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Introduction
Polynomial Approximation

Conclusion

Motivations
Definition

Goal: Recover the PDF of the sum of n lognormally distributed
random variables.

Dependence

The lognormals in the sum may be correlated.

Extreme Value
The lognormal distribution is heavy tailed.

Actuarial Science
Modelization of the total claim amounts of non life insurance
portfolios.
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Further aplications...

Finance
Black & Scholes model ⇒ security prices are lognormally
distributed,

I The value of the portfolio is distributed as a sum of
lognormally distributed random variable,

I Pricing of Asian option.

↪→ The pay off is determined by the average of the underlying
price.

Telecommunication
The inverse of the signal to noise ratio can be modeled as a sum of
i.i.d. lognormals.
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Definition
The random variable defined as

S = eX1 + . . .+ eXn

where (X1, . . . ,Xn) ∼MN (µ,Σ) admits a sum of lognormals
distribution SLN (µ,Σ).

I The PDF is given by

fS(x) = ???

The PDF is unknown even in the case of the sum of two i.i.d.
lognormals.
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Let X be a random variable governed by PX , with unknown PDF
fX .

I. Pick a reference probability measure ν

I PX absolutely continuous w.r.t. ν.

I fν as first approximation of fX .

II. {Qk}k∈N sequence of orthonormal polynomials w.r.t. ν

I Gram-Schmidt orthogonalization procedure.

III. Orthogonal projection of fX/fν onto {Qk}

I Adjustment of the first approximation.
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{Qk}k∈N must be complete in a set of functions in which fX/fν
belongs.

The L2(ν) space

I The set of square integrable functions with respect to ν.

I Inner product,

〈f , g〉 =

∫
f (x)g(x)dν(x), where f , g ∈ L2(ν).

I {Qk}k∈N is a sequence of orthogonal polynomials w.r.t. ν in
the sense that

〈Qk ,Ql〉 =

∫
Qk(x)Ql(x)dν(x) = δkl .
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Sufficient Condition
If ∫

eα|x |dν(x) < +∞,

then {Qk}k∈N is complete in L2(ν).

Orthonormal Polynomial Expansion

If fX/fν ∈ L2(ν) then

fX (x) =
+∞∑
k=0

akQk(x)fν(x),

where

ak =

〈
Qk ,

fX
fν

〉
=

∫
Qk(x)

fX (x)

fν(x)
dν(x) = E [Qk(X )] .
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Orthonormal polynomial approximation

The approximation follows from simple truncation

f KX (x) =
K∑

k=0

akQk(x)fν(x).

The accuracy relies on the decay of the ak ’s.
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Lognormal distribution as reference

fν(x) =
1

xσ
√

2π
e
−
(

ln(x)−µ
σ
√

2

)2

, x > 0.

Associated Orthogonal Polynomials

Qk(x) = e−
k2σ2

2

k∑
i=0

(−1)k+ie−iµ−
i2σ2

2√[
e−σ2 , e−σ2

]
k

ek−i

(
1, . . . , e(k−1)σ2

)
x i ,

for k ∈ N where ei (X1, . . . ,Xk) are the elementary symmetric
polynomials and [x , q]n =

∏n−1
i=0

(
1− xqi

)
is the Q-Pochhammer

symbol.
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Let S be SLN (µ,σ)-distributed.

Integrability Condition

If
fS(x) = O

(
e−b log2 x

)
for x → 0 and ∞,

where b >
(
4σ2
)−1

, then fS/fν ∈ L2(ν)

Asymptotics for fS

fS(x) = O(exp{−c1 ln(x)2}) as x → 0,

where c1 =
[
2 minw∈∆ wTΣ−1w

]−1
, see Tankov et al [GT15].

and
fS(x) = O(exp{−c2 ln(x)2}) as x →∞

where c2 =
[
2 maxi=1,...,n Σii

]−1
, see Asmussen et al. [ARN08]

10/28



Introduction
Polynomial Approximation

Conclusion

Idea of the method
Application to the problem
Numerical Illustrations

Let S be SLN (µ,σ)-distributed.

Integrability Condition

If
fS(x) = O

(
e−b log2 x

)
for x → 0 and ∞,

where b >
(
4σ2
)−1

, then fS/fν ∈ L2(ν)

Asymptotics for fS

fS(x) = O(exp{−c1 ln(x)2}) as x → 0,

where c1 =
[
2 minw∈∆ wTΣ−1w

]−1
, see Tankov et al [GT15].

and
fS(x) = O(exp{−c2 ln(x)2}) as x →∞

where c2 =
[
2 maxi=1,...,n Σii

]−1
, see Asmussen et al. [ARN08]

10/28



Introduction
Polynomial Approximation

Conclusion

Idea of the method
Application to the problem
Numerical Illustrations

The integrability condition is satisfied as long as

σ2 >
max Σii

2
.

