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Topics

Main Objectives and Tasks

I Population Dynamics

I Long term Care Contracts

I Advanced Simulation methods

I Multi-year Solvency

I Statistical aspects of longevity risk

I Inter-generational Approach and pension issues
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Perspectives

I Limit results and inference for population dynamics models,

random environment

I Combining longevity, epidemics customer behaviour, joint

stress- tests

I Long term care: measuring the impact of preventive actions,

innovative care, etc...

I Synthetic internal risk model simulation issues

I Multi-population models

I Incorporating random longevity and interest rates into inter-

generational risk models
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Conferences

Data

I Requesting access to SNDS Health Database

I Study on AERAS convention thanks to SNDS database
societal issues

Big data, longevity public health: solidarity risk sharing

Conferences

I LoLitA parallel sessions, EAJ Conference, Lyon, Sept. 2016

I LoLitA international conference, 2017

6/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



Part I

Demographic Transition in short

7/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



  

Groupe de Travail des Groupe de Travail des 

Thésards du LPMAThésards du LPMA

Mercredi 21 Novembre à 16h

à Jussieu salle 113 barre 16-26
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Modèles probabilistes pour l'étude de la longétivité

Alexandre Boumezoued

Figure: Longevity Risk

Thank you, Alexandre Boumezoued



Mortality Transition, Canning (2011)

+30 years for Life Expectancy (LE) in the last century

The demographic observation

I Substantial decline in mortality rate, in particular in small ages

I followed by reduction in fertility rate

I Heath transition (physical and cognitive development) and

compression of morbidity

Economics aspects

I Economic growth, (income by head) and

I increase in social and political policy ( education,

democratie..)

I Growth in world population, citer Cohen

9/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



Health Determinants of mortality improvement

Health point of view from Cutler,Deaton,alii (2006)

I Decline in infectious disease (60% of deaths in1848, < 5% in

1971 in UK)

I Nutritional improvement (debate on the importance)

I Progress in medecine, vaccins, ...

Public policies

I Macro public health: big public work projects (water purifica-

tion explain half of mortality reduction in US (1900 ∼ 1930)

I Reduction in alcoholism, in smoking

I Public and private health, contribute with complex impacts,

I large heterogenity with differences by age, type of

sub-population, countries, with reverse or delayed effects.
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Economic and Wealth Point of view

I Strong evidence on the links, but only 20% as impact

I Relation non-linear and concave

I Unexplained recent slower pace for LifeExp in US /Europa
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Wealth and longevity: complex dependency

Importance of inequalities
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Evolutionary theory for aging

Example of Biological views

I Aging is characterized by the decline of physiological capacity

I Explain heterogeneity and randomness in individual patterns

I Nevertheless a robust observation in evolution theory,

Gompertz (1825): The log mortality rate between 35-80y

is linear in age.

I After 80y, large debate on the rectangularization of the

survival curve, the question of ”limited human life span”?
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Aggregate demographic indicators

Life exptectancy at birth

I Lifetime of an individual: τ

I Life expectancy at birth: E[τ ], at ten E[τ − 10/τ > 10]

Death rate

I Death rate d(a) such that P(τ > a) = e−
∫ a

0 d(s)ds

I In practice annual death probability reduction

q(a) = P(τ < a + 1 | τ ≥ a)

I Mortality plateau (old ages)

Fertility rate

I Complex notion

I With large political connotation (Fertility, Immigration)
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National mortality Surface

Figure: Mortality rate 1900:2004
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National mortality by gender (France)
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National mortality: log q(a,t)

I Looking at log q(a, t) age a in [0,100]

I for different years t (1950,1965,1980,1995,2005)
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Figure: Logarithm of annual death probabilities (national population)
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National mortality by gender (France)
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New economic and social challenge

Aging populations: new phenomenon, without past historical

reference

I viability of shared collective systems, in particular (state or

private) pension systems

I new generational equilibrium

I role and place of aging population in the society

Complex phenomenon, multi-causes

I Difficult to model.

I The role of age

I The heterogenity

Complex Estimation

I Coherence of the data

I Age, cohort, period19/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



Classical Statistical Models

Cairns-Blake-Dowd model

I Logit of annual death probabilities for years 1980 and 2000

(French males)
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CBD Model: Reference for Pension funds industry

Model for high ages (Cairns, Blake, Dowd, 2006):

logit (q(a, t)) = Y1(t) + a.Y2(t) + εa,t ,

I Y1(t): overall reduction in mortality through time, for all ages,

I Y2(t): specific adjustment at each age,

I εa,t is the residual noise.

