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Conditional copulae

In a lot of situations, we need to model the dependence among
several r.v.s’ (copulae), conditionally to some amount of
information.

Typically:
Time series (X t)t∈Z, X t ∈ Rd , not necessarily stationary:
(joint) law of X t knowing X t−1?
Econometric models with exogenous variables: what is the
(joint) law of X ∈ Rd knowing Z ∈ Rp?
Pair-copula constructions (vines): a conditional bivariate
distribution at every node of a tree-based structure.

⇒ we need conditional copulae (Patton 2005)
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Conditional copulae

Definition 1

A conditional copula associated to (X ,A) is a B([0, 1]d)⊗A
measurable function C such that, for any x1, . . . , xd ∈ R,

P (X ≤ x |A) = C {P(X1 ≤ x1|A), . . . ,P(Xd ≤ xd |A)|A} .

For us, A = σ(Z ).

Fermanian and Wegkamp (2012) have extended this concept when
different conditioning subsets are introduced ("pseudo-copulae").
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Conditional copulae

In practice, a lot of conditioning variables potentially, particularly in
econometrics.

Diverse solutions:
1 the fully nonparametric approach: empirical counterparts of all

conditional distributions.

C (u|Z = z) = F̂
(
F̂−1

1 (u1|Z = z), . . . , F̂−1
d (ud |Z = z) |Z = z

)
,

F̂ (x |Z = z) =
n∑

i=1

wi ,n(Z i , z)1(X i ≤ x),

for some weights (Nadaraya-Watson, Gasser-Müller,
Priestley-Chao...).

Ok..., but unfeasible when dim(Z ) > 3.

See Fermanian and Wegkamp (2012), Gijbels et al. (2011).
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Conditional copulae

2 the fully parametric approach: C (·|Z ) = Cθ(z ,β0)(·), β0 ∈ Rq,
where

Cθ belongs to a known parametric copula family C, and

θ(·, β) is known.

Ok...but a lot of assumptions, and difficult to specify the
influence of a covariate on a model parameter, in general.

See Patton (2006), Rockinger and Jondeau (2006), etc.
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Conditional copulae

3 An hybrid parametric-NP approach: only θ(·) is unknown.
Cθ belongs to a known parametric family C;

θ(·) is estimated nonparametrically, or through local likelihood
techniques : for a given z , a limited expansion of the type

θ(Z i ) = θ(z) + dθ(z).(Z i − z) +
1
2
d2θ(z).(Z i − z)(2) + . . . ,

and MLE, but restricted to the observations s.t. Z i is "close"
to z , providing θ̂(z).

See Acar et al. (2011), Hafner and Reznikova (2011), Abegaz
et al. (2012), Craiu and Sabeti (2012).

Pb: still the curse of dimensionality !
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Conditional copulae

4 A "true" semi-parametric approach: a priori a good
intermediate solution, to avoid the Z -curse of dimensionality.

This is the topic of this work, under the single-index
framework.

An alternative approach: additive models, as in Craiu and
Sabeti (2014), Vatter and Chavez-Demoulin (2015), Acar
(2015).
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Single-index copulae: some notations

The vector X ∈ Rd is the endogenous vector, and Z is the
vector of covariates.
F (·|z) is the law of X knowing Z = z
Fk(·|z), k = 1, . . . , d , is the (marginal) law of Xk knowing
Z = z
The unobserved random vector Uz = (U1,z , . . . ,Ud ,z ), with
Uk,z = Fk(Xk |z), k = 1, . . . , d .
By definition, the law of Uz conditionally to Z = z is the
conditional copula of X knowing Z = z , denoted by C (·|z).
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Single-index copulae: the model

A conditional copula framework: For any u ∈ [0, 1]d and z ∈ Rp,

C (u|z) = Cθ(z )(u),

where θ : Rp → Rq maps the vector of covariates to the (true)
parameter of the conditional copula knowing Z = z , and
C = {Cθ : θ ∈ Θ ⊂ Rq} is a known parametric family of copulae.

+ A single-index assumption: There exists an unknown function ψ
s.t.

θ(z) = ψ(β0, β
′
0z), (1)

where the true parameter β0 ∈ B, a compact subset in Rm, with
β0,1 = 1.

Notation: C (·|z) = Cβ(·|β′z).
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Single-index copulae: a warning

In general, C (·|z) (the conditional copula of X knowing Z = z) is
not equal to C̃ (·|β′0z), the conditional copula of X knowing
β′0Z = β′0z .

