Orthonormal polynomial expansions and lognormal sum densities

Pierre-Olivier Goffard

Université Libre de Bruxelles pierre-olivier.goffard@ulb.ac.be

February 22, 2016

(日) (日) (日) (日) (日) (日)

Introduction Polynomial Approximation Conclusion Definition

Goal: Recover the PDF of the sum of *n* lognormally distributed random variables.

Dependence

The lognormals in the sum may be correlated.

Extreme Value

The lognormal distribution is heavy tailed.

Actuarial Science

Modelization of the total claim amounts of non life insurance portfolios.

Motivations Definition

Further aplications...

Finance

Black & Scholes model \Rightarrow security prices are lognormally distributed,

- The value of the portfolio is distributed as a sum of lognormally distributed random variable,
- Pricing of Asian option.
 - $\hookrightarrow\,$ The pay off is determined by the average of the underlying price.

Telecommunication

The inverse of the signal to noise ratio can be modeled as a sum of **i.i.d.** lognormals.

Motivations Definition

Definition

The random variable defined as

$$S = e^{X_1} + \ldots + e^{X_n}$$

where $(X_1, \ldots, X_n) \sim \mathcal{MN}(\mu, \Sigma)$ admits a sum of lognormals distribution $\mathcal{SLN}(\mu, \Sigma)$.

► The PDF is given by

Motivations Definition

Definition

The random variable defined as

$$S = e^{X_1} + \ldots + e^{X_n}$$

where $(X_1, \ldots, X_n) \sim \mathcal{MN}(\mu, \Sigma)$ admits a sum of lognormals distribution $\mathcal{SLN}(\mu, \Sigma)$.

► The PDF is given by

 $f_{S}(x) = ???$

Motivations Definition

Definition

The random variable defined as

$$S = e^{X_1} + \ldots + e^{X_n}$$

where $(X_1, \ldots, X_n) \sim \mathcal{MN}(\mu, \Sigma)$ admits a sum of lognormals distribution $\mathcal{SLN}(\mu, \Sigma)$.

$$f_{S}(x) = ???$$

The PDF is unknown even in the case of the sum of two **i.i.d.** lognormals.

Let X be a random variable governed by \mathbb{P}_X , with unknown PDF f_X .

- I. Pick a reference probability measure $\boldsymbol{\nu}$
 - \mathbb{P}_X absolutely continuous **w.r.t.** ν .
 - f_{ν} as first approximation of f_X .

II. $\{Q_k\}_{k\in\mathbb{N}}$ sequence of orthonormal polynomials w.r.t. ν

- Gram-Schmidt orthogonalization procedure.
- III. Orthogonal projection of f_X/f_ν onto $\{Q_k\}$
 - Adjustment of the first approximation.

 $\{Q_k\}_{k\in\mathbb{N}}$ must be complete in a set of functions in which f_X/f_ν belongs.

The $\mathcal{L}^2(\nu)$ space

- The set of square integrable functions with respect to ν .
- Inner product,

$$\langle f,g \rangle = \int f(x)g(x)d\nu(x), \text{ where } f,g \in \mathcal{L}^2(\nu).$$

{Q_k}_{k∈ℕ} is a sequence of orthogonal polynomials w.r.t. ν in the sense that

$$\langle Q_k, Q_l \rangle = \int Q_k(x) Q_l(x) \mathrm{d}\nu(x) = \delta_{kl}.$$

Introduction Idea of the method Polynomial Approximation Conclusion

Application to the problem Numerical Illustrations

Sufficient Condition lf

$$\int e^{\alpha|x|} \mathsf{d}\nu(x) < +\infty,$$

then $\{Q_k\}_{k\in\mathbb{N}}$ is complete in $\mathcal{L}^2(\nu)$.

Orthonormal Polynomial Expansion If $f_X/f_\nu \in \mathcal{L}^2(\nu)$ then

$$f_X(x) = \sum_{k=0}^{+\infty} a_k Q_k(x) f_\nu(x),$$

where

$$\mathsf{a}_{k} = \left\langle Q_{k}, \frac{f_{X}}{f_{\nu}} \right\rangle = \int Q_{k}(x) \frac{f_{X}(x)}{f_{\nu}(x)} \mathsf{d}\nu(x) = \mathbb{E}\left[Q_{k}(X)\right].$$

Orthonormal polynomial approximation

The approximation follows from simple truncation

$$f_X^K(x) = \sum_{k=0}^K a_k Q_k(x) f_\nu(x).$$

The accuracy relies on the decay of the a_k 's.