⇒ choice of a particular form of age dependency

(Compertz=linear)

⇒ 2 time factors

Estimating parameters: for each year t between 1980 and 2007, we

perform the linear regression over ages between 60 and 95, which

gives parameters Y1(t) and Y2(t) (for men and women separately)
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CBD Model Compression

I Compression effect: constraint linking Y1 and Y2

⇒ Mortality improvement transferred from old (∼ 95) to

younger ages (∼ 60)
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Figure: Processes Y1 (left) and Y2 (right) estimated for French males

(ages 60-95) between 1950 and 2010
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Cairns-Blake-Dowd model, IV

Time series Y1 and Y2 can be viewed as a fluctuating environment
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Figure: Estimated environment four factors on French data for ages

60-95 and years 1980-2007.
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Part II

The disorder problem
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Longevity Motivation

Motivations

All countries are experiencing a reduction in mortality over time.

I New, without past historical reference

I Societies are facing new different challenges: new generational

equilibrium, viability of shared collective systems, in particular

pension systems etc...

I Large Heterogeneity

Basis risk for insurer and pension funds, or two populations model

I Difference between national population and insured

I Mainly concerned with mortality evolution which may change

over a projection period

I To detect any change any variation in the basis risk
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Longevity purpose

Mortality evolution

I Mainly concerned with mortality evolution which may change

over a projection period

I Mortality profile/level/trend : Heterogeneity and other factors

I Interest in experienced mortality : Deaths can be observed

sequentially

I Model risk, parameter uncertainty: Long-term projection

Risk Mangement of Mortality evolution

I Sequential information on death occurrences

I Monitoring and surveillance of mortality dynamics

I Updating mortality assumptions
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What is the Disorder Problem?

The Poisson disorder problem is less formally stated as follows

I Observe a trajectory of the Poisson process (Nt) whose

intensity changes from λ to ρλ at some (unknown) time θ.

I The problem is to find a rule to detect θ as quickly as

possible with a limited number of false alarms

  Disorder time
θ0
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Where do the disorder problems arise

I Insurance compagnies: Recalculate the premiums for the

future sales of insurance policies when the risk structure

changes (ρ > 1)

I Pension funds: Large exposure to change in mortality risk :

ρ < 1

I Quality control and maintenance: Inspect, recalibrate, or

repair as soon a manufacturing process goes out of control

I Fraud and computer intrusion detection: Alert the inspectors

for an immediate investigation as soon as abnormal credit

card activity, cell phone calls, or computer network traffic are

detected.
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Overview of change detection

The observation process

I Let N = (Nt)t≥0 be a counting process (of claims, or deaths)

with stochastic intensity λ = (λt)t≥0,

I N is said to be doubly stochastic point process, (DSPP)

I A change in the intensity occurs at an unobservable date θ,

from λt to ρλt , ρ > 0.

I Proportional hazard models

Change of Point θ=Model-risk

I Random with known prior (Bayesian)

I Deterministic but unknown (Non-Bayesian but Robust)

Change of Probability measures: Known statistics P and P̃
I Under P, no change, (λt) holds

I Under P̃, immediate change, (ρλt)) holds

I Under Pθ, λθt = Indt<θ λt + Indt≥θ ρλt30/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



Bayesian setup for random change-point

Brownian framework with abrupt change in the drift

I Based on the conditional distribution of the time of change,

I Formulated as an optimal stopping problem for partially

observable process

I Page(1954), Shiryaev(1963), Roberts(1966), Beibel(1988),

Moustakides (2004), and Dayanik (2006),....

Poisson framework with abrupt change in intensity

I Based on the conditional distribution of the time of change,

with exponential or geometric prior distribution

I More recent studies : Gal (1971), Gapeev (2005), Bayraktar

(2005, 2006), Dayanik (2006) for compound Poisson, Peskir,

Shyriaev(2009) and others

New methods using particle filters

Andrieu, Legland (2004), Zhang (2005)
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Robust Detection Problem, Page(1954)

Robust Detection

I Non-Bayesian framework, mainly motivated by the lack of any

priors on the statistical behavior of change-point.

I Concerned with general counting process, in particular

inhomogeneous Poisson process

Robust Criterium, Lorden(1971)

I Let τ be a stopping time, candidate for the estimation of θ

I The robust Lorden criterium for Poisson process is

CLorden(τ) = sup
θ∈[0,∞]

esssupω Eθ
[
(τ − θ)+

∣∣Fθ]
I Our criterium, well-adapted to our general framework

C (T ) = sup
θ∈[0,∞]

esssupω Eθ
[
(NT − Nθ)+

∣∣Fθ]
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A min-max problem under constraint

Robust Optimization Problem

I Find T ∗ such that C ∗ = C (T ∗) = min C (T ), so that ∀T ,

I sup
θ∈[0,∞]

esssupω Eθ
[
(NT −Nθ)+

∣∣Fθ] ≥ Eθ
[
(NT∗ −Nθ)+

∣∣Fθ]
I subject to the false alarm constraint, that the error of the

second type, (”sound the alarm when there is not change”

(θ =∞) ) is small or equivalently if E[NT ] ≥ π.