In the former case, the margins are Fk(·|z), k = 1, . . . , d , and in
the latter case, they are F̃k(·|β′0z) : xk 7→ P(Xk ≤ xk |β′0z).

Denote Ũβ = (F̃1(X1|β′Z ), . . . , F̃d(Xd |β′Z )).

C̃ (·|β′Z = y) is the copula of Ũβ knowing β′Z = y .
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Denote Ũβ = (F̃1(X1|β′Z ), . . . , F̃d(Xd |β′Z )).

C̃ (·|β′Z = y) is the copula of Ũβ knowing β′Z = y .
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Denote Ũβ = (F̃1(X1|β′Z ), . . . , F̃d(Xd |β′Z )).

C̃ (·|β′Z = y) is the copula of Ũβ knowing β′Z = y .
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Single-index copulae: ψ̂(β, β′z)

Estimation of ψ(·)?

(A1) There exists a known functional Ψ s.t., for any β ∈ Rm,

ψ(β, β′z) = Ψ
(
Cβ(·|β′z)

)
. (2)

(A2) There exists a known functional Ψ s.t., for any β ∈ Rm,

ψ(β, β′z) = Ψ
(
Hβ(·|β′z)

)
, (3)

where Hβ(·|y) is the cdf of (X ,Z ) given β′Z = y .

⇒ empirical counterparts provide ψ̂(β, β′z).
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Single-index copulae: ψ̂(β, β′z)

Assumptions (2) and (3) are often moment-like conditions, as in
GMM: there is a map g : Rm̄ → Rq, m̄ ≥ m, such that

θ(z) = g(m1(β0, β
′
0z), . . . ,mm̄(β0, β

′
0z)),

where mk(β, y) ∈ R, k = 1, 2, . . ., are “moment” relations.

In the case of (A1),

mk(β, y) =

∫
χk(u, y)Cβ(du|β′Z = y),

for some known functions χk , k = 1, . . . , m̄.

In the case of (A2),

mk(β, y) =

∫
χk(x , z)Hβ(dx , dz |β′Z = y).
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Single-index copulae: ψ̂(β, β′z)

Example: Spearman’s rho.

mk(β, β′z) = ρ(β, β′z), a multivariate extension of the usual
Spearman’s rho, defined by

ρ(β, y) =

∫ Cβ(u|β′Z = y)−
d∏

j=1

uj

 du.

Through a d-dimensional integration by parts, check this moment
is of the type (A1).

Other definitions of Spearman’s rho are possible with an arbitrary
dimension d : see Schmidt and Schmid (2007), for instance.
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Single-index copulae: ψ̂(β, β′z)

Example: Kendall’s tau.

When d = 2, the Kendall’s tau of X conditionally to Z = z is

τz = 4
∫

C (u|z)C (du|z)− 1 = 4
∫

Cβ(u|β′z)Cβ(du|β′z)− 1.

(4)

It will be denoted by τ(β, β′z).

Managing Kendall’s tau, we work under Assumption (A1).
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Single-index copulae: ψ̂(β, β′z) by Kendall’s tau

∫
Cβ(u|y)Cβ(du|y) =

∫
C̃β(u|y) C̃β(du|y), and

τ(β, β′Z = y) = 4
∫

C̃β(u|y) C̃β(du|y)− 1. (5)

Moreover,

τ(β, β′z) = 4
∫

Hβ(x ,+∞|β′z)Hβ(dx ,+∞|β′z)− 1. (6)

⇒ Kendall’s tau are of the two types (A1) and (A2) together.
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Single-index copulae: Kendall’s tau

The relations (5) and (6) are very useful for inference: the
estimation of Hβ(·|y) or C̃β(·|y) is a lot less demanding than the
non parametric estimation of Cβ(·|β′z), that involves conditioning
wrt z ∈ Rp to manage its marginal laws.

In dimension d , many Kendall’s tau can be built.

They may be associated to any couple of variables (Xi ,Xj),
i , j = 1, . . . , d , i 6= j .

Or they can be defined formally as in (4), with d ′-dimension
integrals, d ′ ≤ d , focusing on sub-vectors of X .

⇒ a lot of moments are available.

16/43



Single-index copulae: Kendall’s tau

The relations (5) and (6) are very useful for inference: the
estimation of Hβ(·|y) or C̃β(·|y) is a lot less demanding than the
non parametric estimation of Cβ(·|β′z), that involves conditioning
wrt z ∈ Rp to manage its marginal laws.

In dimension d , many Kendall’s tau can be built.