Lognormal distribution as reference

$$f_{
u}(x)=rac{1}{x\sigma\sqrt{2\pi}}\mathrm{e}^{-\left(rac{\ln(x)-\mu}{\sigma\sqrt{2}}
ight)^2}, \qquad x>0.$$

Associated Orthogonal Polynomials

$$Q_{k}(x) = e^{-\frac{k^{2}\sigma^{2}}{2}} \sum_{i=0}^{k} \frac{(-1)^{k+i} e^{-i\mu - \frac{i^{2}\sigma^{2}}{2}}}{\sqrt{\left[e^{-\sigma^{2}}, e^{-\sigma^{2}}\right]_{k}}} e_{k-i}\left(1, \dots, e^{(k-1)\sigma^{2}}\right) x^{i},$$

for $k \in \mathbb{N}$ where $e_i(X_1, \ldots, X_k)$ are the elementary symmetric polynomials and $[x, q]_n = \prod_{i=0}^{n-1} (1 - xq^i)$ is the Q-Pochhammer symbol.

Let *S* be $SLN(\mu, \sigma)$ -distributed. Integrability Condition If

$$f_{\mathcal{S}}(x) = \mathcal{O}\left(\mathrm{e}^{-b\log^2 x}
ight) \quad ext{for } x o 0 ext{ and } \infty,$$

<ロ> <(四)> <(四)> <(三)> <(三)> <(三)> <(三)> <(三)> <(三)> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))> <((-))>

10/28

where $b > (4\sigma^2)^{-1}$, then $f_S/f_{\nu} \in \mathcal{L}^2(\nu)$

Let S be $SLN(\mu, \sigma)$ -distributed. Integrability Condition If

$$f_{\mathcal{S}}(x) = \mathcal{O}\left(\mathrm{e}^{-b\log^2 x}
ight) \quad ext{for } x o 0 ext{ and } \infty,$$

where $b > \left(4\sigma^2\right)^{-1}$, then $f_S/f_{\nu} \in \mathcal{L}^2(\nu)$

Asymptotics for f_S

$$f_S(x) = \mathcal{O}(\exp\{-c_1 \ln(x)^2\})$$
 as $x \to 0$,
where $c_1 = [2 \min_{\mathbf{w} \in \Delta} \mathbf{w}^T \mathbf{\Sigma}^{-1} \mathbf{w}]^{-1}$, see Tankov et al [GT15].

$$f_{\mathcal{S}}(x) = \mathcal{O}(\exp\{-c_2\ln(x)^2\})$$
 as $x o \infty$

where $c_2 = \left[2 \max_{i=1,...,n} \Sigma_{ii}\right]^{-1}$, see Asmussen et al. [ARN08]

The integrability condition is satisfied as long as

$$\sigma^2 > \frac{\max \Sigma_{ii}}{2}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

11/28

PB1 Is $\{Q_k\}_{k\in\mathbb{N}}$ complete in $\mathcal{L}^2(\nu)$?

The integrability condition is satisfied as long as

$$\sigma^2 > \frac{\max \Sigma_{ii}}{2}.$$

PB1 Is $\{Q_k\}_{k\in\mathbb{N}}$ complete in $\mathcal{L}^2(\nu)$? Proposition

 \Rightarrow No, it's not!

The integrability condition is satisfied as long as

$$\sigma^2 > \frac{\max \Sigma_{ii}}{2}.$$

PB1 Is $\{Q_k\}_{k \in \mathbb{N}}$ complete in $\mathcal{L}^2(\nu)$? Proposition \Rightarrow No, it's not!

PB2 The lognormal distribution is not characterized by its moments and neither is the sum of lognormals distribution.