I Min-Max Robust problem,

I To be stable by time rescaling
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Likelihood formulation

Conditional probability ratio between P =no change, P̃=

immediate change.

I The conditional probability ratio process of P̃ w.r to P is

d P̃/dP = Et = exp
(

log(ρ)(Nt − (ρ− 1)Λt

)
I Put Uρ

t = Nt − β(ρ)Λt , so ρU
ρ
t is a P-martingale.

I Then the CPR of P w.r to P̃ is : ρ−U
ρ
t = (1/ρ)U

ρ
t

The β coefficient

I where β(ρ) = ρ−1
log(ρ) , with β(ρ) =

∫ 1
0 ρ

udu.= Laplace

transform of U[0, 1].

I Put β̃(ρ) = β(1/ρ) = β(ρ)/ρ, and ρ̃ = 1/ρ.
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Likelihood formulation and SCPR

Sequential conditional probability ratio:

I The logρ ratio of density processes on Ft of Pθ w.r to P is

logρ(dPθ/dP) = Uρ
t∨θ − Uρ

θ where Uρ
t = Nt − βρΛt

The Cumulative Sum rule (cusum)= Max Likelihood in time

I Based on maxs≤t(ρ
Ut−Us ), ( sign of ln(ρ))

I Depend on the sign of ρ− 1

I Cusum stopping time, τm = inf{t ; cusumt ≥ m}

Main question: The optimality of τm, if the false alarm constraint

is achieved, E(Nτπm ) = π.
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Connection to insurance theory

Surplus process

I premium rate (ρ− 1)λt and constant size of claims log ρ

I Surplus by claim is Xt(z) = z + Xt = z − Nt + β(ρ)Λt

Ruin problem and Viability condition

I β > 1 is called the security loading condition, and

E(Xt) = z + (β(ρ)− 1)Λt drifts to ∞
I P(supt Ut ≤ m) = ū(m) is finite and of main interest. Well

known for a long time (Feller 1971) as scale function

Exit times For any cadlag process Z

I τZm = inf{t : Zt ≥ m} and σZb = inf{t : Zt ≤ b}
I ū(m) = P(τUm = +∞) and ū(m − Ut) is a martingale
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Reflected Counting process with drift

Running supremum

I Running supremum Z̄t = sups≤t Zs

I Put Xt = −Ut = Nt − βΛt . So, X̄t is continuous.

I Ūt is not continuous and increases only at jumps of N, such

that Ūt = Ut

Reflected processes and Cusum processes

I Cusum rule based on maxs≤t ρ
Ut−Us

I ρ > 1: Reflected process X at its maximum,

Vt = supθ≤t(Ut − Uθ) = X̄t − Xt

I ρ < 1 Reflected process U process at its maximum:

Yt = supθ≤t(Xt − Xθ) = Ūt − Ut ,
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Typical paths for ρ > 1

Figure: Sample paths of the processes U(x), V (x) and L(x) when λ is

time-homogeneous.
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Typical paths with change of regime at date 3
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t (right ).
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General definition of reflected processes

Definitions with initial conditions

Vt(Z0) = Ut + sup{Z0, X̄t} = Ut(Z0) + (X̄t − Z0)+,

Yt(Z0) = Xt + sup{Z0, Ūt} = Xt(Z0) + (Ūt − Z0)+,

X̄ ad
t = (X̄t − Z0)+, Ūad

t = (Ūt − Z0)+.

Differential Point of view of reflected processes(j(y) = y ∧ 1)

I V is the unique solution of the ODE driven by N,

dVt = dNt − β Ind(0,∞)(Vt)dΛt , dX̄ ad
t = βInd{Vt=0}dΛt

I Y is the unique solution of the ODE driven by N

dYt = −j(Yt)dNt + βdΛt , dŪad
t = Ind{Yt=0}(1− Yt−)dNt
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Typical paths for ρ > 1 and ρ < 1

 

 

Vt

Ut

V0

0

(a) ρ > 1

Yt

Xt

0

Y0

(b) ρ < 1

Figure: Sample paths of the processes V , U, X and Y when λ is

time-homogeneous.
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Performance analysis

Performance functions of the V -reflected process

I The performance of the cusum stopping is based on

Γm
t (x) = Ẽx

[
IndτVm≥t(NτVm

− Nt) |Fθ
]

= h̃m(Vt(x)) P̃ a.s.