They may be associated to any couple of variables (Xi ,Xj),
i , j = 1, . . . , d , i 6= j .

Or they can be defined formally as in (4), with d ′-dimension
integrals, d ′ ≤ d , focusing on sub-vectors of X .

⇒ a lot of moments are available.

16/43



Single-index copulae: Kendall’s tau

The relations (5) and (6) are very useful for inference: the
estimation of Hβ(·|y) or C̃β(·|y) is a lot less demanding than the
non parametric estimation of Cβ(·|β′z), that involves conditioning
wrt z ∈ Rp to manage its marginal laws.

In dimension d , many Kendall’s tau can be built.

They may be associated to any couple of variables (Xi ,Xj),
i , j = 1, . . . , d , i 6= j .

Or they can be defined formally as in (4), with d ′-dimension
integrals, d ′ ≤ d , focusing on sub-vectors of X .

⇒ a lot of moments are available.

16/43



Single-index copulae: Kendall’s tau

The relations (5) and (6) are very useful for inference: the
estimation of Hβ(·|y) or C̃β(·|y) is a lot less demanding than the
non parametric estimation of Cβ(·|β′z), that involves conditioning
wrt z ∈ Rp to manage its marginal laws.

In dimension d , many Kendall’s tau can be built.

They may be associated to any couple of variables (Xi ,Xj),
i , j = 1, . . . , d , i 6= j .

Or they can be defined formally as in (4), with d ′-dimension
integrals, d ′ ≤ d , focusing on sub-vectors of X .

⇒ a lot of moments are available.

16/43



Inference: the criterion

An i.i.d. sample of observations (X i ,Z i ) in Rd × Rp, that are
drawn from the law of (X ,Z ).

We will rely on M-estimators of single-index models

If we were able to observe a sample of the random vector Uz , i.e.
U i , i = 1, . . . , n, then our "naive" estimator of β0 could be

β̂naive = argmax
β∈B

n∑
i=1

ln cψ̂(β,β′Z i )
(U i ),

for some function ψ̂ that estimates ψ(·, ·) consistently.
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If we were able to observe a sample of the random vector Uz , i.e.
U i , i = 1, . . . , n, then our "naive" estimator of β0 could be
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Inference: the criterion

Pb: we do not observe realizations of U

⇒ replace the unknown vectors U i by some estimates Û i ,
conditionally to Z i

We get a so-called pseudo-sample Û1, . . . , Ûn.

β̂ = argmax
β∈B

n∑
i=1

ω̂i ,n ln cψ̂(β,β′Z i )
(Û i ), (7)

for some sequence of trimming functions ω̂i ,n.

Such trimming functions allow to control some boundary effects
and the uniform convergence of our kernel estimates.

We set a fixed trimming for Z. This is permitted, because the law
of the U knowing Z ∈ Z depends on the true parameter β0 only.
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(Û i ), (7)

for some sequence of trimming functions ω̂i ,n.

Such trimming functions allow to control some boundary effects
and the uniform convergence of our kernel estimates.

We set a fixed trimming for Z. This is permitted, because the law
of the U knowing Z ∈ Z depends on the true parameter β0 only.

18/43



Inference: the criterion

Pb: we do not observe realizations of U

⇒ replace the unknown vectors U i by some estimates Û i ,
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Inference: choice of Û

Several possibilities:
1 parametric marginal conditional distributions: for every

k = 1, . . . , d and z , Fk(·|z) belongs to a parametric family
Gk = {Gk,θk , θk ∈ Θk}. And the true parameter θk(z) is
estimated by θ̂k(z).

2 nonparametric estimates of conditional expectations:

F̂ (x |z) =
n∑

j=1

wj ,n(z)1(X j ≤ x), (8)

with weights

wj ,n(z) = K (Z j − z ,h) /
n∑

l=1

K (Z l − z ,h) , (9)

K is a p-dimensional kernel functions and h := (h1, . . . , hp) is
a p-vector of bandwidths hk > 0.
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Inference: choice of Û

2 For example,

K (Z j − z ,h) =

p∏
k=1

Kk

(
Zj ,k − zk

hk

)
,

for some univariate kernel functions Kk .

Nonparametric estimators of the cdf Fk(x |z) are obtained
using F̂k(x |z) = F̂ (x ,+∞(−k)|z).

The marginal “unfeasible” observations Ui ,k = Fk(Xi ,k |Z i ) are
estimated by Ûi ,k = F̂k(Xi ,k |Z i ).