12/28

Introduction Polynomial Approximation Conclusion Udea of the method Application to the problem Numerical Illustrations

Normal distribution $\mathcal{N}(\mu, \sigma)$ as reference

$$f_
u(x) = rac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-\left(rac{x-\mu}{\sigma\sqrt{2}}
ight)^2}, \qquad x \in \mathbb{R}.$$

Associated Orthonormal Polynomials

$$Q_k(x) = \frac{1}{k! 2^{k/2}} H_k\left(\frac{x-\mu}{\sigma\sqrt{2}}\right),$$

where $\{H_k\}_{k \in \mathbb{N}}$ are the Hermite polynomials, see Szego [Sze39].

Idea of the method Application to the problem Numerical Illustrations

•
$$f_S/f_\nu \notin \mathcal{L}^2(\nu)$$
.
 \hookrightarrow We consider a transformation of *S*

$$Z=\ln(S).$$

Integrability Condition

$$f_Z(x)=\mathcal{O}ig({
m e}^{-ax^2}ig)$$
 as $x o\pm\infty,$ where $a>(4\sigma^2)^{-1}.$ Asymptotics for f_Z

$$f_Z(z) = \mathcal{O}(\exp\{-c_1 z^2\})$$
 as $z o -\infty$

and

$$f_Z(z) = \mathcal{O}(\exp\{-c_2 z^2\})$$
 as $z o +\infty$

Extension of the work of Gao et al. [GXY09].

Introduction Idea of the method Polynomial Approximation Conclusion Numerical Illustrations

The integrability condition is satisfied as long as

$$\sigma^2 > \frac{\max \Sigma_{ii}}{2}.$$

• f_Z is approximated by

$$\widehat{f}_{Z}(z) = \sum_{k=0}^{K} a_k Q_k(z) f_{\nu}(z),$$

where the coefficient $a_k = \mathbb{E} \{Q_k[\ln(S)]\}$ are evaluated using Crude Monte Carlo for k = 1, ..., K.

► *f_S* is approximated by

$$\widehat{f}_{\mathcal{S},\mathcal{N}}(x) = rac{1}{x}\widehat{f}_{Z}(\ln(x)).$$

Gamma Distribution $\Gamma(m, r)$ As Reference

$$f_{\nu}(x) = rac{{
m e}^{-x/m}x^{r-1}}{\Gamma(r)m^r}, \ x > 0.$$

Associated Orthonormal Polynomials

$$Q_n(x) = (-1)^n \left[\frac{\Gamma(n+r)}{\Gamma(n+1)\Gamma(r)} \right]^{-1/2} L_n^{r-1}(x/m),$$

where the $\{L_n^{r-1}\}_{k\in\mathbb{N}}$ are the generalized Laguerre polynomials defined in Szego [Sze39].

Introduction Polynomial Approximation Conclusion Udea of the method Application to the problem Numerical Illustrations

•
$$f_S/f_\nu \notin \mathcal{L}^2(\nu)$$
.
 \hookrightarrow We consider the PDF of the exponentially tilted distribution of S
 $f_{\theta}(x) = \frac{e^{-\theta x} f_S(x)}{\mathcal{L}(\theta)},$
where $\mathcal{L}(\theta) = \mathbb{E}(e^{-\theta S}).$

Integrability Condition

 $f_{ heta}(x) = \mathcal{O}\left(\mathrm{e}^{-\delta x}
ight) \quad ext{for } x o +\infty,$

where $\delta > \frac{1}{2m}\text{, and}$

$$f_ heta(x) = \mathcal{O}\left(x^eta
ight) \quad ext{for } x o 0,$$

where $\beta > r/2 - 1$, then $f_{\theta}/f_{\nu} \in \mathcal{L}^2(\nu)$.

The integrability condition is satisfied as long as

$$m>rac{1}{2 heta}.$$

• f_{θ} is approximated by

$$\widehat{f}_{ heta}(x) = \sum_{k=0}^{K} a_k Q_k(x) f_{
u}(x),$$

where the coefficient $a_k = \mathbb{E}[Q_k(S_{\theta})]$ with $S_{\theta} \sim f_{\theta}$. f_S is approximated by

$$\widehat{f}_{\mathsf{S},\,\mathsf{\Gamma}}(x) = \mathcal{L}(\theta) \mathrm{e}^{\theta x} \widehat{f}_{\theta}(x) \,.$$

Regarding the evaluation of the a_k 's, we have

$$a_k = \mathbb{E}\left[Q_k(S_ heta)
ight] = q_{k0} + q_{k1}\mathbb{E}(S_ heta) + \ldots + q_{kk}\mathbb{E}(S_ heta^k)$$

where the q_{ki} 's are the coefficients of Q_k , and

$$\mathbb{E}(S^i_{ heta}) = rac{\mathbb{E}\left(S^i e^{- heta S}
ight)}{\mathcal{L}(heta)} = rac{\mathcal{L}_i(heta)}{\mathcal{L}(heta)}$$

where $\mathcal{L}_i(\theta)$ denotes the *i*th derivative of $\mathcal{L}(\theta)$.