I H̃t(x ,m) = h̃m(Vt) + Nt is a P̃x -local martingale on [0, τVm ),

I Similar definition under Px , with hm(x) = Ex(NτVm
) and

Ht(x ,m) = hm(Vt) + Nt is a Px -local martingale on [0, τm)

Performance functions of the Y -cusum rule

I Same criterium with gm(x) = Ex(NτYm
) and g̃m(x) = Ex(NτYm

)

I G̃t(x ,m) = g̃m(Yt) + Nt is a P̃x -local martingale on [0, τYm )
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A system of ODE’s with delay

Toward optimality: Two problems:

I Extension of the martingale property for any T

I Computation of the functions hn, h̃m, gm, g̃m

Differential finite variation calculus

I φ(z) = φ(0) +
∫ z

0 φ
′(u)du +

∑
α≤z φ(α)− φ(α−). for φ with

finite variation, a.e differentiable, with finite jumps

I Extension without problem for the gm function since gm is

continuous Gt(x ,m) = g̃m(Yt) + Nm,Y
t is a P̃x -local

martingale.
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Discontinuous finite variation function

Differential calculus for discontinuous functions

I The function hm is discontinuous at m, and hm(Vt) has

negative jumps when Vt = Vt− = m

I Jd ,Z
t = number of down-crossings of m continuously

I Hm
t is the martingale hm(Vt) + Nm,V

t − hm(m−)Jd ,V
t

Delayed Differential Equation

I βu′(x) = u(x)− u(x − 1), β > 0.

I βh′m(x) = hm(x + 1)− hm(x) + 1, x ∈ (0,m), h′m(0) = 0,

I βg ′m(x) = gm(x)− gm(x − 1)− 1, x ∈ (0,m).

I u(x), gm(x) = 0 for x < 0, and hm(x) = 0 for x > m with

jump at m = −hm(m−)
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Solutions of the DDE’s

The basic DDE defined on (0,∞) (0 for x < 0) with only one

jump at 0.

βu′(x) = u(x)− u(x − 1), β > 0.

Delayed equation properties

I If β = β(ρ), then ρxu(x) is sol of DDE with β̃(ρ) = β(1/ρ)

I û(x) =
∫ x

0 u(z)dz is sol of DDE

βû′(x) = û(x)− û(x − 1) + βu(0) β > 0, u(0) = û′(0).

I The solution W ρ such that W ρ(0) = 1/β is the scale function

in the Levy framework, characterized by its Laplace transform.

I the function (x) = ρxu(x) is solution of the tilded DDE, and

W̃ ρ̃(x) = ρW ρ(x)
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Pollaczek-Khintchine formula

Old result, Feller 1971, β > 1

I The derivative is a solution (null for x < 0) of the convolution

equation,

u′(x) = (1/β) Ind[0,1)(x)u(0) + (1/β)
∫ 1

0 u′(x − z)dz

I When β > 1, let Sn be sum of i.i.d. unif on [0, 1], Sn, and ν

an indep. geometric r.v. with , P(ν = j) = (1− 1/β)β−j .

u′(x) = u(0)/(β − 1)P(Sν ∈ [x − 1, x)),

I and ū(x) = P(Ū∞ ≤ x) is equal to P(Sν ≤ x)

I The Laplace transform of 1
λ(β−1) ū(x) is equal to the inverse of

rhe Laplace exponent of Uρ, ψρ(α) = αλ(β(ρ)− β(e−α)).

I 1
λ(β−1) ū(x) is a scale function (Bertoin(1996)).
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Scale functions

Scale functions for increase intensity (ρ > 1)

I W (x) = 1
(β−1)P(Ūρ

∞ ≤ x) = 1
(β−1)P(Sν ≤ x)

I W̃ (x) = ρx W (x)

Scale functions for decrease intensity (ρ < 1)

I W (x) = ρ−xW̃ (x)

I W̃ (x) = 1
ρ(β̃−1)

P̃(Ūρ
∞ ≤ x).
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Performance functions

Y -and V performance functions

Y performance

I gm(y) =
∫ m
y W (z)dz , g̃m(y) =

∫ m
y ρW̃ (z)dz , y ∈ [0,m].

V performance

I hm(m−) = W (0) W (m)
W ′(m) , h̃m(m−) = ρW (0) W̃ (m)

W̃ ′(m)
.

I hm(x) = W (m − x) W (m)
W ′(m) −

∫ m−x
0 W (y)dy

I h̃m(x) = ρ
(

W̃ (m − x) W̃ (m)

W̃ ′(m)
−
∫ m−x

0 W̃ (y)dy
)

Comparison functions

I ψ(y) = ρ−(m−y)gm(y)− g̃m(y)/ρ is positive if ρ < 1.