3 Others: marginal single-index distributions, additive models...
to avoid the curse of dimensionality on margins.
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Consistency

Assumption 1

Let us set Z := [−M,M]p and En = [νn, 1− νn]d for some positive
sequence (νn), νn ∈ (0, 1/2), νn → 0.

The trimming functions are ωn : [0, 1]d × Rp → [0, 1],
(u, z) 7→ 1(u ∈ En, z ∈ Z).

Notations: ω̂i ,n = ωn(Û i ,Z i ), ωi ,n := ωn(U i ,Z i ) and
ωi = ωi ,∞ = 1(Z i ∈ Z).
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Consistency

Assumption 2

The parameter β0 is identifiable, i.e. two different parameters
induce two different laws of UZ , knowing Z ∈ Z.

For every z ∈ Z, the functionM(z) : β 7→ E [ln cψ(β,β′z )(Uz )] is
uniquely maximized at β = β0.

There exists a function g s.t., for every z ∈ Z and some a > 1,

sup
β∈B
| ln cψ(β,β′z )(Uz )| ≤ g(Uz , z), E [ga(UZ ,Z ).1(Z ∈ Z)] <∞.

(10)

The limiting objective function will be

M(β) := E
[
ln cψ(β,β′Z )(U) |Z ∈ Z

]
.
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Consistency

Assumption 3

sup
z∈Z

sup
β∈B

∣∣∣ψ̂(β, β′z)− ψ(β, β′z)
∣∣∣ = oP(1). (11)

Moreover, there exists a deterministic sequence (δn), δn = o(νn),
s.t.

sup
i
|Û i −U i |.1(Z i ∈ Z) = OP (δn) . (12)
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Consistency

Definition 2
A function f : (0, 1)→ (0,∞) is called u-shaped if it is
symmetric about 1/2 and decreasing on (0, 1/2].
For β ∈ (0, 1) and a u-shaped function r , define

rβ(t) =

{
r(βu) if 0 < u ≤ 1/2;
r(1− β(1− u)) if 1/2 < u ≤ 1.

If, for every β > 0 in a neighborhood of 0, there exists a
constant Mβ , such that rβ < Mβ.r on (0, 1), then r is called a
reproducing u-shaped function.

We denote by R the set of univariate reproducing u-shaped
functions. The set Rd is the set of functions r : (0, 1)d → R+,
r(u) =

∏d
k=1 rk(uk), and rk ∈ R for every k .

Typically, r(u) = Cru
−a(1− u)−a, for some positive constants a

and Cr (Tsukahara 2005).
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Consistency

Assumption 4
There exist some functions r , r̃1, . . . , r̃d in Rd s.t., for every
u ∈ (0, 1)d ,

sup
θ∈Θ
|∇θ ln cθ(u)| ≤ r(u), E

[
r(UZ )1(Z ∈ Z)

]
<∞,

sup
θ∈Θ
|∂uk ln cθ(u)| ≤ r̃k(u), for every k = 1, . . . , d , with

E
[
Uk(1− Uk)r̃k(UZ )1(Z ∈ Z)

]
<∞.
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Consistency

Theorem 3

Under the assumptions 1-4, the estimator β̂ given by (7) tends to
β0 in probability, when n tends to the infinity.
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Example : the Gaussian copula model

Cβ0(u|Z = z) = CG
Σ(z )(u) = ΦΣ(z )

(
Φ−1(u1), . . . ,Φ−1(ud)

)
,

where the correlation matrix depends on the index β′0z :

Σ(z) = ψ(β0, β
′
0z) = [θk,l(z)]1≤k,l≤d ,

θk,l(z) = sin(
π

2
τk,l(β

′
0z))

τk,l(y): the conditional Kendall’s tau that is associated to (Xk ,Xl),
knowing β′0Z = y , that can be estimated easily by standard
nonparametric techniques, as in Gijbels et al. (2011).

ψ̂(β, β′z) = [sin(
π

2
τ̂k,l(β

′z))]1≤k,l≤d ,

τ̂k,l(t) := 4
∫

ˆ̃Ck,l(u, v |β′Z = t) ˆ̃Ck,l(du, dv |β′Z = t)− 1,

for some estimator ˆ̃Ck,l(·|β′z) of the copula of (Xk ,Xl) given β′Z .
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Example : the Gaussian copula cont’d

The marginal cdfs’ Ûk , k = 1, . . . , d : standard univariate
kernel-based conditional distributions Ûi ,k := F̂k(Xi ,k |Z i ).