 We adapt techniques developed in Asmussen et al. [AJRN14, LAJRN16] to access L_i(θ).

Introduction Idea of the method Polynomial Approximation Conclusion Numerical Illustrations

Polynomial Aproximation Settings

- Normal distribution as reference
 - $\mu = \mathbb{E}(Z)$ and $\sigma^2 = \mathbb{V}(Z)$
 - ▶ 10⁵ replications for the CMC procedure
- Gamma distribution as reference
 - $\blacktriangleright \ \theta = 1$
 - Moment matching of order 2 between f_{θ} and f_{ν} to get *m* and *r*.

Some Challengers

- The Fenton-Wilkinson approximation \hat{f}_{FW} , see [Fen60]
- The log skew normal approximation \hat{f}_{SK} , see [HB15]
- The conditionnal Monte Carlo approximation f_{Cond}, cf. Example 4.3 on p. 146 of [AG07].

A benchmark is obtained through numerical integration.

- ▶ $f_S(x)$ and $\hat{f}_S(x)$ together with $(\hat{f}_S(x) f_S(x))$ are plotted over $x \in [0, 2\mathbb{E}(S)]$,
- The \mathcal{L}^2 error are computed over $[0, \mathbb{E}(S)]$.

▲□▶ ▲圖▶ ★필▶ ★필▶ - 필]필 - 연

- The orthonormal polynomial approximation is an efficicient numerical method: Accurate and easy to code.
- None of the method tested here seem to universally superior to the other.
- Good behavior in presence of a non-Gaussian dependence structure: cf. test 3 with Clayton copula.
- ► For more details, the paper is available on ArXiv [AGL16].

- Søren Asmussen and Peter W Glynn, *Stochastic Simulation: Algorithms and Analysis*, Stochastic Modelling and Applied Probability series, vol. 57, Springer, 2007.
- S. Asmussen, P.-O. Goffard, and P. J. Laub, Orthonormal polynomial expansion and lognormal sum densities, arXiv preprint arXiv:1601.01763 (2016).
- S. Asmussen, J. L. Jensen, and L. Rojas-Nandapaya, *On the Laplace transform of the lognormal distribution*, Methodology and Computing in Applied Probability (2014), 1–18.
- Søren Asmussen and Leonardo Rojas-Nandayapa, *Asymptotics of sums of lognormal random variables with Gaussian copula*, Statistics & Probability Letters **78** (2008), no. 16, 2709–2714.

- Lawrence Fenton, The sum of log-normal probability distributions in scatter transmission systems, IRE Transactions on Communications Systems 8 (1960), no. 1, 57–67.
- Archil Gulisashvili and Peter Tankov, Tail behavior of sums and differences of log-normal random variables, Bernoulli (2015), To appear, accessed online on 26th August 2015 at http://www.e-publications.org/ims/submission/BEJ/ user/submissionFile/17119?confirm=ef609013.
- Xin Gao, Hong Xu, and Dong Ye, *Asymptotic behavior of tail density for sum of correlated lognormal variables*, International Journal of Mathematics and Mathematical Sciences (2009), Volume 2009, Article ID 630857, 28 pages.
 - Marwane Ben Hcine and Ridha Bouallegue, *Highly accurate* log skew normal approximation to the sum of correlated lognormals, In the Proc. of NeTCoM 2014 (2015).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

- Patrick J. Laub, Søren Asmussen, Jens L. Jensen, and Leonardo Rojas-Nandayapa, *Approximating the Laplace transform of the sum of dependent lognormals*, Volume 48A of Advances in Applied Probability. (2016), In Festschrift for Nick Bingham, C. M. Goldie and A. Mijatovic (Eds.), Probability, Analysis and Number Theory. To appear.
- G. Szegö, *Orthogonal polynomials*, vol. XXIII, American Mathematical Society Colloquium Publications, 1939.