I φm(m− z) = h̃m(m−)
hm(m−) ρ

m−z hm(z)− h̃m(z) is positive for ρ > 1

and h̃′m(x) = ρm−x h̃m(m−)
hm(m−) h′m(x)
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Modified Lorden Criterium

Integration by parts

I ΓT
t := Ẽx(

∫ T
t dNs

∣∣Ft).

I Let (Z̄t) be a monotonic process as X̄t or −Ūt .

I By integration de ΓT
t with respect to ρZ̄t

Ẽx

[ ∫ T

t
ΓT
αdρZ̄α

∣∣Ft

]
= Ẽx

[ ∫ T

t
(ρZ̄s− − ρZ̄t )dNs

∣∣Ft

]
.

Applications to functions

I ρx(h̃m(x)− h̃m(0)) = ρEx

( ∫ τm
0 ρVs−dNs

)
− h̃m(0) Ex(ρVτm ),

I ρ−y (g̃m(y)− g̃m(0)) = ρEy

( ∫ τm
0
ρ−Ys−dNs

)
− g̃m(0) Ey (ρ−Yτm ).

Applications to Lower bounds

I for ρ > 1,ρE
[ ∫ T

t ρVs−dNs

∣∣Ft

]
≤ C (T ) Ẽ

(
ρVT

∣∣Ft

)
I for ρ < 1 ρE

[ ∫ T
t ρ−Ys−dNs

∣∣Ft

]
≤ C (T ) E

(
ρ−YT

∣∣Ft

)
I h̃m(0) and g̃m(0) are respectively the cusum bounds of the

stopping times τVm (ρ > 1) and τYm (ρ < 1).
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Optimality results

Optimality in decrease in intensity

I Let T be a stopping times with finite cusum bound, such that

E(NT ) = E(NτYm
) = gm(0)., then

I E
( ∫ T

0 ρ1−Ys−dNs

)
≥ h̃m(0) E

(
ρ−YT

)
,

Optimality in increase in intensity

I Let T be a stopping times with finite cusum bound,such that

E(NT ) = E(NτVm
) = hm(0)., then

I E
( ∫ T

0 ρVs dNs

)
≥ h̃m(0) E

(
ρVT

)
,
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Argument for the proofs

Recall Comparison functions

I ψ(y) = ρ−(m−y)gm(y)− g̃m(y)/ρ is positive if ρ < 1.

I φm(m− z) = h̃m(m−)
hm(m−) ρ

m−z hm(z)− h̃m(z) is positive for ρ > 1

and h̃′m(x) = ρm−x h̃m(m−)
hm(m−) h′m(x)

I Generalized martingales properties

I Use a multiple of the constraint to compare the integral for

cusum processes above m

I Eliminate the discontinuous local time (ρ > 1) and use the

comparison functions

I The case ρ > 1 is difficult and its was not clear that cusum

strategy are optimal.

I In the Brownian case, the proofs are easy : thanks to

continuity
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Detection Procedure – Algorithm

Step 1: Fix the input parameters: The post-change intensity through

the specification of ρ and the false alarm constraint π.

Step 2: Determine the threshold m as the solution of the equation

E∞[Nτm ] = π.

Step 3: For each new observation at time t compute the value of the

CUSUM process V given by the iterative relation

Vt+1 = (Vt−1 + Ut)
+.

Step 4: Compare the current value of V to the threshold m and stop

the procedure once Vt ≥ m and sound an alarm. Hence

τm(0) = t.
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Numerical instability of ūm, and hm

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−200

−150

−100

−50

0

50

100

150

200

250

300

ρ
h̃
m
(0
)

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5

−5

0

5

10

15

20

Figure: Scale function W (x) for different values of ρ.
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MonteCarlo simulation

Evolution of the global population

λt = a
(
1 + exp(−(t − b)/c)

)−1
, t ≥ 0,

where a, b and c are some constant parameters given in

a b c σ

13.80 11.85 26.40 0.0907

I 10000 simulations for ρ = 1.1, 1.5, 2

ρ 1.1 1.5 2

m = 5 h0(0) 25.01 17.77 () 14.15

h∞(0) 32.92 () 58.52 () 116.82

m = 10 h0(0) 81.48 () 44.49 () 31.97

h∞(0) 147.73 () 643.29 () 4174.49
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Detection Procedure – Real World

We consider the Continuous Mortality Investigation

assured lives dataset and England & Wales national population.

We split data into two periods:

I We consider the period 1947-1969 as a training period.

I The Cox model is estimated over this period using the MLE.

