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Single-index copula models
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Asymptotic normality
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Conditional copulae

In a lot of situations, we need to model the dependence among
several r.v.s' (copulae), conditionally to some amount of
information. Typically:

o Time series (X;)rcz, Xt € RY, not necessarily stationary:
(joint) law of X knowing X;_17

@ Econometric models with exogenous variables: what is the
(joint) law of X € R? knowing Z € RP?

@ Pair-copula constructions (vines): a conditional bivariate
distribution at every node of a tree-based structure.

= we need conditional copulae (Patton 2005)
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Conditional copulae

Definition 1
A conditional copula associated to (X,.A) is a B([0,1]9) ® A
measurable function C such that, for any xq,..., x5 € R,

P(X < x|A) = C{P(X1 < x1|A), ..., P(Xg < xg|A)|A}.

For us, A = o(Z).
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Conditional copulae

Definition 1
A conditional copula associated to (X,.A) is a B([0,1]9) ® A
measurable function C such that, for any xq,..., x5 € R,

P(X < x|A) = C{P(X1 < x1|A), ..., P(Xg < xg|A)|A}.

For us, A = o(Z).

Fermanian and Wegkamp (2012) have extended this concept when
different conditioning subsets are introduced ("pseudo-copulae").
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Conditional copulae

In practice, a lot of conditioning variables potentially, particularly in
econometrics. Diverse solutions:

@ the fully nonparametric approach: empirical counterparts of all
conditional distributions.

C(u|2:z):ﬁ(ﬁ1— (n|Z=2),....F; (ud|Z—z)|Z—z>
F(x|Z=2z2)= ZW,,, Zi,z)1 x),

for some weights (Nadaraya-Watson, Gasser-Miiller,
Priestley-Chao...).

Ok..., but unfeasible when dim(Z) > 3.
See Fermanian and Wegkamp (2012), Gijbels et al. (2011).
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Conditional copulae

@ the fully parametric approach: C(-|Z) = Cy(z g,)(-), fo € RY,
where

o Cy belongs to a known parametric copula family C, and
o 6(-, /) is known.
Ok...but a lot of assumptions, and difficult to specify the

influence of a covariate on a model parameter, in general.

See Patton (2006), Rockinger and Jondeau (2006), etc.
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© An hybrid parametric-NP approach: only 6(-) is unknown.

o Cy belongs to a known parametric family C;
o 6(-) is estimated nonparametrically, or through local likelihood
techniques : for a given z, a limited expansion of the type

0(Z) = 0(2) + d0(2).(Zi — 2) + 560(2).(Zi— 2) + ..,

and MLE, but rgstricted to the observations s.t. Z; is "close"
to z, providing 6(z).
See Acar et al. (2011), Hafner and Reznikova (2011), Abegaz
et al. (2012), Craiu and Sabeti (2012).

Pb: still the curse of dimensionality !
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Conditional copulae

@ A "true" semi-parametric approach: a priori a good
intermediate solution, to avoid the Z-curse of dimensionality.

This is the topic of this work, under the single-index
framework.
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Conditional copulae

@ A "true" semi-parametric approach: a priori a good
intermediate solution, to avoid the Z-curse of dimensionality.

This is the topic of this work, under the single-index
framework.

An alternative approach: additive models, as in Craiu and
Sabeti (2014), Vatter and Chavez-Demoulin (2015), Acar
(2015).
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Single-index copulae: some notations

@ The vector X € R? is the endogenous vector, and Z is the
vector of covariates.

e F(-|z) is the law of X knowing Z = z

o Fi(-|z), k=1,...,d, is the (marginal) law of Xy knowing
Z=z

@ The unobserved random vector Uz = (U1, z, ..., Ug z), with
Uk,z = Fk(Xk|Z), k = 1, ey d.

