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Introduction

Z ∈DA(Fréchet):

lim
t→∞

P(Z > tx)

P(Z > t)
= x−1/γ

γ̂ > 1: dangerous zone of infinite mean models

−→ these results are unrealistic and useless

Solution:
•W = Z a with aγ < 1: Cai et al. (2015):

E
[

W
∣∣∣Y > UY

(
1
p

)]

−→ power-transformation sometimes does not make sense or is difficult to interpret
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Introduction

Solution:

• X := log(Z ): X ∈DA(Gumbel)

On the basis of a random sample {(Z1,Y1), . . . ,(Zn,Yn)}

θp = E
[

X
∣∣∣Y > UY

(
1
p

)]

−→ MES used to measure systemic risk of a financial institution

the logarithm is a natural transformation in many practical contexts
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Motivation 1: Tsunami data

Two variables appear upper-tail dependent: the maximum water height and
earthquake’s magnitude
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The magnitude of an earthquake is determined from the logarithm of the
amplitude of waves recorded by seismographs
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Motivation 2: Operational risk losses

Heavy-tailedness of the loss distribution and even infinite mean model

Consequences:
• Results are unthinkable (an infinite mean loss is not possible)
• Results are useless for practitioners in terms of regulatory capital
calculation

This infinite mean finding typically appears when the data are contaminated
by a few extremely high losses (such as Madoff’s Ponzi scheme in 2008)

not outliers but real losses !

⇒ log-transformation of the data to avoid the zone of an infinite mean model
Cirillo and Taleb (2016); Chavez-Demoulin et al. (2015)

It is basically meant to thin the tail, allowing more reliable extreme value
analytics
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Estimator

(Z ,Y ) vector with continuous marginal df FZ and FY

Interpretation of the MES: expected loss on the equity return of one financial
institution given the occurrence of an extreme loss in the system
−→ simultaneous high values of Z and Y
−→ assumption imposed on the right upper-tail dependence of (Z ,Y )

Rt (x ,y) := t P
(

1−FZ (Z )≤ x
t
,1−FY (Y )≤ y

t

)
t→∞−→ R(x ,y)

any continuous increasing transformation on Y will not change the MES

Tail dependence structure of (Z ,Y ) = Tail dependence structure of (X ,Y )
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Second order condition

Second Order Condition (SOC). There exist β > 0 and τ < 0 such that, as
t → ∞

sup
0<x≤∞, 1

2≤y≤2

|Rt (x ,y)−R(x ,y)|
xβ∧1

= O(tτ)

Theorem 1. Assume Z ∈DA(Fréchet). Under the (SOC), we have

θp

UX ( 1
p )

p→0−→ 1
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First idea: wrong idea

ÛX

(
1
p

)
= Xn−k1,n + γ̂(k1) log

k1

np

γ̂(k1) =
1
k1

k1

∑
i=1

(Xn−i+1,n−Xn−k1,n)

Rate of convergence

• ÛX

(
1
p

)
to UX

(
1
p

)
:
√

k1

log k1
np

• in Theorem 1: log 1
p

√
k1

log k1
np

(
ÛX

(
1
p

)
−θp

)
does not converge to a Normal distribution
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Decomposition of the MES

Let s 1
p

(x) := 1
p

(
1−FX

(
xUX

(
1
p

)))
θp = E

[
X
∣∣∣Y > UY

(
1
p

)]
= UX

(
1
p

)∫
∞

0
R 1

p
(s 1

p
(x),1)dx

= UX

(
1
p

)
+ UX

(
1
p

)∫ an

0

[
R 1

p
(s 1

p
(x),1)−1

]
dx

− UX

(
1
p

)∫ 1

an

[
1−R 1

p
(s 1

p
(x),1)

]
dx + UX

(
1
p

)∫
∞

1
R 1

p
(s 1

p
(x),1)dx

where an is a sequence such that an ∈ (0,1) and an→ 1 as n→ ∞
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Decomposition of the MES

Let s 1
p

(x) := 1
p

(
1−FX

(
xUX

(
1
p

)))
θp = E

[
X
∣∣∣Y > UY

(
1
p

)]
= UX

(
1
p

)∫
∞

0
R 1

p
(s 1

p
(x),1)dx

= UX

(
1
p

)
+ UX

(
1
p

)∫ an

0

[
R 1

p
(s 1

p
(x),1)−1

]
dx

−UX

(
1
p

)∫ 1

an

[
1−R 1

p
(s 1

p
(x),1)

]
dx + UX

(
1
p

)∫
∞

1
R 1

p
(s 1

p
(x),1)dx

where an is a sequence such that an ∈ (0,1) and an→ 1 as n→ ∞
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Decomposition of the MES