PB1 Is {Qk}k∈N complete in L2(ν)?

Proposition

⇒ No, it’s not!

PB2 The lognormal distribution is not characterized by its
moments and neither is the sum of lognormals distribution.
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Fig. 1 orthogonal polynomial approximations of LN (0, 1.502) using a LN (0, 1.222) reference.
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Normal distribution N (µ, σ) as reference

fν(x) =
1

σ
√

2π
e
−
(

x−µ
σ
√

2

)2

, x ∈ R.

Associated Orthonormal Polynomials

Qk(x) =
1

k!2k/2
Hk

(
x − µ
σ
√

2

)
,

where {Hk}k∈N are the Hermite polynomials, see Szego [Sze39].
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I fS/fν /∈ L2(ν).
↪→ We consider a transformation of S

Z = ln(S).

Integrability Condition

fZ (x) = O
(
e−ax

2)
as x → ±∞,

where a >
(
4σ2
)−1

.

Asymptotics for fZ

fZ (z) = O(exp{−c1z
2}) as z → −∞

and
fZ (z) = O(exp{−c2z

2}) as z → +∞

Extension of the work of Gao et al. [GXY09].
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The integrability condition is satisfied as long as

σ2 >
max Σii

2
.

I fZ is approximated by

f̂Z (z) =
K∑

k=0

akQk(z)fν(z),

where the coefficient ak = E {Qk [ln(S)]} are evaluated using
Crude Monte Carlo for k = 1, . . . ,K .

I fS is approximated by

f̂S,N (x) =
1

x
f̂Z (ln(x)) .
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Gamma Distribution Γ(m, r) As Reference

fν(x) =
e−x/mx r−1

Γ(r)mr
, x > 0.

Associated Orthonormal Polynomials

Qn(x) = (−1)n
[

Γ(n + r)

Γ(n + 1)Γ(r)

]−1/2

Lr−1
n (x/m),

where the {Lr−1
n }k∈N are the generalized Laguerre polynomials

defined in Szego [Sze39].

16/28



Introduction
Polynomial Approximation

Conclusion

Idea of the method
Application to the problem
Numerical Illustrations

I fS/fν /∈ L2(ν).

↪→ We consider the PDF of the exponentially tilted distribution of
S

fθ(x) =
e−θx fS(x)

L(θ)
,

where L(θ) = E
(
e−θS

)
.

Integrability Condition

If
fθ(x) = O

(
e−δx

)
for x → +∞,

where δ > 1
2m , and

fθ(x) = O
(
xβ
)

for x → 0,

where β > r/2− 1, then fθ/fν ∈ L2(ν).
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The integrability condition is satisfied as long as

m >
1

2θ
.

I fθ is approximated by

f̂θ(x) =
K∑

k=0

akQk(x)fν(x),

where the coefficient ak = E [Qk(Sθ)] with Sθ ∼ fθ. fS is
approximated by

f̂S , Γ(x) = L(θ)eθx f̂θ (x) .
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Regarding the evaluation of the ak ’s, we have

ak = E [Qk(Sθ)] = qk0 + qk1E(Sθ) + . . .+ qkkE(Sk
θ )

where the qki ’s are the coefficients of Qk , and

E(S i
θ) =

E
(
S ie−θS

)
L(θ)

=
Li (θ)

L(θ)

where Li (θ) denotes the i th derivative of L(θ).

I We adapt techniques developed in Asmussen et al.
[AJRN14, LAJRN16] to access Li (θ).
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Polynomial Aproximation Settings

I Normal distribution as reference
I µ = E(Z ) and σ2 = V(Z )
I 105 replications for the CMC procedure

I Gamma distribution as reference
I θ = 1
I Moment matching of order 2 between fθ and fν to get m and r .
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Some Challengers

I The Fenton-Wilkinson approximation f̂FW , see [Fen60]

I The log skew normal approximation f̂SK , see [HB15]

I The conditionnal Monte Carlo approximation f̂Cond , cf.
Example 4.3 on p. 146 of [AG07].

A benchmark is obtained through numerical integration.

