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The Value-at-Risk

Let Y ∈ R be a random loss variable. The Value-at-Risk of level α ∈ (0, 1) denoted
by VaR(α) is defined by

VaR(α) := F
←

(α) = inf{y ,F (y) ≤ α},

where F
←

is the generalized inverse of the survival function F (y) = P(Y ≥ y) of Y .
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The VaR(α) is the quantile of level α of the survival function of the r.v. Y .
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Drawbacks of the Value-at-Risk

Let us consider Y1 and Y2 two loss r.v. with associated survival function F 1 and F 2.
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=⇒ Random variables with light tail probabilities and with heavy tail probabilities may
have the same VaR(α). This is one of the main criticism against VaR as a risk
measure (Embrechts et al. [1997]).
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The Conditional Tail Expectation

The Conditional Tail Expectation of level α ∈ (0, 1) denoted CTE(α) is defined by

CTE(α) := E(Y |Y > VaR(α)).
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=⇒ The CTE(α) takes into account the whole information contained in the upper part
of the tail distribution.

5 / 34



The Conditional Tail Expectation

The Conditional Tail Expectation of level α ∈ (0, 1) denoted CTE(α) is defined by

CTE(α) := E(Y |Y > VaR(α)).

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

VaR(α)
CTE(α)CTE(α)

=⇒ The CTE(α) takes into account the whole information contained in the upper part
of the tail distribution.

5 / 34



The Conditional Tail Variance

The Conditional Tail Variance of level α ∈ (0, 1) denoted CTV(α) and introduced
by Valdez [2005] is defined by

CTV(α) := E((Y − CTE(α))2|Y > VaR(α)).
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=⇒ The CTV(α) measures the conditional variability of Y given that Y > VaR(α) and
indicates how far away the events deviate from CTE(α).
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The Conditional Tail Moment

The Conditional Tail Skewness of level α ∈ (0, 1) denoted CTS(α) and introduced
by Hong and Elshahat [2010] is defined by

CTS(α) :=
E(Y 3|Y > VaR(α))

(CTV(α))3/2

=⇒ We can unify the definitions of the previous risk measures using the Conditional Tail
Moment introduced by El Methni et al. [2014].

Definition

The Conditional Tail Moment of level α ∈ (0, 1) is defined by

CTMb(α) := E(Y b|Y > VaR(α)),

where b ≥ 0 is such that the moment of order b of Y exists.
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Rewritten risk measures

All the previous risk measures of level α can be rewritten as

Risk Measure Rewritten risk measure

CTE(α) = E(Y |Y > VaR(α)) CTM1(α)

CTV(α) = E((Y − CTE(α))2|Y > VaR(α)) CTM2(α)− CTM2
1(α)

CTS(α) = E(Y 3|Y > VaR(α))/(CTV(α))3/2 CTM3(α)/(CTV(α))3/2

=⇒ All the risk measures depend on the CTMb.
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Framework : regression case

=⇒ Our contributions consist in adding two difficulties in the framework of the
estimation of risk measures.

1 First we add the presence of a random covariate X ∈ Rp.

Y is a positive random variable and X ∈ Rp a random vector of regressors recorded
simultaneously with Y .

In what follows, it is assumed that (X ,Y ) is a continuous random vector.

The probability density function (p.d.f.) of X is denoted by g(·).

The conditional p.d.f. of Y given X = x is denoted by f (·|x).
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Regression Value at Risk and Regression Conditional Tail Moment

For any x ∈ Rp such that g(x) 6= 0, the conditional distribution of Y given X = x is
characterized by the conditional survival function

F (·|x) = P(Y > ·|X = x)

or, equivalently, by the Regression Value at Risk defined for α ∈ (0, 1) by

RVaR(α|x) := F
←

(α|x) = inf{t,F (t|x) ≤ α}.

The Regression Value at Risk of level α is a generalization to a regression setting of the
Value at Risk.

The Regression Conditional Tail Moment of order b is defined by

RCTMb(α|x) := E(Y b|Y > RVaR(α|x),X = x),

where b ≥ 0 is such that the moment of order b of Y exists.
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Framework : extreme losses

2 Second we are interested in the estimation of risk measures in the case of extreme
losses.

=⇒ To this end, we replace the fixed order α ∈ (0, 1) by a sequence αn → 0 as the
sample size n→∞.