I It is not easy to estimate the post change coefficient ρ

Hence we monitor sequentially the dataset over the period

1970-2005 and look for changes on the mortality of assured lives.
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Detection Procedure – Real World
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Figure: Detection scheme for age groups 50− 59 (right) and 80− 89

(left). The post-change is set to ρ = 1.15% and the false alarm

constraint to π = 100× λ̄.
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Detection Procedure – Real World

τm

Age ρ = 1.50 ρ = 1.15

50− 59 1984 1978

60− 69 1991 1985

70− 79 1988 1984

80− 89 1983 1978

Table: Detection of mortality change with a post-change ratio of

ρ = 1.15 and an average run length (false alarm) constraint of 100. The

right column reports the detected change-point using an off-line

procedure.

I When ρ is larger the detection delay is longer

I Difficile to disctinct effective change or false alarm

I Other results mention that a breakpoint on the data on the
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Conclusion

I The cusum detection rule is optimal in the case of

non-homogeneous Poisson process with a modified Lorden

criterion

I Very easy to implement

I Non asymptotic criterium

I Based on fine properties of scale functions, easy to extend to

Levy processes

I The proof provide lower bound for some conditional ratio

(Basseville)

I Applications in non-life insurance

I Further research on possible extensions
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Part III

Individual Based Model In Longevity
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Demographic rates at individual Level

Demographic rates: an individual of traits xt ∈ X ⊂ Rd and age

at ∈ [0, ā] at time t, (born at time 0)

I Dies at rate d (xt , at , t,Y )

I Gives birth at rate b (xt , at , t,Y )

and the new individual has traits x ′ ∼ Kb(xt , at , dx ′)

I Evolves during life at rate e (xt , at , t,Y )

from traits xt to x ′ ∼ K e(xt , at , dx ′)

Environmental factors

I Demographic rates depend on characteristics, age, time and

on the stochastic environment Y

I Conditionally on the environment Y , the events for a given

individual are jumps of a counting process
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Thinning equations for spatial birth processes

The thinning construction can be used to define a wide variety of

processes as solution to stochastic equations.

Intensity for spatial Birth Process

I naissance +”mutation”individual = rate becomes

b(x ′)kb(x ′, x)m(dx ′)

I aggregated rate of birth mutation=

β(ξ, x) =
∑

x ′∈ξ b(x ′)kb(x ′, x)

I Equation Z (dt, dx) =
∫
R+

1θ≤β(Zt−,x)Qb(dt, dx , dθ)

Birth with age

I First define the new kernel with the age

I Applied the previous relation to process

d〈Zt , f 〉 = 〈I bZt−
f (., 0),Qb〉(dt) + 〈Zt , ∂af 〉dt

I Existence result similar to the linear case
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Death process

Fondamental asymmetry

I since the newborn is from outside,

I then the death remove an individual in the population

How to select an individual by its characteristics

I the counting measure on E is not a ”Radon” σ-finite measure

on E

I Necessity to give a measurable and adapted process to select

individual in a given population
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Numbering a population and Death process

Envelop process of population path without accumulation

I The age desagregated population ξ̃s(dx) = ξs(dx ,R+)

I The non decreasing envelop ξ̄t =
⋃

s∈[0,t] ξ̃s process

I ξ̄t has only finite number of jumps on [0, t], denoted by (Sk)

I (Sk) are also times of jumps for the path ξt

I The sequence (Xk ,Ak(.))k≥N0+1, Xk = ξ̄Sk−N0
\ ξ̄S−k−N0

, and

Ak(t) = t − Sk

Spatial death process

I A Poisson point measure Qd(ds, di , dθ) on R+ × N∗ × R+

I with intensity measure qd(ds, di , dθ) = ds n(di) dθ

I I d(Zt−, i , θ) = 1Xi∈Zt−1θ≤d(Xi )

I Using the previous numbering, we see that

Z (dt, dx) = −
∫
i∈N∗

∫
θ∈R+

I d(Zt−, i , θ)δX i (dx)Qd(dt, di , dθ),

I Same transformation with age67/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



Coupling and comparison of Birth,Death, Spatial process

Theorem Bezborodov (2014), Garcia 1999, ...

