory: Observe (X0, . . . ,Xn+1) and write estimators as

P̂n,f (Ay ,t) =

∑n
i=1 Φy ,t(Xn,i )∑n
i=1 χ(Xn,i )

and P̂n,b(Ay ,t) =

∑n
i=1 Ψy ,t(Xn,i )∑n
i=1 χ(Xn,i )

for functions

χ(Xn,i ) = 1{‖Xi‖>1},Φy ,t(Xn,i ) = 1{
‖Xi‖>1,

‖Xi+1‖
‖Xi‖

>y ,ϕ(Xi+1)≤t
},

Ψy ,t(Xn,i ) = 1{
‖Xi‖>1,

‖Xi‖
‖Xi−1‖

>y ,ϕ(Xi )≤t
}( ‖Xi−1‖

‖Xi‖

)α

of
Xn,i := (Xi−1,Xi ,Xi+1)/un · 1{‖Xi‖>un} ∈ R6.

⇒ Use theory of Drees and Rootzén (2010) (cf. also Drees and
Rootzén (2016)) to show convergence of empirical processes.
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Simulations
Summary / Outlook

Simulations

The variance of the limiting expressions are in general quite
complicated which makes comparisons between the two
estimators difficult.
In dimension d = 1 it possible to show that the backward
estimator has lower variance if y > 1 (cf. Drees, Segers &
Warcho l (2015))

Example: The following simulations where done to estimate

P(‖Θ1‖ > y , ϕ(Θ1) ≤ 1.5π)

for a random difference equation of the form

Xt = AtXt−1 + Bt , t ∈ Z,

where the distribution of ϕ(Θ1) is uniform on [0, 2π], ‖Θ1‖ ist
distributed like the absolute value of a standard normal r.v. and
both are independent (cf. Buraczewski et al. (2009)). The value of
α is equal to 2.

Anja Janßen Applications of the tail process for extremal inference 11 / 16



Multivariate regularly varying time series
Estimators for the law of Θ1

Simulations and Outlook

Simulations
Summary / Outlook

Simulations

The variance of the limiting expressions are in general quite
complicated which makes comparisons between the two
estimators difficult.
In dimension d = 1 it possible to show that the backward
estimator has lower variance if y > 1 (cf. Drees, Segers &
Warcho l (2015))

Example: The following simulations where done to estimate

P(‖Θ1‖ > y , ϕ(Θ1) ≤ 1.5π)

for a random difference equation of the form

Xt = AtXt−1 + Bt , t ∈ Z,

where the distribution of ϕ(Θ1) is uniform on [0, 2π], ‖Θ1‖ ist
distributed like the absolute value of a standard normal r.v. and
both are independent (cf. Buraczewski et al. (2009)). The value of
α is equal to 2.

Anja Janßen Applications of the tail process for extremal inference 11 / 16



Multivariate regularly varying time series
Estimators for the law of Θ1

Simulations and Outlook

Simulations
Summary / Outlook

Simulations

Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of
P(‖Θ1‖ > y , ϕ(Θ1) ≤ 1.5π) for different values of y . Based on 5.000 simulations of
observations of length n = 1.000, setting un as the 95%-quantile of the observations

of ‖Xt‖. Right: Ratio of RMSEs of forward and backward estimator.
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Simulations
Summary / Outlook

Simulations

That the backward estimator needs knowledge of α is of
course a drawback in applications.

Solution: Plug-in an estimator for α, e.g. Hill-estimator.
Under slightly stronger assumptions we can show that
asymptotic normality of the estimator still holds.

The next slide shows the estimators for the same model as
before, but α is now estimated by the Hill-estimator based on
the exceedances of ‖X‖ over un.
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Simulations with estimated α

Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of
P(‖Θ1‖ > y , ϕ(Θ1) ≤ 1.5π) for different values of y . Based on 5.000 simulations of
observations of length n = 1.000, setting un as the 95%-quantile of the observations

of ‖Xt‖. Right: Ratio of RMSEs of forward and backward estimator.
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Summary / Outlook

The ”time change formula” can also in the multivariate
setting be useful to improve estimation.

However, expressions of estimator variances become much
more tedious and more specific assumptions are needed to
allow for comparisions

⇒ Look at special models like RDEs for concrete statements.

⇒ Look at behavior at other lags than t = 1 and estimation of
joint distributions in order to reflect dynamics of the spectral
tail process.
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Thank you for your attention!
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Conditions to ensure asymptotic normality I

1 P(Θ1 ∈ ∂{x ∈ R2 | ‖x‖ > y , ϕ(x) ≤ t}) = 0,
∀ y ≥ min(y0, ỹ0), t ∈ [0, 2π]

2 The exist sequences ln →∞, rn = o((nvn)1/2) such that
ln = o(rn), rnvn → 0 and the mixing coefficients

βn,k := sup
1≤l≤n−k−1

E

(
sup

B∈Bnn,l+k+1

|P(B | Bln,1)− P(B)|

)

with
Bjn,i := σ((Xn,l)i≤l≤j)

satisfy βn,ln
n
rn
→ 0.
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Conditions to ensure asymptotic normality II

3 For all k ∈ {0, . . . , rn} there exists

sn(k) ≥ P(‖Xk‖ > un | ‖X0‖ > un)

such that limn→∞ sn(k) = s(k) ∈ R exists and

lim
n→∞

rn∑
k=1

sn(k) =
∞∑
k=1

s(k) <∞.

4

E

( rn∑
i=1

1{‖Xi‖>un}

)2+δ
 = O(rnvn)

for some δ > 0.

back to process convergence
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