RVaR(αn|x) := F
←

(αn|x)

RCTMb(αn|x) := E(Y b|Y > RVaR(αn|x),X = x)

=⇒ All the risk measures depend on the RCTMb.

RCTE(αn|x) = RCTM1(αn|x),

RCTV(αn|x) = RCTM2(αn|x)− RCTM2
1(αn|x),

RCTS(αn|x) = RCTM3(αn|x)/(RCTV(αn|x))3/2.
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Regression Conditional Tail Moment

Starting from n independent copies (X1,Y1), . . . , (Xn,Yn) of the random vector (X ,Y ),
we address here the estimation of the Regression Conditional Tail Moment of level αn

and order b ≥ 0 given by

RCTMb(αn|x) :=
1

αn
E
(
Y bI{Y > RVaR(αn|x)}|X = x

)
,

where b is such that the moment of order b of Y exits and I{·} is the indicator function.

=⇒ We want to estimate all the above mentioned risk measures.

To do it, we need the asymptotic joint distribution of

{(
R̂CTMbj ,n(αn|x), j = 1, . . . , J

)}
,

with 0 ≤ b1 < . . . < bJ and where J is an integer.
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Estimator of the RVaR

The estimator of the Regression Value at Risk of level αn considered is given by

R̂VaRn(αn|x) = inf{t, ˆ̄Fn(t|x) ≤ αn}

with
ˆ̄Fn(y |x) =

∑n
i=1Kkn (x − Xi )I{Yi > y}∑n

i=1Kkn (x − Xi ).

The bandwidth (kn) is a non random sequence converging to 0 as n→∞.

It controls the smoothness of the kernel estimator.

For z > 0, we have also introduced the notation Kz(·) = z−pK(·/z) where K(·) is a
density on Rp.

The estimation of the RVaR(αn|x) has been addressed for instance by Daouia et
al. [2013].
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Estimator of the RCTM and the RVaR

The estimator of the Regression Conditional Tail Moment of level αn and order b is given
by

R̂CTMb,n(αn|x) =
1

αn

∑n
i=1Khn (x − Xi )Y

b
i I{Yi > R̂VaRn(αn|x)}∑n

i=1Khn (x − Xi )

where

R̂VaRn(αn|x) = inf{t, ˆ̄Fn(t|x) ≤ αn}

with

ˆ̄Fn(y |x) =

∑n
i=1Kkn (x − Xi )I{Yi > y}∑n

i=1Kkn (x − Xi ).

The bandwidths (hn) and (kn) are non random sequences converging to 0 as n→∞.

They control the smoothness of the kernel estimators. In what follows, the
dependence on n for these two sequences is omitted.

For the sake of simplicity we have chosen the same kernel K(·).
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Von-Mises condition in the presence of a covariate

To obtain the asymptotic property of the Regression Conditional Tail Moment estimator,
an assumption on the right tail behavior of the conditional distribution of Y given X = x
is required. In the sequel, we assume that,

(F) The function RVaR(·|x) is differentiable and

lim
α→0

RVaR′(tα|x)

RVaR′(α|x)
= t−(γ(x)+1),

locally uniformly in t ∈ (0,∞).

=⇒ In other words :

−RVaR′(·|x) is said to be regularly varying at 0 with index −(γ(x) + 1)

The condition (F) entails that the conditional distribution of Y given X = x is in the
maximum domain of attraction of the extreme value distribution with extreme value
index γ(x).
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Conditional extreme-value index

The unknown function γ(x) is referred as the conditional extreme-value index.

It controls the behaviour of the tail of the survival function and by consequence the
behaviour of the extreme values.

=⇒ if γ(x) < 0, F (.|x) belongs to the domain of attraction of Weibull. It contains
distributions with finite right tail, i.e. short-tailed.

=⇒ if γ(x) = 0, F (.|x) belongs to the domain of attraction of Gumbel. It contains
distributions with survival function exponentially decreasing, i.e. light-tailed.

=⇒ if γ(x) > 0, F (.|x) belongs to the domain of attraction of Fréchet. It contains
distributions with survival function polynomially decreasing, i.e. heavy-tailed.

The case γ(x) > 0 has already been investigated by El Methni et al. [2014].
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Assumptions

The asymptotic normality of R̂CTMb,n(αn|x) is obtained under additional assumptions.