For a large choice of bandwiths, the distance between Û i and U i is
of order

√
ln(n)/

√
nh uniformly (Einmahl and Mason 2005):

sup
i
|Û i −U i |.1(Z i ∈ Z) = OP(

√
ln(n)/

√
nhp + hpπ).

⇒ Assumption 3 is easily satisfied.
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of order

√
ln(n)/

√
nh uniformly (Einmahl and Mason 2005):

sup
i
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Example : the Gaussian copula cont’d

Assumption 2: to check (10), we can require

inf
z∈Z

inf
β∈B

λmin(ψ(β, β′z)) ≥ λ > 0, (13)

In this case, it is easy to bound the log-density of U (conditionally
to Z ) from above, and to satisfy (10).

Assumption 4 is satisfied, as in most usual copula families: choose
r(u) ∝

∏d
k=1 u

−a
k (1− uk)−a for some a > 0, and

r̃k(u) ∝ u−a−1
k (1− uk)−a−1

d∏
l=1,l 6=k

u−al (1− ul)
−a.

⇒ β̂ is consistent under a Gaussian copula framework.
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Asymptotic normality

Notation: ψi = ψ(β0, β
′
0Z i ) and ψ̂i = ψ̂(β0, β

′
0Z i ).

Assumption 5

For every z ∈ Z, assume that ψz : B → Θ, β 7→ ψ(β, β′z) is two
times continuously differentiable. Moreover, for every θ ∈ Θ,
assume that ln cθ : (0, 1)d → R,u 7→ ln cθ(u) is two times
continuously differentiable.

Assumption 6

Let the functions on (0, 1)d ×Z defined by

f (u, z) =
∇θcθ
cθ |θ=ψ(β0,β′

0z )
(u), and f̂ (u, z) =

∇θcθ
cθ |θ=ψ̂(β0,β′

0z )
(u).

For almost every realization, the functions f and f̂ belong to a
Donsker class for the underlying law of (X ,Z ).
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Asymptotic normality

Assumption 7

Let the functions on Z defined by

p : z → p(z) = ∇βψ(β, β′z)|β=β0 , and

p̂ : z → p̂(z) = ∇βψ̂(β, β′z)β=β0 .

For almost every realization, the functions p and p̂ belong to a
Donsker class for the underlying law of (X ,Z ).
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Asymptotic normality

Assumption 8

Assume that, for every (u,u ′) ∈ (0, 1)2d , we have

|∇θ ln cθ(u)−∇θ ln cθ′(u)| ≤ Φ(u).|θ − θ′|, (14)∣∣∇2
θ ln cθ(u)−∇2

θ ln cθ′(u)
∣∣ ≤ Φ(u).|θ − θ′|, (15)

for some function Φ s.t. E [Φ(U)] <∞.

Assumption 9

Assume that, for every (β1, β2) ∈ B2 and j = 1, 2,

sup
z∈Z
|∇j

βψ(β1, β
′
1z)−∇j

βψ(β2, β
′
2z)| ≤ C .|β1 − β2|,

where C is a finite constant.
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Asymptotic normality

Assumption 10

Assume that

sup
β∈B,z∈Z

∣∣∣ψ(β, β′z)− ψ̂(β, β′z)
∣∣∣ = oP(1), (16)

sup
β∈B,z∈Z

∣∣∣∇βψ(β, β′z)−∇βψ̂(β, β′z)
∣∣∣ = oP(1), (17)

sup
β∈B,z∈Z

∣∣∣∇2
βψ(β, β′z)−∇2

βψ̂(β, β′z)
∣∣∣ = oP(1). (18)
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Asymptotic normality

Assumption 11

sup
z∈Z

sup
k
‖F̂k(·|z)− Fk(·|z)‖∞ = OP(εn),

with εn = o(n−1/4).

Assumption 12

Let Assume that

sup
z∈Z
|ψ̂(β0, β

′
0z)− ψ(β0, β

′
0z)| = OP(η1n),

sup
z∈Z
|∇βψ̂(β0, β

′
0z)−∇βψ(β0, β

′
0z)| = OP(η2n),

with εnηjn = o(n−1/2), for j = 1, 2, and η1nη2n = o(n−1/2).
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Asymptotic normality

Assumption 13

Assume that

∇θ ln cθ(u)−∇θ ln cθ(u ′) = Λθ(u).(u − u ′) + ρθ(u∗).(u − u ′)(2),

for some u∗ s.t. |u − u∗| < |u − u ′|, and, for every k = 1, . . . , d ,
there exists a constance α ∈ (0, 1) s.t.

sup
θ
|∇θ(Λθ(u))k | ≤ Γk(u), E

[
Uα
k (1− Uk)αΓk

(
UZ

)]
<∞.