@ By definition, the law of Uz conditionally to Z = z is the
conditional copula of X knowing Z = z, denoted by C(-|z).
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Single-index copulae: the model

A conditional copula framework: For any u € [0,1]¢ and z € RP,

C(ulz) = Co(z)(u),

where 0 : RP — RY maps the vector of covariates to the (true)
parameter of the conditional copula knowing Z = z, and
C={Cy:0€ 0O CR9}isaknown parametric family of copulae.

0/43



Single-index copulae: the model

A conditional copula framework: For any u € [0,1]¢ and z € RP,

C(ulz) = Co(z)(u),

where 0 : RP — RY maps the vector of covariates to the (true)
parameter of the conditional copula knowing Z = z, and
C={Cy:0€ 0O CR9}isaknown parametric family of copulae.

+ A single-index assumption: There exists an unknown function

s.t.

0(z) = ¥(bo, Bo2), (1)
where the true parameter 3y € I3, a compact subset in R™, with
Bo,1 = 1.

0/43



Single-index copulae: the model

A conditional copula framework: For any u € [0,1]¢ and z € RP,

C(ulz) = Co(z)(u),

where 0 : RP — RY maps the vector of covariates to the (true)
parameter of the conditional copula knowing Z = z, and
C={Cy:0€ 0O CR9}isaknown parametric family of copulae.

+ A single-index assumption: There exists an unknown function

s.t.

0(z) = ¥(bo, Bo2), (1)
where the true parameter 3y € I3, a compact subset in R™, with
Bo,1 = 1.

Notation: C(-|z) = Cs(-|5'2).
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Single-index copulae: a warning

In general, C(:|z) (the conditional copula of X knowing Z = z) is
not equal to C(:|54z), the conditional copula of X knowing

BoZ = B z.
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Single-index copulae: a warning

In general, C(:|z) (the conditional copula of X knowing Z = z) is
not equal to C(:|54z), the conditional copula of X knowing

BoZ = B z.
In the former case, the margins are Fi(-|z), k=1,...,d, and in
the latter case, they are Fi(-|55z) : xk — P(Xk < xk|B3)2).

Denote Us = (F1(X1|8'2), ..., Fa(X4|B' Z)).
C(-|8'Z = y) is the copula of U knowing 5'Z = y.
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~n

Single-index copulae: (5, 5'z)

Estimation of (+)?

(A1) There exists a known functional ¥ s.t., for any 5 € R™,

W(B,8'z) =W (Cs(+|62)) - (2)
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Single-index copulae: (5, 5'z)

Estimation of (+)?

(A1) There exists a known functional ¥ s.t., for any 5 € R™,

W(B,8'z) =W (Cs(+|62)) - (2)

(A2) There exists a known functional ¥ s.t., for any 5 € R™,

V(8. 5'2) =V (Hs(18'2)) . (3)
where Ha(:|y) is the cdf of (X, Z) given ’'Z = y.

= empirical counterparts provide @(ﬁ,ﬂ’z).
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~n

Single-index copulae: (5, 5'z)

Assumptions (2) and (3) are often moment-like conditions, as in
GMM: there is a map g : R™ — RY9, m > m, such that

H(Z) = g(ml(ﬁm B(/)Z), SRR mfﬁ(ﬁm B(l)z))?

where mi(8,y) € R, k =1,2,..., are “moment” relations.
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Assumptions (2) and (3) are often moment-like conditions, as in
GMM: there is a map g : R™ — RY9, m > m, such that

H(Z) = g(ml(ﬁm B(/)Z), SRR mfﬁ(ﬁm B(l)z))?
where mi(8,y) € R, k =1,2,..., are “moment” relations.

In the case of (Al),

me(B,y) = / xi(u,y) Co(dulF'Z = y),

for some known functions y,, k=1,...,m.

In the case of (A2),

mi(B,y) = / xi(x, 2) Ha(dx, dz|f'Z = y).
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~n

Single-index copulae: (5, 5'z)

Example: Spearman'’s rho.

m(8,8'z) = p(B, f'z), a multivariate extension of the usual
Spearman’s rho, defined by

d
p(ﬁ,y)Z/ (CB(UB'Zy)HUJ) du.

