Applications of the multivariate tail process for extremal inference

Anja Janßen

University of Copenhagen

(joint project with Holger Drees, University of Hamburg)

CIRM Workshop on "Extremes, Copulas and Actuarial Science" February 25th, 2016

Multivariate regularly varying time series

- We will deal with a stationary multivariate regularly varying time series $(X_t)_{t \in \mathbb{Z}}$, $X_t \in \mathbb{R}^d$.
- The multivariate regular variation is equivalent to existence of a so-called "spectral tail process" (⊖_t)_{t∈Z}, such that

$$\mathcal{L}\left(\frac{\mathbf{X}_{-n}}{x},\ldots,\frac{\mathbf{X}_{m}}{x}\,\Big|\,\|\mathbf{X}_{0}\|>x\right)\stackrel{w}{\Rightarrow}\mathcal{L}(Y\cdot\mathbf{\Theta}_{-n},\ldots,Y\cdot\mathbf{\Theta}_{m}),x\to\infty,$$

for a random variable Y which is $Par(\alpha)$ -distributed and independent of $(\Theta_t)_{t\in\mathbb{Z}}$ (cf. Basrak & Segers (2009)). This, in turn, is equivalent to $||\mathbf{X}_0||$ being regularly varying with index α and

$$\mathcal{L}\left(\frac{\mathbf{X}_{-n}}{\|\mathbf{X}_{0}\|},\ldots,\frac{\mathbf{X}_{m}}{\|\mathbf{X}_{0}\|}\,\Big|\,\|\mathbf{X}_{0}\|>x\right)\overset{W}{\Rightarrow}\mathcal{L}(\mathbf{\Theta}_{-n},\ldots,\mathbf{\Theta}_{m}),x\to\infty,$$

Multivariate regularly varying time series

- We will deal with a stationary multivariate regularly varying time series $(\mathbf{X}_t)_{t\in\mathbb{Z}}$, $\mathbf{X}_t\in\mathbb{R}^d$.
- The multivariate regular variation is equivalent to existence of a so-called "spectral tail process" (Θ_t)_{t∈Z}, such that

$$\mathcal{L}\left(\frac{\mathbf{X}_{-n}}{x},\ldots,\frac{\mathbf{X}_{m}}{x}\,\Big|\,\|\mathbf{X}_{0}\|>x\right)\stackrel{\mathrm{w}}{\Rightarrow}\mathcal{L}(Y\cdot\mathbf{\Theta}_{-n},\ldots,Y\cdot\mathbf{\Theta}_{m}),x\to\infty,$$

for a random variable Y which is $Par(\alpha)$ -distributed and independent of $(\Theta_t)_{t \in \mathbb{Z}}$ (cf. Basrak & Segers (2009)). This, in turn, is equivalent to $||\mathbf{X}_0||$ being regularly varying with index α and

$$\mathcal{L}\left(\frac{\mathbf{X}_{-n}}{\|\mathbf{X}_{0}\|},\ldots,\frac{\mathbf{X}_{m}}{\|\mathbf{X}_{0}\|}\,\Big|\,\|\mathbf{X}_{0}\|>x\right)\stackrel{W}{\Rightarrow}\mathcal{L}(\mathbf{\Theta}_{-n},\ldots,\mathbf{\Theta}_{m}),x\to\infty,$$

Multivariate regularly varying time series

- We will deal with a stationary multivariate regularly varying time series $(\mathbf{X}_t)_{t\in\mathbb{Z}}$, $\mathbf{X}_t\in\mathbb{R}^d$.
- The multivariate regular variation is equivalent to existence of a so-called "spectral tail process" (⊖_t)_{t∈Z}, such that

$$\mathcal{L}\left(\frac{\mathbf{X}_{-n}}{x},\ldots,\frac{\mathbf{X}_{m}}{x}\,\Big|\,\|\mathbf{X}_{0}\|>x\right)\stackrel{\mathrm{w}}{\Rightarrow}\mathcal{L}(Y\cdot\mathbf{\Theta}_{-n},\ldots,Y\cdot\mathbf{\Theta}_{m}),x\to\infty,$$