Moreover, for every k , l = 1, . . . , d , there exists a function r̄k,l in
Rd s.t., for every u ∈ (0, 1)d ,

sup
θ∈Θ
|(ρθ(u))k,l | ≤ r̄k,l(u), and

E
[
Uγ
k (1− Uk)γUγ

l (1− Ul)
γ r̄k,l(UZ )

]
<∞, for some γ ∈ (0, 1)
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Asymptotic normality

Assumption 14

Assume that β 7→ M(β) is twice continuously differentiable. Its
Hessian matrix at point β0 is denoted by Σ = ∇2

βM(β0), and is
invertible.
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Asymptotic normality

Assumption 15

For any u ∈ Rd , set

g(u, z) := sup
θ∈B(θ0(z ),η1,n)

sup
v∈B(u ,δn)

|∇θ ln cθ(v)|,

where B(u, δ) (resp. B(θ, η)) denotes the closed ball of center u
(resp. θ) and radius δ (resp. η). Assume

sup
k=1,...,d

E [g(U i ,Z i )·1(Z i ∈ Z, |Ui ,k−νn| < δn)] = o(n−1/2), (19)

and similarly after having replaced νn by 1− νn.

Broadly speaking, it means that

δn

∫
∇θcθ(u−k , νn|z)|θ=θ0(z ) ·1(z ∈ Z) du−k dPZ (z) = o(n−1/2),

and the same replacing νn by 1− νn.
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Asymptotic normality

Theorem 4

Under Assumptions 1 to 15,

(β̂ − β0) = −Σ−1 · 1
n

n∑
i=1

ωi ,n
∇θcθ
cθ |θ=ψi

(Û i )∇βψ(β, β′Z i )|β=β0

+ oP(n−1/2).
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Asymptotic normality

Assumption 16

For every k = 1, . . . , d , x ∈ R and z ∈ Z, we can write

F̂k(x |z)− Fk(x |z) =
1
n

n∑
j=1

ak,n(X j ,Z j , x , z) + rn(x |z), (20)

for some particular functions ak,n and for some sequence (rn) s.t.

sup
x∈R

sup
z∈Z
|rn(x , z)| = oP(n−1/2).

Ûi ,k−Ui ,k =
1
n

n∑
j=1

ak,n(X j ,Z j ,Xi ,k ,Z i )+rn,i , n
1/2 sup

i
|rn,i | = oP(1).

Denote an(X j ,Z j ,X i ,Z i ) (or even ai ,j) the d-vector whose
components are ak,n(X j ,Z j ,Xi ,k ,Z i ), k = 1, . . . , d .
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Asymptotic normality

Assumption 17

Assume that there exists a function W such that

sup
x∈R,z∈Z

|E [an(X j ,Z j , x , z)]−W (z , x)| = o(n−1/2),

and such that

E

[{
Λψ(β0,β′

0Z i )
(U i ).W (Z ,X )∇βψ(β, β′Z i )|β=β0

}2
]
<∞.

Hopefully, W is often the null function...
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Asymptotic normality

Corollary 5
Under the Assumptions of Theorem 4 and Assumptions 16 to 17,
we have

n1/2
{

Σ.(β̂ − β0) + bn
}

=⇒ N (0, S),

where S = E [ω1M1M′1], where

M1 =
∇θcθ
cθ |θ=ψ1

(U1)∇βψ(β, β′Z 1)|β=β0

+ Λψ(β0,β′
0Z 1)(U1).W (Z 1,X 1)∇βψ(β, β′Z 1)|β=β0 ,

bn = E [ω1,nM1] = E [1(U1 ∈ En,Z 1 ∈ Z)M1].
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Asymptotic normality

In general, the bias bn cannot be removed, even if E [ai ,j ] = 0: the
trimming part E [ωi ,nMi ] ∼ δn, that is not o(n−1/2) in general.

Nonetheless, if

E
[
Λψ(β0,β′

0Z 1)(U1).W (Z 1,X 1)∇βψ(β, β′Z 1)|β=β0

· {1(|Uk,1 − νn| < δn) + 1(|1− Uk,1 − νn| < δn)}] = o(n−1/2),

for every k = 1, . . . , d , then n1/2bn = o(1) and

n1/2(β̂ − β0) =⇒ N (0,Σ−1SΣ−1).
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