Jj=1

Through a d-dimensional integration by parts, check this moment
is of the type (Al).
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Single-index copulae: (5, 5'z)

Example: Spearman'’s rho.

m(8,8'z) = p(B, f'z), a multivariate extension of the usual
Spearman’s rho, defined by

d
p(B,y) :/ (C,B(UB'Z =y)— H uj) du.

Jj=1

Through a d-dimensional integration by parts, check this moment
is of the type (Al).

Other definitions of Spearman’s rho are possible with an arbitrary
dimension d: see Schmidt and Schmid (2007), for instance.
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~n

Single-index copulae: (5, 5'z)

Example: Kendall's tau.

When d = 2, the Kendall's tau of X conditionally to Z = z is

Tz = 4/ C(u|z)C(dulz) — 1= 4/ Cg(u|6’z)Cg(du\ B'z)—1.
(4)
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~n

Single-index copulae: (5, 5'z)

Example: Kendall's tau.

When d = 2, the Kendall's tau of X conditionally to Z = z is

Tz = 4/ C(u|z)C(dulz) — 1= 4/ Cg(u|6’z)Cg(du\ B'z)—1.

(4)
It will be denoted by 7(3, 'z).

Managing Kendall's tau, we work under Assumption (Al).
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~n

Single-index copulae: (3, 8'z) by Kendall's tau

| Cotuly) Co(duly) = [ Estuly) Co(duly). and

(8,62 =y)=4 / Ex(uly) Ea(duly) — 1. (5)
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~n

Single-index copulae: (3, 8'z) by Kendall's tau

| Cotuly) Co(duly) = [ Estuly) Co(duly). and
"(5.62=y) =4 [ Gul) Coldul) 1. (5)
Moreover,
(8,87) =4 / Ha(x, +00|3'z) Ha(dx, +o0|'z) — 1. (6)

= Kendall's tau are of the two types (Al) and (A2) together.
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Single-index copulae: Kendall's tau

The relations (5) and (6) are very useful for inference: the
estimation of Hg(-|y) or Cs(:|y) is a lot less demanding than the
non parametric estimation of Cg(:|8'z), that involves conditioning
wrt z € RP to manage its marginal laws.
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Single-index copulae: Kendall's tau

The relations (5) and (6) are very useful for inference: the
estimation of Hg(-|y) or Cs(:|y) is a lot less demanding than the
non parametric estimation of Cg(:|8'z), that involves conditioning
wrt z € RP to manage its marginal laws.

In dimension d, many Kendall's tau can be built.

They may be associated to any couple of variables (X, Xj),
ij=1,....d, i%]

Or they can be defined formally as in (4), with d’-dimension
integrals, d’ < d, focusing on sub-vectors of X.

= a lot of moments are available.
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Inference: the criterion

An i.i.d. sample of observations (X;, Z;) in RY x RP, that are
drawn from the law of (X, Z).

We will rely on M-estimators of single-index models
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Inference: the criterion

An i.i.d. sample of observations (X;, Z;) in RY x RP, that are
drawn from the law of (X, Z).

We will rely on M-estimators of single-index models

If we were able to observe a sample of the random vector Uz, i.e.
U;, i=1,... n, then our "naive" estimator of 3y could be

n
/Bnaive = arg g‘ggz In C@(/g”g/zi)(ui)’
i=1

for some function 1) that estimates 1)(-, -) consistently.
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Pb: we do not observe realizations of U
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= replace the unknown vectors U; by some estimates U;,
conditionally to Z;

We get a so-called pseudo-sample U1, ..., U,.
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Inference: the criterion

Pb: we do not observe realizations of U

= replace the unknown vectors U; by some estimates U;,
conditionally to Z;

We get a so-called pseudo-sample U1, ..., U,.
n
B =argmax S @inlncysz,(00). ™)

for some sequence of trimming functions @; ,.