First, a Lipschitz condition on the probability density function g of X is required. For all
(x , x ′) ∈ Rp × Rp, denoting by d(x , x ′) the distance between x and x ′, we suppose that

(L) There exists a constant cg > 0 such that |g(x)− g(x ′)| ≤ cgd(x , x ′).

The next assumption is devoted to the kernel function K(·).

(K) K(·) is a bounded density on Rp, with support S included in the unit ball of Rp.
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Definitions

Before stating our main result, some further notations are required.

For ξ > 0, the largest oscillation at point (x , y) ∈ Rp × R+
∗ associated with the

Regression Conditional Tail Moment of order b ∈ [0, 1/γ+(x)) is given by

ω (x , y , b, ξ, h) = sup

{∣∣∣∣ ϕb(z |x)

ϕb(z |x ′) − 1

∣∣∣∣ with

∣∣∣∣ zy − 1

∣∣∣∣ ≤ ξ and x ′ ∈ B(x , h)

}
,

where ϕb(·|x) := F (·|x)RCTMb(F (·|x)|x) and B(x , h) denotes the ball centred at x with
radius h.
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Asymptotic normality of R̂VaRn(αn|x)

Theorem 1

Suppose (F), (L) and (K) hold. For x ∈ Rp such that g(x) > 0, let αn → 0 such that

nkpαn →∞ as n→∞

If there exists ξ > 0 such that

nkpαn (k ∨ ω(x ,RVaR(αn|x), 0, ξ, k))2 → 0,

then

(nkpα−1
n )1/2f (RVaR(αn|x)|x)

(
R̂VaRn(αn|x)− RVaR(αn|x)

)
d−→ N

(
0,
‖K‖2

2

g(x)

)
.

=⇒ We thus find back the result established in Daouia et al. [2013] under weaker
assumptions.
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Asymptotic joint distribution of our estimators

Theorem 2

Suppose (F), (L) and (K) hold. For x ∈ Rp such that g(x) > 0 :

Let 0 ≤ b1 ≤ . . . ≤ bJ < 1/(2γ+(x)),

` = h ∧ k and ` = h ∨ k.

Let αn → 0 such that n`pαn →∞ as n→∞.

If there exists ξ > 0 such that

n`
p
αn

(
` ∨max

b
ω(x ,RVaR(αn|x), b, ξ, `)

)2

→ 0,

then, if
h/k → 0 or k/h→ 0

the random vector

(n`pαn)1/2

{(
R̂CTMbj ,n(αn|x)

RCTMbj (αn|x)
− 1

)}
j∈{1,...,J}

is asymptotically Gaussian, centred, with a J × J covariance matrix.
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Covariance matrix two cases

In what follows, (·)+ (resp. (·)−) denotes the positive (resp. negative) part function.

1 If k/h→ 0 then the covariance matrix is given by

‖K‖2
2Σ(1)(x)

g(x)

where for (i , j) ∈ {1, . . . , J}2,

Σ
(1)
i,j (x) = (1− biγ+(x))(1− bjγ+(x)).

2 If h/k → 0 then the covariance matrix is given by

‖K‖2
2Σ(2)(x)

g(x)

where for (i , j) ∈ {1, . . . , J}2,

Σ
(2)
i,j (x) =

(1− biγ+(x))(1− bjγ+(x))

1− (bi + bj)γ+(x)
=

Σ
(1)
i,j (x)

1− (bi + bj)γ+(x)
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Covariance matrix two cases

Recall that

Σ
(1)
i,j (x) = (1− biγ+(x))(1− bjγ+(x)) and Σ

(2)
i,j (x) =

Σ
(1)
i,j (x)

1− (bi + bj)γ+(x)

Note that if γ(x) ≤ 0, asymptotic covariance matrices do not depend on
{b1, . . . , bJ} and thus the estimators share the same rate of convergence.

Conversely, when γ(x) > 0, asymptotic variances are increasing functions of the
RCTM order.