for a random variable Y which is $Par(\alpha)$ -distributed and independent of $(\Theta_t)_{t\in\mathbb{Z}}$ (cf. Basrak & Segers (2009)). This, in turn, is equivalent to $\|\mathbf{X}_0\|$ being regularly varying with index α and

$$\mathcal{L}\left(\frac{\mathbf{X}_{-n}}{\|\mathbf{X}_{0}\|},\ldots,\frac{\mathbf{X}_{m}}{\|\mathbf{X}_{0}\|} \mid \|\mathbf{X}_{0}\| > x\right) \stackrel{\text{w}}{\Rightarrow} \mathcal{L}(\mathbf{\Theta}_{-n},\ldots,\mathbf{\Theta}_{m}), x \to \infty,$$

Example and aim

• Think for example of Random Difference Equations with

$$\mathbf{X}_t = \mathbf{A}_t \mathbf{X}_{t-1} + \mathbf{B}_t, \quad t \in \mathbb{Z},$$

for random i.i.d. $(\mathbf{A}_t, \mathbf{B}_t), t \in \mathbb{Z}$, with $\mathbf{A}_t \in \mathbb{R}^{d \times d}, \mathbf{B}_t \in \mathbb{R}^d$.

- \Rightarrow Under assumptions of Kesten (1973) the stationary solution is a multivariate regularly varying time series.
 - Our aim: Estimation of the distribution of Θ_t, in particular for t = 1.
 - The distribution of Θ₁ is of particular importance if (X_t)_{t∈Z} is Markovian, because in this case the joint distribution of (Θ₀, Θ₁) (together with α) determines the whole structure of (Θ_t)_{t∈Z} (cf. J. & Segers (2014))!

Example and aim

• Think for example of Random Difference Equations with

$$\mathbf{X}_t = \mathbf{A}_t \mathbf{X}_{t-1} + \mathbf{B}_t, \quad t \in \mathbb{Z},$$

for random i.i.d. $(\mathbf{A}_t, \mathbf{B}_t), t \in \mathbb{Z}$, with $\mathbf{A}_t \in \mathbb{R}^{d \times d}, \mathbf{B}_t \in \mathbb{R}^d$.

- \Rightarrow Under assumptions of Kesten (1973) the stationary solution is a multivariate regularly varying time series.
 - Our aim: Estimation of the distribution of Θ_t, in particular for t = 1.
 - The distribution of Θ₁ is of particular importance if (X_t)_{t∈Z} is Markovian, because in this case the joint distribution of (Θ₀, Θ₁) (together with α) determines the whole structure of (Θ_t)_{t∈Z} (cf. J. & Segers (2014))!

The straightforward thing to do...

For the estimation of the law of Θ_1 , use for $A \in \mathbb{B}^d$

$$P\left(\frac{\mathbf{X}_1}{\|\mathbf{X}_0\|} \in A \,\Big|\, \|\mathbf{X}_0\| > x\right) = \frac{P\left(\frac{\mathbf{X}_1}{\|\mathbf{X}_0\|} \in A, \|\mathbf{X}_0\| > x\right)}{P(\|\mathbf{X}_0\| > x)} \stackrel{\text{w}}{\Rightarrow} P(\mathbf{\Theta}_1 \in A),$$

as $x o \infty$ (if $P(oldsymbol{\Theta}_1 \in \partial A) = 0$) to motivate the estimator

Forward estimator

$$\hat{P}_{n,f}(A) := \frac{\sum_{i=1}^{n-1} \mathbb{1}_{\{\|\mathbf{X}_i\| > u_n\}} \mathbb{1}_{\{\frac{\mathbf{X}_{i+1}}{\|\mathbf{X}_i\|} \in A\}}}{\sum_{i=1}^{n-1} \mathbb{1}_{\{\|\mathbf{X}_i\| > u_n\}}} \quad \text{for } P(\mathbf{\Theta}_1 \in A),$$

based on the observations (X_1, \ldots, X_n) with suitable threshold u_n .