Such trimming functions allow to control some boundary effects
and the uniform convergence of our kernel estimates.

We set a fixed trimming for Z. This is permitted, because the law
of the U knowing Z € Z depends on the true parameter [y only.
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Inference: choice of U

Several possibilities:
@ parametric marginal conditional distributions: for every
k=1,...,d and z, Fi(-|z) belongs to a parametric family
Gk = {Gkp,, 0k € ©k}. And the true parameter 0y(z) is
estimated by 0(z).
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Inference: choice of U

Several possibilities:
@ parametric marginal conditional distributions: for every
k=1,...,d and z, Fi(-|z) belongs to a parametric family
Gk = {Gkp,, 0k € ©k}. And the true parameter 0y(z) is
estimated by 0(z).
@ nonparametric estimates of conditional expectations:

F(xlz) = Z Wi n(2)1(X; < ), (8)
with weights
Wj’,,(z):K(Zj—z,h)/zn:K(Z/—z,h)7 (9)
1=1
K is a p-dimensional kernel functions and h := (hy,..., hp) is

a p-vector of bandwidths h, > 0.
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Inference: choice of U

@ For example,

p
7 —
K (Zj—zh) =]] K (thka>7
k=1

for some univariate kernel functions K.
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for some univariate kernel functions K.

Nonparametric estimators of the cdf Fy(x|z) are obtained
using Fi(x|z) = F(x, +00(_x)|2).

The marginal “unfeasible” observations U; x = Fi(Xj k| Z;) are
estimated by U,-J( = l:_k(X;,k\Z,-).
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Inference: choice of U

@ For example,

p
7 —
K (Zj—zh) =]] K (thka>7
k=1

for some univariate kernel functions K.

Nonparametric estimators of the cdf Fy(x|z) are obtained
using Fi(x|z) = F(x, +00(_x)|2).

The marginal “unfeasible” observations U; x = Fi(Xj k| Z;) are
estimated by U,-J( = l:_k(X;,k\Z,-).

© Others: marginal single-index distributions, additive models...
to avoid the curse of dimensionality on margins.
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Let us set Z :=[~M, M]P and £, = [vy, 1 — v,]9 for some positive
sequence (vp), vn € (0,1/2), v, — 0.

The trimming functions are wy, : [0,1]¢ x RP — [0, 1],
(u,z) » L(u e, ze Z).

Notations: &, = ou,,(lAJ,-7 Z;), win:=wn(Uj,Z;) and
Wi = Wj 0o = 1(2,’ S Z)
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Consistency

Assumption 2

The parameter (3 is identifiable, i.e. two different parameters
induce two different laws of U Z knowing Z € Z.

For every z € Z, the function M(z) : B+ E[ln cy3,82)(Uz)] is
uniquely maximized at 8 = (.

There exists a function g s.t., for every z € Z and some a > 1,
;ug |Incys,pz)(Uz)| < g(Uz,2), E[g°(Uz,Z).1(Z € Z)] < co.
€
(10)

The limiting objective function will be

M(B) = E [Incw(ﬁﬁ/z)(U) 1Z e Z] .
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Consistency

sup sup |[¢(3,8'z) — ¢(6,ﬁ’z)‘ = op(1). (11)

ZcZ BeB

Moreover, there exists a deterministic sequence (0,), 6, = 0(vn),
S.t.

sup |U; — Ui|.1(Z; € Z) = Op (5,).- (12)

v
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Consistency

@ A function f : (0,1) — (0,00) is called u-shaped if it is
symmetric about 1/2 and decreasing on (0,1/2].

@ For € (0,1) and a u-shaped function r, define

[ r(Bu) if 0<u<1/2
ra(t) = { rl—B(1-uv) if 1/2<u<l

If, for every 8 > 0 in a neighborhood of 0, there exists a
constant Mg, such that rg < Mg.r on (0,1), then r is called a
reproducing u-shaped function.
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@ A function f : (0,1) — (0,00) is called u-shaped if it is
symmetric about 1/2 and decreasing on (0,1/2].