Let s 1
p

(x) := 1
p

(
1−FX

(
xUX

(
1
p

)))
θp = E

[
X
∣∣∣Y > UY

(
1
p

)]
= UX

(
1
p

)∫
∞

0
R 1

p
(s 1

p
(x),1)dx

= UX

(
1
p

)
+UX

(
1
p

)∫ an

0

[
R 1

p
(s 1

p
(x),1)−1

]
dx

−UX

(
1
p

)∫ 1

an

[
1−R 1

p
(s 1

p
(x),1)

]
dx + UX

(
1
p
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∞

1
R 1

p
(s 1

p
(x),1)dx

where an is a sequence such that an ∈ (0,1) and an→ 1 as n→ ∞
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Decomposition of the MES

Let s 1
p

(x) := 1
p

(
1−FX

(
xUX

(
1
p

)))
θp = E

[
X
∣∣∣Y > UY

(
1
p

)]
= UX

(
1
p

)∫
∞

0
R 1

p
(s 1

p
(x),1)dx

= UX

(
1
p

)
+ UX

(
1
p

)∫ an

0

[
R 1

p
(s 1

p
(x),1)−1

]
dx

−UX

(
1
p

)∫ 1

an

[
1−R 1

p
(s 1

p
(x),1)

]
dx︸ ︷︷ ︸

Θ1

+UX

(
1
p

)∫
∞

1
R 1

p
(s 1

p
(x),1)dx︸ ︷︷ ︸

Θ2

where an is a sequence such that an ∈ (0,1) and an→ 1 as n→ ∞
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Decomposition of the MES

Using a non-parametric estimator of R(x ,1)

Θ1 ≈ − 1
k2

n

∑
i=1

1l{RX
i <n−k2+1,RY

i ≥n−k2+1}

{[
(1−an)UX

(
1
p

)]
∧
[

γ log
n−RX

i

k2

]}

Θ2 ≈ γ

k1

n

∑
i=1

1l{RX
i >n−k1+1,RY

i >n−k1+1} log
k1

n−RX
i + 1

UX

(
1
p

)
−→ ÛX

(
1
p

)
γ −→ γ̂(k1)
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Final estimator

θ̂p = ÛX

(
1
p

)

− 1
k2

n

∑
i=1

1l{RX
i <n−k2+1,RY

i ≥n−k2+1}

{[
(1−an)ÛX

(
1
p

)]
∧
[

γ̂(k1) log
n−RX

i

k2

]}

+
γ̂(k1)

k1

n

∑
i=1

1l{RX
i >n−k1+1,RY

i >n−k1+1} log
k1

n−RX
i + 1

Assumption: Hall-type model

1−FZ (t) = Ct−
1
γ

(
1 + D t

ρ

γ (1 + o(1))
)
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Asymptotic result

• (SOC) + Hall model

• Rt (x ,y)
t→∞−→ R(x ,y)

• r1(x ,y) = ∂

∂x R(x ,y) and r2(x ,y) = ∂

∂y R(x ,y) continuous

• k1 = na and k2 = nb for positive a and b:

a ∈
(

0,min
(
−2τ

1−2τ
, −2ρ1

1−2ρ1
b,−2τ(1−b),2b−1

))
np = o(k1) and log(np) = o(

√
k1)

an→ 1 and
√

k1(1−an)→ ∞

pan−1 = O
(
n1−b

)
and n

a
2 pτ(an−1) = o(1)

Then √
k1

log k1
np

(
θ̂p−θp

)
d−→N (0,γ2)
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Simulation study

• B = 1000 samples from a bivariate standard Cauchy distribution on R2 with
density (1/2π)(1 + x2 + y2)−3/2

• first component transformed with the logarithm

• k2 has less impact than k1 −→ b = 0.75, a = 0.2 or 0.3

(n,p) = (50,0.05); (50,0.01); (50,0.001)

(200,0.01); (200,0.001)

(1000,0.001); (1000,0.0005)
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Simulation study: n = 50,p = 0.05
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Figure 1: Boxplots of θ̂p
θp
. Left: a = 0.2; Right: a = 0.3
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Simulation study: n = 50,p = 0.01
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Figure 2: Boxplots of θ̂p
θp
. Left: a = 0.2; Right: a = 0.3
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Simulation study: n = 50,p = 0.001
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Figure 3: Boxplots of θ̂p
θp
. Left: a = 0.2; Right: a = 0.3
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Simulation study: n = 50,p = 0.05

np = 2.5−→ Empirical estimator θ̂emp = 1
bnpc ∑

n
1 log(Zi )1l{Yi>Yn−bnpc,n}
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Simulation study: n = 200,a = 0.2
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Figure 5: Boxplots of θ̂p
θp
. Left: p = 0.01; Right: p = 0.001
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Simulation study: n = 1000,a = 0.2

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

an

θ̂
θ

0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●
●

●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

an

θ̂
θ

0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95

Figure 6: Boxplots of θ̂p
θp
. Left: p = 0.001; Right: p = 0.0005
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Applications

Application to two different contexts, the features of which are infinite mean
models

The utility of the methodology:

• comparing estimates θ̂p in time (environmental ex.)