... but we know more about $(\boldsymbol{\Theta}_t)_{t \in \mathbb{Z}}!$

The stationarity assumption about $(\mathbf{X}_t)_{t \in \mathbb{Z}}$ implies some properties of the spectral tail process $(\Theta_t)_{t \in \mathbb{Z}}$.

"Time change formula" (Basrak & Segers (2009))

Let $(\Theta_t)_{t \in \mathbb{Z}}$ be a spectral tail process of a stationary time series. For all $i, s, t \in \mathbb{Z}$ with $s \leq 0 \leq t$ and for all bounded and measurable functions $f: (\mathbb{R}^d)^{t-s+1} \to \mathbb{R}$ with $f(y_s, \ldots, y_t) = 0$ if $v_0 = 0$:

$$E\left(f(\Theta_{s+i},\ldots,\Theta_{t+i})\right) = E\left(f\left(\frac{\Theta_s}{\|\Theta_{-i}\|},\ldots,\frac{\Theta_t}{\|\Theta_{-i}\|}\right)\|\Theta_{-i}\|^{\alpha}\right)$$

(Remember that α is the index of regular variation of the underlying time series $(\mathbf{X}_t)_{t \in \mathbb{Z}}$.)

Motivation Asymptotic theory

Application to the estimation of $P(\mathbf{\Theta}_1 \in A)$

From the last slide:

$$E\left(f(\Theta_{s+i},\ldots,\Theta_{t+i})\right) = E\left(f\left(\frac{\Theta_s}{\|\Theta_{-i}\|},\ldots,\frac{\Theta_t}{\|\Theta_{-i}\|}\right)\|\Theta_{-i}\|^{\alpha}\right).$$

For $A \in \mathbb{B}^d$ with $\mathbf{0} \notin A$ set $f(y_0) = \mathbb{1}_A(y_0)$. Then

$$P(\Theta_{1} \in A) = E(f(\Theta_{0+1}))$$

$$= E\left(f\left(\frac{\Theta_{0}}{\|\Theta_{-1}\|}\right)\|\Theta_{-1}\|^{\alpha}\right)$$

$$= E\left(\mathbb{1}_{A}\left(\frac{\Theta_{0}}{\|\Theta_{-1}\|}\right)\|\Theta_{-1}\|^{\alpha}\right)$$

The not so straightforward thing to do...

For the estimation of the law of $\Theta_1,$ use

$$= \frac{E\left(\mathbbm{1}_{A}\left(\frac{\mathbf{X}_{0}}{\|\mathbf{X}_{-1}\|}\right)\left(\frac{\|\mathbf{X}_{-1}\|}{\|\mathbf{X}_{0}\|}\right)^{\alpha} | \|\mathbf{X}_{0}\| > x\right)}{E\left(\mathbbm{1}_{A}\left(\frac{\mathbf{X}_{0}}{\|\mathbf{X}_{-1}\|}\right)\left(\frac{\|\mathbf{X}_{-1}\|}{\|\mathbf{X}_{0}\|}\right)^{\alpha}\mathbbm{1}_{(x,\infty)}(\|\mathbf{X}_{0}\|)\right)}{P(\|\mathbf{X}_{0}\| > x)} \stackrel{w}{\Rightarrow} P(\mathbf{\Theta}_{1} \in A)$$

as $x \to \infty$, to motivate the

Backward estimator

=

$$\hat{P}_{n,b}(A) := \frac{\sum_{i=2}^{n} \mathbb{1}_{\{\|\mathbf{x}_i\| > u_n\}} \mathbb{1}_{\{\frac{\mathbf{x}_i}{\|\mathbf{x}_{i-1}\|} \in A\}} \left(\frac{\|\mathbf{x}_{i-1}\|}{\|\mathbf{x}_i\|}\right)^{\alpha}}{\sum_{i=2}^{n} \mathbb{1}_{\{\|\mathbf{x}_i\| > u_n\}}}$$

based on the observations $(X_1, ..., X_n)$ with suitable threshold u_n . Cf. Drees, Segers and Warchoł (2015) for univariate setting!