The symmetric polynomials are defined as

$$e_i(X_1,\ldots,X_k) = \begin{cases} \sum_{1 \le j_1 < \ldots < j_i \le k} X_{j_1} \ldots X_{j_i}, & \text{for } i \le k, \\ 0, & \text{for } i > k, \end{cases}$$

and $[x, q]_n = \prod_{i=0}^{n-1} (1 - xq^i)$ is the Q-Pochhammer symbol.

Log Skew Normal Approximation

X is governed by a skew normal distribution $\mathcal{SN}(\lambda, \omega, \epsilon)$ if its PDF is given by

$$f_X(x) = \frac{2}{\omega} \phi\left(\frac{x-\epsilon}{\omega}\right) \Phi\left(\lambda \frac{x-\epsilon}{\omega}\right),$$

where ϕ and Φ are respectively the PDF and CDF of the standard normal distribution.

- $\Rightarrow Y = e^X \text{ is governed by a log skew normal distribution} \\ \mathcal{LSN}(\lambda, \omega, \epsilon)$
 - Central moment matching (the two first one) with the sum of lognormals distribution.
 - Left tail slope matching using the asymptotics derived in [GT15].

Conditional Monte Carlo Approximation

By definition, the conditional Monte Carlo is the Crude Monte Carlo estimator of the representation

$$f_S(x) = \mathbb{E} \left\{ \mathbb{P}(S \in dx | Y) \right\}$$

Recall that $S = e^{X_1} + \ldots + e^{X_n}$, and set $Y = e^{X_1}$, then the conditional Monte Carlo estimator is written as follows

$$\widehat{f}_{\mathsf{Cond}} = \mathbb{E}\left\{f_{\mathrm{e}^{X_1}}\left[x - (S - e^{X_1})\right] \middle| X_1\right\},\$$

where $f_{e^{X_1}}$ is the PDF of a lognormal distribution $\mathcal{LN}\left[\mathbb{E}(X_1), \mathbb{V}(X_1)\right]$

Approximation of $\mathcal{L}(\theta)$

Precisions regarding the evaluation of the a_k 's in the gamma case The Laplace transform of S is given by

$$\mathcal{L}(heta) = \mathbb{E}\left(\mathrm{e}^{- heta S}
ight) \propto \int \exp\left(-h_{ heta}(\mathbf{x})
ight) \mathrm{d}\mathbf{x}$$

where

$$h_{\theta}(\mathbf{x}) = \theta(\mathbf{e}^{\mu})^{T} \mathbf{e}^{\mathbf{x}} + \frac{1}{2} \mathbf{x}^{T} \mathbf{D} \mathbf{x},$$

where $\mathbf{D} = \mathbf{\Sigma}^{-1}$.

 Replace h_θ by its second order Taylor expansion arround its unique minimizer x*

$$-\left(1-\frac{1}{2}\mathbf{x}^*\right)^T \mathbf{D} x^* + \frac{1}{2}(\mathbf{x}-\mathbf{x}^*)^T (\mathbf{\Lambda}+\mathbf{D}) (\mathbf{x}-\mathbf{x}^*),$$

where $\mathbf{\Lambda} = heta ext{diag}\left(e^{\mu + \mathbf{x}^*}\right)$, to get the approximation $\mathcal{ ilde{L}}(heta)$.

The reinjection of the Taylor expansion in the initial Laplace transform expansion permits to get a correction term

$$\mathcal{L}(heta) = \tilde{\mathcal{L}}(heta) I(heta),$$

where

$$I(\theta) = \sqrt{\det(\mathbf{I} + \mathbf{\Sigma}\mathbf{\Lambda})}\mathbb{E}\left[v\left(\Sigma^{1/2}Z\right)
ight],$$

with $v(\mathbf{u}) = \exp\left\{ (\mathbf{x}^*)^T \mathbf{D} (e^{\mathbf{u}} - \mathbf{1} - \mathbf{u} \right\}$ and $Z \sim \mathcal{N}(0, 1)$.

More detail can be found in [LAJRN16]