@ For € (0,1) and a u-shaped function r, define

[ r(Bu) if 0<u<1/2
ra(t) = { rl—B(1-uv) if 1/2<u<l

If, for every 8 > 0 in a neighborhood of 0, there exists a
constant Mg, such that rg < Mg.r on (0,1), then r is called a
reproducing u-shaped function.

@ We denote by R the set of univariate reproducing u-shaped
functions. The set Ry is the set of functions r : (0,1)¢ — R*,
r(u) = ngl r(uk), and r, € R for every k.

Typically, r(u) = C,u™2(1 — u)~?, for some positive constants a
and C, (Tsukahara 2005).
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Consistency

Assumption 4

There exist some functions r, 1, ..., P4 in Ry s.t., for every
u < (0,1)9,
sup Vg Incy(u)| < r(u), E[r(Uz)1(Z € Z)] < o,
0cO
sup |0y, Incp(u)| < Fi(u), for every k =1,...,d, with
0c©

E [Uk(l — Uk)Fk(Uz)l(Z S Z)] < Q.
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Under the assumptions 1-4, the estimator [3 given by (7) tends to
Bo in probability, when n tends to the infinity.
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Example : the Gaussian copula model

Cﬁo(u|z = Z) = Cg(z)(u) = q)Z(Z) (q)il(ul)v oo 7¢71(ud)) )

where the correlation matrix depends on the index (jz:

¥(2) = ¥(Bo, By2) = [0k.1(2)1<k 1<d>

27/43



Example : the Gaussian copula model

Cﬁo(u|z = Z) = Cg(z)(u) = q)Z(Z) (q)il(ul)v oo 7¢71(ud)) )

where the correlation matrix depends on the index (jz:

¥ (2) = ¥(bo, Boz) = [0k,1(2)]1<k,1<d;
Oi)(z) = sin(grk,,(ﬂgz))

Tk,1(y): the conditional Kendall's tau that is associated to (X, X)),
knowing 83Z = y, that can be estimated easily by standard
nonparametric techniques, as in Gijbels et al. (2011).

27/43



Example : the Gaussian copula model

Cﬁo(u|z = Z) = Cg(z)(u) = q)Z(Z) (q)il(ul)v oo 7¢71(ud)) )

where the correlation matrix depends on the index (jz:

¥ (2) = ¥(bo, Boz) = [0k,1(2)]1<k,1<d;
Oi)(z) = sin(grk,,(ﬂgz))

Tk,1(y): the conditional Kendall's tau that is associated to (X, X)),
knowing 83Z = y, that can be estimated easily by standard
nonparametric techniques, as in Gijbels et al. (2011).

$(8.8'2) = [sin(5 (8 2)h<ks<a

7ﬁk7/(t) = 4/ ékJ(u, V’,BIZ = t) Ck,/(du, dV|ﬂIZ = 1.') — 1,

for some estimator Cy /(+|3'z) of the copula of (X, X;) given 3'Z. 27 /a3



Example : the Gaussian copula cont'd

The marginal cdfs’ Uy, k =1, ..., d: standard univariate
kernel-based conditional distributions U; x := Fi(Xi «|Z}).
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Example : the Gaussian copula cont'd

The marginal cdfs’ Uy, k =1, ..., d: standard univariate
kernel-based conditional distributions U; x := Fi(Xi «|Z}).

For a large choice of bandwiths, the distance between U; and U; is
of order \/In(n)/v/nh uniformly (Einmahl and Mason 2005):

sup|U; — Ui|.1(Z; € 2) = Op(+/In(n)/Vnh? + hPT).
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Example : the Gaussian copula cont'd

The marginal cdfs’ Uy, k =1, ..., d: standard univariate
kernel-based conditional distributions U; x := Fi(Xi «|Z}).