Why this?

In the following, let d = 2 and concentrate on sets

$$oldsymbol{A}_{\mathbf{y},t} = \{\mathbf{x} \in \mathbb{R}^2: \|\mathbf{x}\| > \mathbf{y}, arphi(\mathbf{x}) \leq t\},$$

where $\varphi(\mathbf{x}) \in [0, 2\pi]$ denotes the angle between \mathbf{x} and the positive x-axis. Compare

$$\hat{P}_{n,f}(A_{y,t}) = \frac{\sum_{i=1}^{n-1} \mathbb{1}_{\{\|\mathbf{X}_i\| > u_n\}} \mathbb{1}_{\{\frac{\|\mathbf{X}_{i+1}\|}{\|\mathbf{X}_i\|} > y, \varphi(\mathbf{X}_{i+1}) \le t\}}}{\sum_{i=1}^{n-1} \mathbb{1}_{\{\|\mathbf{X}_i\| > u_n\}}}$$
with
$$\hat{P}_{n,b}(A_{y,t}) = \frac{\sum_{i=2}^{n} \mathbb{1}_{\{\|\mathbf{X}_i\| > u_n\}} \mathbb{1}_{\{\frac{\|\mathbf{X}_i\|}{\|\mathbf{X}_{i-1}\|} > y, \varphi(\mathbf{X}_i) \le t\}} \left(\frac{\|\mathbf{X}_{-1}\|}{\|\mathbf{X}_0\|}\right)^{\alpha}}{\sum_{i=2}^{n} \mathbb{1}_{\{\|\mathbf{X}_i\| > u_n\}}}$$

Variance comparison

Let y be large. For an extreme value of $\|\mathbf{X}_i\|$ it is rare that $\|\mathbf{X}_{i+1}\| > y\|\mathbf{X}_{i}\|$ and more likely that $\|\mathbf{X}_{i}\| > y\|\mathbf{X}_{i-1}\|$, which heuristically suggests a smaller variance of latter estimator for higher values of y.

Let $(\mathbf{X}_t)_{t \in \mathbb{Z}}$ be a stationary multivariate regularly varying time series. Under

$$\sqrt{nv_n} \begin{pmatrix} \left(\hat{P}_{n,f}(A_{y,t}) - P\left(\frac{\|\mathbf{X}_1\|}{\|\mathbf{X}_0\|} > y, \varphi(\mathbf{X}_1) \le t \ \Big| \ \|\mathbf{X}_0\| > u_n \right) \end{pmatrix}_{y \ge y_0, t \in [0,2\pi]} \\ \left(\hat{P}_{n,b}(A_{\tilde{y},t}) - E\left(\left(\frac{\|\mathbf{X}_{-1}\|}{\|\mathbf{X}_0\|} \right)^{\alpha} \mathbb{1}_{\{ \frac{\|\mathbf{X}_0\|}{\|\mathbf{X}_{-1}\|} > \tilde{y}, \varphi(\mathbf{X}_0) \le t\}} \ \Big| \ \|\mathbf{X}_0\| > u_n \right) \right)_{\tilde{y} \ge \tilde{y}_0, t \in [0,2\pi]} \end{pmatrix}$$

with $v_n = P(||\mathbf{X}_0|| > u_n)$ converges weakly in ℓ^{∞} to a centered Gaussian process.

Variance comparison

Let y be large. For an extreme value of $\|\mathbf{X}_i\|$ it is rare that $\|\mathbf{X}_{i+1}\| > y\|\mathbf{X}_i\|$ and more likely that $\|\mathbf{X}_i\| > y\|\mathbf{X}_{i-1}\|$, which heuristically suggests a smaller variance of latter estimator for higher values of y.