I If ξ1
0 ⊂ ξ2

0 ,

I β1(x , η1) ≤ β2(x , η2) η1 ⊂ η2

I d1(x , η1) ≥ d2(x , η2) η2 ⊂ η1, x ∈ η1

The comparison theorem

There exists a cadlag process (ηt) such that ηt ⊂ ξ2
t having the

same law that (ξ1
t )

Sketch of the proof without age, and swap

η(dt,B) =

∫
B×R+

1[0,b1(x ,ηs−)](θ)dQb(dt, dx , dθ)

−
∫
N×R+

1{x2
i ∈ηs−∩B}

1[0,d1(x2
i ,ηs−)](θ)dQd(dt, di , dθ)
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Applications of comparison theorem

In progess

Study classical properties of population processes

I Agregation by traits and convexity

I Localisation and explosion

I Monotonic convergence

Stochastic order on the space of configuration

I Starting from the result of Preston (1975) on the stochastic

order for the Point random field

I Property of the stochastic order on the distributions of the

population processes Zt in terms of demographic

characteristics
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General birth-death-swap process

The Poisson measures driving the equation

I Qb, Qd , Qe

I I b(Zt−, t, x , θ), I d(Zt−, t, i , x , θ), I e(Zt−, t, i , x , θ)

The BSD Population equation

d〈Zt , f 〉 = 〈I bZt−,t f (., 0),Qb〉(dt)− 〈I dZt−,t f (X.,A.(t)),Qd〉(dt)

+ 〈I eZt−,t [f (.,A.(t))− f (X.,A.(t))],Qe〉(dt) + 〈Zt , ∂af 〉dt.

(1)

Hypotheses, E = Rd ,m(dx) = l(dx)

I
∫

b(x , η)dx ≤ c1|η|+ c2

I supx sup{|η|≤m} d(x , η) <∞
Then, existence and strong uniqueness
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Cohort Effect

Cohort effect

An example of numerical experiment to explain an

observed phenomenon
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Cohort effect

Birth cohort for the period [t1, t2]: group of individuals born

between t1 and t2.

I Individuals of the same birth cohort share similar demographic

characteristics (”cohort effect”)

I Age, Period, Cohort analysis put a lot of problems in practice,

in different domains, medecine, sociology,...due to the lag in

data,..insurance...

I Huge literature on APC problems
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Golden cohort

Golden cohort: generations born between 1925 and 1940
Cairns et al. (2009) ra,t = (qa,t−1 − qa,t)/qa,t

The Golden cohort has experienced more rapid improvements than

earlier and later generations.
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Figure 3: Improvement rates in mortality for England & Wales by calendar year
and age relative to mortality rates at the same age in the previous year. Red cells
imply that mortality is deteriorating; green small rates of improvement, and blue
and white strong rates of improvement. The black diagonal line follows the progress
of the 1930 cohort.

2.1.2 The cohort eÆect

Some of the models we employ incorporate what is commonly called the “cohort
eÆect”. The rationale for its incorporation lies in an analysis of the rates at which
mortality has been improving at diÆerent ages and in diÆerent years. Rates of
improvement are plotted in Figure 3 (see, also Willets, 2004, and Richards et al.,
2006). A black and white version of this graph can be found in the Appendix, Figure
38.

In line with previous authors (see, for example, Willets, 2004, Richards et al., 2006)
we can note the following points. In certain sections of the plot, we can detect
strong diagonals of similar colours. Most obviously, cohorts born around 1930 have
strong rates of improvement between ages 40 and 70 relative to, say, cohorts born
10 years earlier or 10 years later. The cohort born around 1950 seems to have worse
mortality than the immediately preceeding cohorts.

There are other ways to illustrate the cohort eÆect and these can be found in Ap-
pendix A.
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Analysis of R. C. Willets, 2004

Some possible explanations:

I Impact of World War II on previous generations,

I Changes on smoking prevalence: tobacco consumption in next

generations,

I Impact of diet in early life,

I Post World War II welfare state,

I Patterns of birth rates

”One possible consequence of rapidly changing birth rates is that

the ‘average’ child is likely to be different in periods where birth

rates are very different. For instance, if trends in fertility vary by

socio-economic class, the class mix of a population will change.”

The Cohort Effect: Insights And Explanations, 2004, R. C. Willets
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Cohort effect and Fertility
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Simple toy model

The different rates

I Reference death rate d̄(a) = A exp(Ba)

I Parameters A ∼ 0.0004 and B ∼ 0.073 estimated on French

national data for year 1925 to capture a proper order of

magnitude

I ”Upper class”: time independent death rate d1(a) = d̄(a) and

birth rate b1(a) = c1[20,40](a) (c=0.1)

I ”Lower class”: time independent death rate d2(a) = 2d̄(a)

but birth rate

b2(a, t) = 4c1[20,40](a)1[0,t1]∪[t3,∞)(t) + 2c1[20,40](a)1[t2,t3](t)

Comment Constant death rates but reduction in overall fertility

between times t1 (=10) and t2 (=20).