For a large choice of bandwiths, the distance between U; and U; is

of order /In(n)/+/nh uniformly (Einmahl and Mason 2005):

sup|U; — Ui|.1(Z; € 2) = Op(+/In(n)/Vnh? + hPT).

= Assumption 3 is easily satisfied.
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Example : the Gaussian copula cont'd

Assumption 2: to check (10), we can require

inf |nf Amin(¥(8,8'2)) > A >0, (13)

ZcZ BeB

In this case, it is easy to bound the log-density of U (conditionally
to Z) from above, and to satisfy (10).
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Example : the Gaussian copula cont'd

Assumption 2: to check (10), we can require

inf |nf Amin(¥(8,8'2)) > A >0, (13)

ZcZ BeB

In this case, it is easy to bound the log-density of U (conditionally
to Z) from above, and to satisfy (10).

Assumption 4 is satisfied, as in most usual copula families: choose
r(u) szl u, ?(1 — uy)~? for some a > 0, and

Fe(u) oc up @M1 — uk)” H u?(1—uy)?
I=1,I#k

= [3 is consistent under a Gaussian copula framework.
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Asymptotic normality

Notation: v; = (o, 85Z;) and ¥; = (o, B4 Z:).

Assumption 5

For every z € Z, assume that 1oz : B — ©, 5 — (8, 8'z) is two
times continuously differentiable. Moreover, for every 6 € ©,
assume that Incp : (0,1)9 — R, u + Incp(u) is two times
continuously differentiable.

Assumption 6
Let the functions on (0,1) x Z defined by
. V@Cg . VgCg

f(u,z)= (u), and f(u,z) = A (u).
€0 |0=y(Bo,By2Z) €0 |0=1(Bo,By2)

For almost every realization, the functions f and f belong to a
Donsker class for the underlying law of (X, Z).
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Asymptotic normality

Let the functions on Z defined by

p:z—p(z) = V,Bi/’(ﬁaﬁlz)m:go, and

p:z— p(2) = Vih(B, 5'2)s=go-

For almost every realization, the functions p and p belong to a
Donsker class for the underlying law of (X, Z).
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Asymptotic normality

Assume that, for every (u,u’) € (0,1)?, we have

Vo Inco(u) — Vg In co(u)|
‘Vg Inco(u) — V3 1In c9/(u)‘

S (u).10 — ¢, (14)

<
< o).lo—¢|, (15

for some function ® s.t. E[®(U)] < oc.

Assumption 9

Assume that, for every (f1,32) € B? and j = 1,2,
sup Viab(By, Biz) — Vi(Ba, Bp2)| < C.|By — Bal,
ze

where C is a finite constant.
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Asymptotic normality

Assumption 10

Assume that

sup _[w(8,82) (8, 82)| = op(1), (16)

BeB,zecZ

sup [ Vs(B,8'7) = Vel(8,82) = op(1), (17)

BeB,zcZ

sup | VEu(8,8'2) — V3(8. 82)| = op(1). (18)

BeEB,ZEZ
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Asymptotic normality

Assumption 11

sup sup || Fi(-|2) — Fi(12)llc = Op(en),
ZcZ k

with e, = o(n~Y/%).

Assumption 12

Let Assume that
sup (8o, Bhz) — ¥(Bo, Boz)l = Op(n1n),
ZeZ

sup |V59(Bo, 54z) — Vs(Bo, B4z)l = Op(i2n),
ZcZ

with ,mjn = o(n~*/2), for j = 1,2, and n1,m2n = o(n~*/?).
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Asymptotic normality

Assumption 13

Assume that

Vo lncp(u) — Vo lncg(u') = Ag(u).(u — o) + pg(u*).(u — u')?),

for some u* s.t. |u— u*| < |u—u'|, and, for every k =1,...,d,
there exists a constance o € (0,1) s.t.