Theorem

Let $(\mathbf{X}_t)_{t \in \mathbb{Z}}$ be a stationary multivariate regularly varying time series. Under suitable conditions (including β -mixing, continuity of P^{Θ_1} , assumptions about duration and moments of extremal clusters), for $y_0 \ge 0$, $\tilde{y}_0 > 0$, the process

$$\sqrt{nv_n} \begin{pmatrix} \left(\hat{P}_{n,f}(A_{y,t}) - P\left(\frac{\|\mathbf{X}_1\|}{\|\mathbf{X}_0\|} > y, \varphi(\mathbf{X}_1) \le t \mid \|\mathbf{X}_0\| > u_n\right) \right)_{y \ge y_0, t \in [0, 2\pi]} \\ \left(\hat{P}_{n,b}(A_{\tilde{y},t}) - E\left(\left(\frac{\|\mathbf{X}_{-1}\|}{\|\mathbf{X}_0\|}\right)^{\alpha} \mathbb{1}_{\{\frac{\|\mathbf{X}_0\|}{\|\mathbf{X}_{-1}\|} > \tilde{y}, \varphi(\mathbf{X}_0) \le t\}} \mid \|\mathbf{X}_0\| > u_n\right) \right)_{\tilde{y} \ge \tilde{y}_0, t \in [0, 2\pi]} \end{pmatrix}$$

with $v_n = P(||\mathbf{X}_0|| > u_n)$ converges weakly in ℓ^{∞} to a centered Gaussian process.

Generalized tail array sums

For the theory: Observe $(\boldsymbol{X}_0,\ldots,\boldsymbol{X}_{n+1})$ and write estimators as

$$\hat{P}_{n,f}(A_{y,t}) = \frac{\sum_{i=1}^{n} \Phi_{y,t}(\mathbf{X}_{n,i})}{\sum_{i=1}^{n} \chi(\mathbf{X}_{n,i})} \quad \text{and} \quad \hat{P}_{n,b}(A_{y,t}) = \frac{\sum_{i=1}^{n} \Psi_{y,t}(\mathbf{X}_{n,i})}{\sum_{i=1}^{n} \chi(\mathbf{X}_{n,i})}$$

for functions

$$\chi(\mathbf{X}_{n,i}) = \mathbb{1}_{\{\|\mathbf{X}_{i}\| > 1\}}, \Phi_{y,t}(\mathbf{X}_{n,i}) = \mathbb{1}_{\{\|\mathbf{X}_{i}\| > 1, \frac{\|\mathbf{X}_{i+1}\|}{\|\mathbf{X}_{i}\|} > y, \varphi(\mathbf{X}_{i+1}) \le t\}},$$
$$\Psi_{y,t}(\mathbf{X}_{n,i}) = \mathbb{1}_{\{\|\mathbf{X}_{i}\| > 1, \frac{\|\mathbf{X}_{i}\|}{\|\mathbf{X}_{i-1}\|} > y, \varphi(\mathbf{X}_{i}) \le t\}} \left(\frac{\|\mathbf{X}_{i-1}\|}{\|\mathbf{X}_{i}\|}\right)^{\alpha}$$

of

$$\mathbf{X}_{n,i} := (\mathbf{X}_{i-1}, \mathbf{X}_i, \mathbf{X}_{i+1})/u_n \cdot \mathbb{1}_{\{\|\mathbf{X}_i\| > u_n\}} \in \mathbb{R}^6.$$

 \Rightarrow Use theory of Drees and Rootzén (2010) (cf. also Drees and Rootzén (2016)) to show convergence of empirical processes.

Simulations Summary / Outlook

Simulations

- The variance of the limiting expressions are in general quite complicated which makes comparisons between the two estimators difficult.
- In dimension d = 1 it possible to show that the backward estimator has lower variance if y > 1 (cf. Drees, Segers & Warchoł (2015))

Example: The following simulations where done to estimate

 $P(\|\mathbf{\Theta}_1\| > y, \varphi(\mathbf{\Theta}_1) \le 1.5\pi)$

for a random difference equation of the form

$$\mathbf{X}_t = \mathbf{A}_t \mathbf{X}_{t-1} + \mathbf{B}_t, \quad t \in \mathbb{Z},$$

where the distribution of $\varphi(\Theta_1)$ is uniform on $[0, 2\pi]$, $||\Theta_1||$ ist distributed like the absolute value of a standard normal r.v. and both are independent (cf. Buraczewski et al. (2009)). The value α is equal to 2.