• comparing estimates θ̂p between components (financial ex.)
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Application: Tsunami data

US National Oceanic and Atmospheric Administration
on Japanese tsunamis from 1400 to 2011: 188 time points values

● ● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ● ● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●●

●

●

●

●
●

●

●

●

●●●
●●

●

●

●●●●
●●●

●
●●
●●
●
●●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●
●●
●●●●●●●●

●
●●●

●

●

●

●

●●
●

●

●●●●

●

●
●●●●●

●
●●

●

●
●
●●● ●●●●

●
●●●●

●

●●
●●

●

●

●●●●● ●●●●

●

●●
●
●●●●●●●

●
●●
●

●

●●

1400 1500 1600 1700 1800 1900 2000

0
20

40
60

80

Year

M
ax

 w
at

er
 h

ei
gh

t (
in

 m
)

Figure 7: Maximum water height in meters over year (1400 to 2011)
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Application: Tsunami data

• Maximum water height of 85.4m appeared in 1771, due to a earthquake of
magnitude 7.4 in Ryukyu Islands −→ 13,500 deaths

• In 1993 the 54m water height in Sea of Japan which succeeded an
earthquake of magnitude 7.7 −→ 208 deaths

• The 2011 event in Honshu preceding earthquake of magnitude 9 −→
15,550 deaths

the two variables show an upper-tail dependence structure
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Application: Tsunami data

Two sub-datasets each of size 50:

• the most recent 50 observations: 1982 to 2011 −→ data2011

• 50 observations from 1769 to 1936 −→ data1936

−→ the two datasets have no common observations

−→ the number of years included in each dataset is not the same, but we
use the same size n = 50 to obtain for each estimation the same amount of
information
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Application: Tsunami data

Considering a threshold of 0.02 which is the minimum observed values of
water height and justified by the fact that any earthquake is an extreme event,
we fit a generalized Pareto distribution (GPD) model on the maximum water
height on the two datasets

Time data1936 data2011
γ̂(se) 1.12(0.30) 1.08(0.26)

Entire dataset (with 188 values): 1.06 (0.15)

These unrealistic situations of infinite mean models (although with confidence
intervals containing values below 1) typically arise when some values of the
dataset are extremely large, contaminating the distribution
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Application: Tsunami data, left p = 0.05, right p = 0.01
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Earthquakes of very large magnitude (above the 95%-quantile) may have
had a less important impact on maximum wave height during more recent
earthquakes compared to their impact during the 1930 whereas extremely
large magnitudes (above the 99%-quantile) have slightly larger impact than
observed previously on the wave heights
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Application: Tsunami data

This is possibly due to the fact that globally the wave height has a decreasing
trend whereas the level of earthquake magnitude changes less
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Figure 8: Rolling median over the wave height (dashed line) and over the earthquake
magnitude (straight line) using a window size of 19 time points
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Application: Operational risk data

OpRisk data collected from public media by Willis Professional Risks

The data correspond to the net loss amount in GBP classified in 10 business
lines dictated by the Basel Committee:

• Agency Services (AS)
• Asset Management (AM)
• Commercial Banking (CB)
• Corporate Finance (CF)
• Insurance (I)
• Payment and Settlement (PS)
• Retail Banking (RBa)
• Retail Brokerage (RBr)
• Trading and Sales (TS)
• unallocated business line (UBL)
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Application: Operational risk data

•We aggregate yearly losses for each business line so that we get pairs of
losses which arrival times coincide

Based on the n = 34 yearly losses, we fit a GPD model for each business line
and get estimate γ̂ above 1 apart for the business lines AS, CF and TS, but
the high uncertainty due to small data size leads to high standard errors
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Application: Operational risk data, p = 0.001

Z corresponds to the first business line of the pair and Y to the second
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Application: Operational risk data, p = 0.001

Interpretation:

• the risk measure provide the information that the business line PS would be
more greatly affected than the business line UBL if the business line CB
experienced severe losses

• the pairs (AM, UBL) and (PS, CB) not surprinsingly get a high value of
θ̂0.001 with large confidence interval

- AM contains the largest loss: 40 819 M GBP due to Madoff’s Ponsi scheme
in 2008

- PS contains the second largest loss: corresponding to Parmalat (related to
dubious transactions with funds on Cayman Islands)
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