Moreover, in this case, note that for all i ∈ {1, . . . , J}

Σ
(2)
i,i (x) > Σ

(1)
i,i (x)

=⇒ Taking k/h→ 0 leads to more efficient estimators than h/k → 0.
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Asymptotic normality of R̂CTEn(αn|x)

Corollary

Suppose that the asumptions of Theorem 1 hold with γ(x) < 1/2. If there exists ξ > 0
such that

n`
p
αn

(
` ∨maxω(x ,RVaR(αn|x), 1, ξ, `)

)2 → 0,

then, if h/k → 0 or k/h→ 0, the random variable

(n`pαn)1/2

(
R̂CTEn(αn|x)

RCTE(αn|x)
− 1

)
,

is asymptotically Gaussian, centred with variance

ϑRCTE‖K‖2
2

g(x)

where

If k/h→ 0 then
ϑRCTE = (1− γ+(x))2

If h/k → 0 then

ϑRCTE =
(1− γ+(x))2

(1− 2γ+(x))
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Proposition

Under (F), the Regression Conditional Tail Moment or order b is asymptotically
proportional to the Regression Value at Risk to the power b.

Proposition

Under (F), for all b ∈ [0, 1/γ+(x)),

lim
α→0

RCTMb(α|x)

[RVaR(α|x)]b
=

1

1− bγ+(x)
,

and RCTMb(·|x) is regularly varying with index −bγ+(x).

In particular, the Proposition is an extension to a regression setting of the result
established in Hua and Joe [2011] for the Conditional Tail Expectation (b = 1) in the
framework of heavy-tailded distributions (γ = γ(x) > 0).
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Endpoint

Let us note yF (x) = F̄←(0|x) ∈ (0,∞] the endpoint of Y given X = x

Two cases :

1 If the endpoint yF (x) is infinite :

yF (x) =∞ then γ(x) ≥ 0

=⇒ We can make risk measure estimation.

=⇒ We propose an application in pluviometry in the case γ(x) > 0.
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Application in pluviometry

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region

The Cévennes-Vivarais region

Aim =⇒ to obtain maps of estimated extreme risk measures in all points of the region.
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Application in pluviometry

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region Work in B(x , hn)

Aim =⇒ to obtain maps of estimated extreme risk measures in all points of the region.
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Extrapolation

Daouia et al. [2011] have established the asymptotic normality of an extrapolated
version of the RVaR(βn|x) with βn arbitrary small.

El Methni et al. [2014] have established the asymptotic normality of an extrapolated
version of the RCTMb(βn|x) with βn arbitrary small.

As a consequence, replacing R̂VaRn and R̂CTMb,n by theirs extrapolated versions
provides estimators for all risk measures considered in this presentation adapted to
arbitrary small levels.

=⇒ In particular we want to obtain maps of risk measures of daily rainfall corresponding
to an amount of rain which is exceeded on average once in 100 years.

=⇒ It corresponds to a level of risk β = 1/(100× 365.25)
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Application in pluviometry

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region Bi-quadratic kernel

Aim =⇒ to obtain maps of estimated extreme risk measures in all point of the region.
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Application in pluviometry
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Application in pluviometry

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

R̂VaRn with γ(x) > 0 R̂CTEn with γ(x) > 0

Aim =⇒ to obtain maps of estimated extreme risk measures in all point of the region.
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Endpoint

2 If the endpoint yF (x) is finite, the risk measures do not have sense :

yF (x) <∞ then γ(x) ≤ 0 =⇒ γ+(x) = 0

As a consequence of the Proposition

lim
α→0

RCTMb(α|x) = yb
F (x)

=⇒ We can use our Proposition to make frontier estimation.

=⇒ We propose an application in nuclear reactor reliability.
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Application in nuclear reactor reliability

The dataset comes from the US Electric Power Research Institute and consists of
n = 254 toughness results obtained from non-irradiated representative steels.

An accurate knowledge of the change in fracture toughness of the reactor pressure
vessel materials as a function of the temperature is of prime importance in a nuclear
power plant’s lifetime programme.
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Frontier estimation

As the temperature decreases, the steel fissures more easily.

Here, it is important to know the upper limit of fracture toughness of each material
as a function of temperature.

This translates into estimating the optimal support upper boundary.
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Conclusions

Commentaries

+ New tool for the prevention of risk and frontier estimation.

+ Theoretical properties similar to the univariate case (extreme or not) and with or
without a covariate.

+ Our theoretical results are similar to those obtained by Daouia et al. [2013] and El
Methni et al. [2014].

+ Capable to estimate all risk measures based on conditional moments of the r.v. of
losses given that the losses are greater than RVaR(α) for short, light and
heavy-tailed distributions.

Short-term perspectives

Application to the nuclear data set.

Tuning parameter selection procedure to choose (αn, h).

Long-term perspectives

Curse of dimensionality.
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