Simulations Summary / Outlook

Simulations

- The variance of the limiting expressions are in general quite complicated which makes comparisons between the two estimators difficult.
- In dimension d = 1 it possible to show that the backward estimator has lower variance if y > 1 (cf. Drees, Segers & Warchoł (2015))

Example: The following simulations where done to estimate

$$P(\|\mathbf{\Theta}_1\| > y, \varphi(\mathbf{\Theta}_1) \le 1.5\pi)$$

for a random difference equation of the form

$$\mathbf{X}_t = \mathbf{A}_t \mathbf{X}_{t-1} + \mathbf{B}_t, \quad t \in \mathbb{Z},$$

where the distribution of $\varphi(\Theta_1)$ is uniform on $[0, 2\pi]$, $||\Theta_1||$ ist distributed like the absolute value of a standard normal r.v. and both are independent (cf. Buraczewski et al. (2009)). The value of α is equal to 2.

Simulations Summary / Outlook

Simulations

Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of $P(||\Theta_1|| > y, \varphi(\Theta_1) \le 1.5\pi)$ for different values of y. Based on 5.000 simulations of observations of length n = 1.000, setting u_n as the 95%-quantile of the observations of $||\mathbf{X}_t||$. Right: Ratio of RMSEs of forward and backward estimator.

Simulations Summary / Outlook

Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of $P(||\Theta_1|| > y, \varphi(\Theta_1) \le 1.5\pi)$ for different values of y. Based on 5.000 simulations of observations of length n = 1.000, setting u_n as the 99%-quantile of the observations of $||\mathbf{X}_t||$. Right: Ratio of RMSEs of forward and backward estimator.

Simulations Summary / Outlook

- That the backward estimator needs knowledge of α is of course a drawback in applications.
- Solution: Plug-in an estimator for α, e.g. Hill-estimator. Under slightly stronger assumptions we can show that asymptotic normality of the estimator still holds.
- The next slide shows the estimators for the same model as before, but α is now estimated by the Hill-estimator based on the exceedances of ||**X**|| over u_n.

- That the backward estimator needs knowledge of α is of course a drawback in applications.
- Solution: Plug-in an estimator for α, e.g. Hill-estimator. Under slightly stronger assumptions we can show that asymptotic normality of the estimator still holds.
- The next slide shows the estimators for the same model as before, but α is now estimated by the Hill-estimator based on the exceedances of ||**X**|| over u_n.

- That the backward estimator needs knowledge of α is of course a drawback in applications.
- Solution: Plug-in an estimator for α, e.g. Hill-estimator. Under slightly stronger assumptions we can show that asymptotic normality of the estimator still holds.
- The next slide shows the estimators for the same model as before, but α is now estimated by the Hill-estimator based on the exceedances of ||**X**|| over u_n.

Simulations Summary / Outlook

Simulations with estimated α

Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of $P(||\Theta_1|| > y, \varphi(\Theta_1) \le 1.5\pi)$ for different values of y. Based on 5.000 simulations of observations of length n = 1.000, setting u_n as the 95%-quantile of the observations of $||\mathbf{X}_t||$. Right: Ratio of RMSEs of forward and backward estimator.

Simulations Summary / Outlook

Simulations with estimated α

Left: RMSEs for forward (blue,solid) and backward (red, dashed) estimator of $P(||\Theta_1|| > y, \varphi(\Theta_1) \le 1.5\pi)$ for different values of y. Based on 5.000 simulations of observations of length n = 1.000, setting u_n as the 99%-quantile of the observations of $||\mathbf{X}_t||$. Right: Ratio of RMSEs of forward and backward estimator.

Simulations Summary / Outlook

Summary / Outlook

- The "time change formula" can also in the multivariate setting be useful to improve estimation.
- However, expressions of estimator variances become much more tedious and more specific assumptions are needed to allow for comparisions
- \Rightarrow Look at special models like RDEs for concrete statements.
- \Rightarrow Look at behavior at other lags than t = 1 and estimation of joint distributions in order to reflect dynamics of the spectral tail process.