I [Vo(Ao(u))l < Ti(u), E[UR(1 = U)*Tic (Uz)] < oo

Moreover, for every k,|1 =1, ...,d, there exists a function Fy; in
Ry s.t., for every u € (0,1)9,

sup [(po(u)) k1| < Fii(u), and
0coO

E[UJ(1— U)"U (1= U) "7 (U 2)] < oo, for some y € (0,1)
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Asymptotic normality

Assumption 14

Assume that 3 — M() is twice continuously differentiable. Its
Hessian matrix at point 3y is denoted by ¥ = V%M(ﬂo), and is
invertible.
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Asymptotic normality

Assumption 15

For any u € RY, set

g(u,z):= sup sup  |Valncy(v)l,
0eB(00(Z),m1,n) VEB(U,61)

where B(u,d) (resp. B(6,1n)) denotes the closed ball of center u
(resp. ) and radius ¢ (resp. n). Assume

sup Elg(U;, Z))-1(Z; € Z,|U; k—vn| < 65)] = o(n~Y?), (19)
k=1,....d

and similarly after having replaced v, by 1 — v,,.

Broadly speaking, it means that
5n/V0C0(U—k7VnZ)|9:90(Z)'1(z € Z)du_y dPz(z) = o(n"'/?),

and the same replacing v, by 1 — v,,.
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Asymptotic normality

Under Assumptions 1 to 15,

n

(B-p0) =50 w22

(g

- V(8,8 Zi) p=p,
i=1

+ Op(n_1/2).
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Asymptotic normality

Assumption 16

Forevery k=1,...,d, x R and z € Z, we can write

A R
Fr(x|z) — Fk(x|]z) = - Z aikn(Xj, Zj,x,z) + ra(x|2),  (20)
j=1

for some particular functions ay , and for some sequence (r,) s.t.

sup sup |ra(x, z)| = op(n~/?).
xeER ZeZ

]

. 1 —
Uik=Uik = — > akn(Xj, Zj, Xies Zi)+rnis 02 sup |ro i = op(1).
j=1

Denote a,(X;,Z;, X;, Z;) (or even a, ;) the d-vector whose
components are ax n(X;, Zj, Xix, Zi), k=1,...,d.
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Asymptotic normality

Assumption 17

Assume that there exists a function W such that

sup |Elan(Xj, Zj,x,2)] — W(z,x)| = o(n1/2),
x€ER,ZeZ

and such that

2
E [{Aw(ﬁo,,@(’,z,)(ui)'w(z7X)vfﬂ/}(ﬁa5/Zi)|g:50} } < .

Hopefully, W is often the null function...
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Asymptotic normality

Corollary 5

Under the Assumptions of Theorem 4 and Assumptions 16 to 17,
we have

2 {8~ Bo) + b} = N(0, ),
where S = E[wiM1M]], where

\V4
My =229 (U V(8 B'Z1) 155,
€ |6=u1

+ Nyso 22y (UD)-W(Z1, X1)V (B, 8'Z1) 5= g

b, = E[wlyn./\/ll] = E[I(Ul €&n 2 € Z)Ml].
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Asymptotic normality

In general, the bias b, cannot be removed, even if E[a; ;] = 0: the
trimming part E[w; ,M;] ~ d,, that is not o(n~%/2) in general.

42/43



Asymptotic normality

In general, the bias b, cannot be removed, even if E[a; ;] = 0: the
trimming part E[w; ,M;] ~ d,, that is not o(n~%/2) in general.

Nonetheless, if

E [A¢(Bo7ﬁéz1)(ul)'w(zl7 Xl)vﬁw(ﬁaﬁlzl)wzﬁo
{1(|Ukx —vn| < 0n) +1(|1 — Uk1 — vn| < 6n)}] = o(n~1/2),

for every k =1,...,d, then n'/2h, = o(1) and

n*2(3 — By) = N(0,Z71SE71).
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