I fS(x) and f̂S(x) together with
(
f̂S(x)− fS(x)

)
are plotted

over x ∈ [0, 2E(S)],

I The L2 error are computed over [0,E(S)].
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1 2 3 4 5

0.05
0.10
0.15
0.20
0.25
0.30
0.35

1 2 3 4 5

-0.010

-0.005

0.005

0.010

fFW

fSk

fCond

fN

fΓ

f

f̂FW f̂Sk f̂Cond f̂N f̂ Γ

8.01×10−2 4.00×10−2 1.56×10−3 1.94×10−3 2.28×10−3

Test 1 mu = (0, 0), diag(Σ) = (0.5, 1), ρ = −0.2. Reference distributions used are N (0.88, 0.712) and
Gamma(2.43, 0.51) with K = 32.
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2 4 6 8 10 12

0.05

0.10

0.15

2 4 6 8 10 12

-0.003
-0.002
-0.001

0.001
0.002

fFW

fSk

fCond

fN

fΓ

f

f̂FW f̂Sk f̂Cond f̂N f̂ Γ

1.82×10−2 6.60×10−3 1.90×10−3 1.80×10−3 1.77×10−4

Test 2 n = 4, µi = 0, Σii = 1, ρ = 0.1. Reference distributions used are N (1.32, 0.742) and Gamma(3.37, 0.51)
with K = 32
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-0.001

0.001

fN

fΓ

f

Test 6 Sum of 3 LN (0, 1) r.v.s with CCl
10(·) copula (i.e., τ = 5

6
). Reference distributions used are N (1.46, 0.712)

and Gamma(8.78, 0.25) with K = 40. The L2 errors of f̂N and f̂ Γ are 2.45× 10−3 and 2.04× 10−3

respectively.
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I The orthonormal polynomial approximation is an efficicient
numerical method: Accurate and easy to code.

I None of the method tested here seem to universally superior
to the other.

I Good behavior in presence of a non-Gaussian dependence
structure: cf. test 3 with Clayton copula.

I For more details, the paper is available on ArXiv [AGL16].
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The symmetric polynomials are defined as

ei (X1, . . . ,Xk) =

{∑
1≤j1<...<ji≤k Xj1 . . .Xji , for i ≤ k ,

0, for i > k ,

and [x , q]n =
∏n−1

i=0

(
1− xqi

)
is the Q-Pochhammer symbol.
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Log Skew Normal Approximation

X is governed by a skew normal distribution SN (λ, ω, ε) if its PDF
is given by

fX (x) =
2

ω
φ

(
x − ε
ω

)
Φ

(
λ
x − ε
ω

)
,

where φ and Φ are respectively the PDF and CDF of the standard
normal distribution.

⇒ Y = eX is governed by a log skew normal distribution
LSN (λ, ω, ε)

I Central moment matching (the two first one) with the sum of
lognormals distribution.

I Left tail slope matching using the asymptotics derived in
[GT15].
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Conditional Monte Carlo Approximation

By definition, the conditional Monte Carlo is the Crude Monte
Carlo estimator of the representation

fS(x) = E {P(S ∈ dx |Y )}

Recall that S = eX1 + . . .+ eXn , and set Y = eX1 , then the
conditional Monte Carlo estimator is written as follows

f̂Cond = E
{
feX1

[
x − (S − eX1)

]∣∣∣X1

}
,

where feX1 is the PDF of a lognormal distribution
LN [E(X1),V(X1)]
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Approximation of L(θ)

Precisions regarding the evaluation of the ak ’s in the gamma case

The Laplace transform of S is given by

L(θ) = E
(
e−θS

)
∝
∫

exp (−hθ(x)) dx

where

hθ(x) = θ(eµ)T ex +
1

2
xTDx,

where D = Σ−1.
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I Replace hθ by its second order Taylor expansion arround its
unique minimizer x∗

−
(

1− 1

2
x∗
)T

Dx∗ +
1

2
(x− x∗)T (Λ + D) (x− x∗),

where Λ = θdiag
(
eµ+x∗

)
, to get the approximation L̃(θ).

I The reinjection of the Taylor expansion in the initial Laplace
transform expansion permits to get a correction term

L(θ) = L̃(θ)I (θ),

where
I (θ) =

√
det(I + ΣΛ)E

[
v
(

Σ1/2Z
)]
,

with v(u) = exp
{

(x∗)TD(eu − 1− u
}

and Z ∼ N (0, 1).

More detail can be found in [LAJRN16]
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