I Aim: Test the cohort effect by computing standard

demographic indicators on the population77/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



Aggregate fertility

I One trajectory with 20000 individuals (randomly) splitted

between groups. Estimation of aggregate fertility
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Life expectancy by year of birth

I ”Cohort effect” for aggregate life expectancy
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Figure: Observed fertility (left) and estimated life expectancy by year of

birth (right)

I Death rates by specific group remain the same

I But reduction in fertility for ”lower class” during 10-20

modifies the generations composition

⇒ ”upper class” is more represented among those born

between 10 and 20
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Heterogeneity

Longevity patterns and longevity improvements are very different

for different countries, and different geographic area.

Factor affecting mortality

I socio-economic level (occupation, income, education,

wealth...)

I gender

I marital status

I living environment (pollution, nutritional standards,

hygienic...)

I Take them into account in a stochastic mortality model

Conditional calibration

I On national mortality data and on specific data (with

information on individual characteristics)

I In France, specific data=Permanent demographic

sample=992711 persons, died only from 1967, born in

October only from 1866
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Male Life Expectancy from age 65
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Female Life Expectancy from age 65
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Social Heterogenity of Life Expectancy
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Basis risk I

Difference : national mortality versus that of specific group

I Insurance companies can use national reliable mortality

estimates on large samples

I but the final goal is to model mortality rates specific to

subpopulations with owns traits

population of a small country or region,

individuals with a specific disease,

insurance portfolio,

annuitants of sectorial pension funds.

I But also how take into account other informations

They know the exact ages at death and not only the year of

death (time continuous data)
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Basis risk II

Cause of death are specified

Characteristics of the policyholders : socio economic level,

living conditions ...

selection bias

I BUT

limited size of their portfolios (in comparison to national

populations : 700 000 individuals from 19 different insurance

companies)

small range of the observation period

This heterogeneity is very important for longevity risk transfer

based on national indices: for too important basis risk, the hedge

would be too imperfect
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Permanent Demographic Sample

I Number of individuals at each year by 5 years age groups in

the sample
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Figure: Nombre d’individus par classes d’âge
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Heterogeneity of mortality

Some tests on three characteristics of interest

I Education level

Group 1: Diploma ≤ Baccalauréat (high school diploma)

Group 2: Diploma > Baccalauréat (high school diploma)

I Socio-professional category

Groupe 1: Employees and workers

Groupe 2: Executives and higher intellectual professions,

intermediaries professional categories

I Marital status

Group 1: Single or divorced

Group 2: Married or widowed
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Mortality heterogeneity: education level
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Figure: Death probabilities by education level: years 1990 and 2007
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Mortality heterogeneity: socio-professional
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Figure: Logit of death probabilities by socio-professional category: years

1990 and 2007
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Mortality heterogeneity: marital status
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Figure: Logit of death probabilities by marital status: years 1990 and

2007
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Classical Statistical Models

Cairns-Blake-Dowd model

I Logit of annual death probabilities for years 1980 and 2000

(French males)
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CBD Model: Reference for Pension funds industry

Model for high ages (Cairns, Blake, Dowd, 2006):

logit (q(a, t)) = Y1(t) + a.Y2(t) + εa,t ,

I Y1(t): overall reduction in mortality through time, for all ages,

I Y2(t): specific adjustment at each age,

I εa,t is the residual noise.

⇒ choice of a particular form of age dependency

(Compertz=linear)

⇒ 2 time factors

Estimating parameters: for each year t between 1980 and 2007, we

perform the linear regression over ages between 60 and 95, which

gives parameters Y1(t) and Y2(t) (for men and women separately)
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CBD Model Compression

I Compression effect: constraint linking Y1 and Y2

⇒ Mortality improvement transferred from old (∼ 95) to

younger ages (∼ 60)
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Figure: Processes Y1 (left) and Y2 (right) estimated for French males

(ages 60-95) between 1950 and 2010
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Cairns-Blake-Dowd model, IV

Time series Y1 and Y2 can be viewed as a fluctuating environment
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Figure: Estimated environment four factors on French data for ages

60-95 and years 1980-2007.

96/97 N.El Karoui-S.Loisel-Y.Sahli CIRM 24 Fev 2016



Numerical example: French sub-population

I Cohort of French (males and females) aged 61 at the

beginning of year 2005 in the Permanent Demographic Sample

I Confidence intervals at 90% for the number of individuals

without environment noise
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Numerical example: French sub-population

I The model allows to simulate the evolution of the population,

subject to various death rates dues to different environment

scenarios
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Numerical example: French sub-population

I Application to an insurance portfolio: initial age distribution

Figure: Confidence interval at 90% on the size of the insured population
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Numerical example: French sub-population

I Application to an insurance portfolio: pension amount
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With the indulgence of Sau, Gold of health and longevity

Thank you
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