Simulations Summary / Outlook

Summary / Outlook

- The "time change formula" can also in the multivariate setting be useful to improve estimation.
- However, expressions of estimator variances become much more tedious and more specific assumptions are needed to allow for comparisions
- \Rightarrow Look at special models like RDEs for concrete statements.
- ⇒ Look at behavior at other lags than t = 1 and estimation of joint distributions in order to reflect dynamics of the spectral tail process.

Summary / Outlook

- The "time change formula" can also in the multivariate setting be useful to improve estimation.
- However, expressions of estimator variances become much more tedious and more specific assumptions are needed to allow for comparisions
- \Rightarrow Look at special models like RDEs for concrete statements.
- \Rightarrow Look at behavior at other lags than t = 1 and estimation of joint distributions in order to reflect dynamics of the spectral tail process.

Simulations Summary / Outlook

Thank you for your attention!

Some references

Basrak, B. and Segers, J.:

Regularly varying multivariate time series

Stoch. Proc. Appl. **119**, 1055–1080 (2009)

Buraczewski, D., Damek, E., Guivarc'h, Y., Hulanicki, A. and Urban, R.

Tail-homogeneity of stationary measures for some multidimensional stochastic recursions

Probab. Theory Relat. Fields **145**, 385–420 (2009)

Drees, H. and Rootzén, H.: Limit theorems for empirical processes of cluster functionals Ann. Stat. **38**, 2145–2186 (2010)

Drees, H. and Rootzén, H.: Correction note to "Limit Theorems for Empirical Processes of Cluster Functionals" Ann. Stat. (2016) (forthcoming) Drees, H., Segers, J. and Warchoł., M.: Statistics for tail processes of Markov chains Extremes 18, 369-402 (2015) Janßen, A. and Segers, J.: Markov tail chains JAP 51, 1133-1153 (2014) Kesten, H.: Random difference equations and renewal theory for products of random matrices Acta Math. 131, 207-248 (1973)

Conditions to ensure asymptotic normality I

•
$$P(\Theta_1 \in \partial \{\mathbf{x} \in \mathbb{R}^2 \mid ||\mathbf{x}|| > y, \varphi(\mathbf{x}) \le t\}) = 0,$$

 $\forall y \ge \min(y_0, \tilde{y}_0), t \in [0, 2\pi]$

② The exist sequences $I_n \to \infty$, $r_n = o((nv_n)^{1/2})$ such that $I_n = o(r_n), r_nv_n \to 0$ and the mixing coefficients

$$\beta_{n,k} := \sup_{1 \le l \le n-k-1} E\left(\sup_{B \in \mathcal{B}_{n,l+k+1}^n} |P(B \mid \mathcal{B}_{n,1}^l) - P(B)|\right)$$

with

$$\mathcal{B}_{n,i}^j := \sigma((\mathbf{X}_{n,l})_{i \leq l \leq j})$$

satisfy $\beta_{n,l_n} \frac{n}{r_n} \to 0$.

Conditions to ensure asymptotic normality II

3 For all
$$k \in \{0, \ldots, r_n\}$$
 there exists
$$s_n(k) \ge P(\|\mathbf{X}_k\| > u_n \ | \ \|\mathbf{X}_0\| > u_n)$$
such that $\lim_{n \to \infty} s_n(k) = s(k) \in \mathbb{R}$ exists and
$$\lim_{n \to \infty} \sum_{k=1}^{r_n} s_n(k) = \sum_{k=1}^{\infty} s(k) < \infty.$$
3

$$\left(\left(\left(r_n \right) \right)^{2+\delta} \right)$$

$$E\left(\left(\sum_{i=1}^{r_n}\mathbb{1}_{\{\|\mathbf{X}_i\|>u_n\}}\right)^{2+\delta}\right)=O(r_nv_n)$$

for some $\delta > 0$.