Full likelihood inference for multivariate extreme value distributions

Clément Dombry Université de Franche-Comté, France

EM approach: M.Genton¹, R.Huser¹ and M.Ribatet² Bayesian framework: S.Engelke³ and M.Oesting⁴

¹King Abdullah University of Science and Technology, Saudi Arabia
²Université de Montpellier, France ³EPFL, Switzerland ⁴Siegen University, Germany

CIRM, February 22-26, 2016.

3

Main motivation

For a parametric model Z ~ F_θ of multivariate max-stable distributions, the full LLHs are usually intractable.

B

Main motivation

- For a parametric model Z ~ F_θ of multivariate max-stable distributions, the full LLHs are usually intractable.
- Direct maximum likelihood estimation is infeasible and one popular alternative is pairwise composite likelihood estimation (Padoan et al., 2010).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main motivation

- For a parametric model Z ~ F_θ of multivariate max-stable distributions, the full LLHs are usually intractable.
- Direct maximum likelihood estimation is infeasible and one popular alternative is pairwise composite likelihood estimation (Padoan et al., 2010).
- Goal : introduce two methodological frameworks that can deal with full LLHs : EM approach and Bayesian setup.

・ ・ ・ ・ ・ ・ ・ ・

- improve frequentist efficiency,
- allow for Bayesian methods in extremes.

Multivariate max-stable distributions

- Max-stable distributions are mathematically justified distributions that can be used in the block maxima method in extreme value theory.
- A multivariate r.v. Z ~ F is called simple max-stable if the margins are unit Fréchet and the max-stability property is satisfied

$$F(\mathbf{z})^n = F(\mathbf{z}/n), \quad \mathbf{z} \in (0, +\infty)^d, \ n \ge 1.$$

▶ The cdf *F* has the particular form

$$F(\mathbf{z}) = \exp(-V(\mathbf{z})), \quad \mathbf{z} \in (0, +\infty)^d,$$

with V a -1 homogeneous function, i.e., $V(u\mathbf{z}) = u^{-1}V(\mathbf{z})$, called the **exponent function**.

(Lm^b) ۱۹۵۰ کې د که د کې د کې د

Density of multivariate max-stable distributions

• Differentiating the cdf $F = \exp(-V)$ yields the density :

$$d = 2: \qquad f = \exp(-V) \left(-\partial_{12}V + \partial_1 V \partial_2 V \right)$$

$$d = 3: \qquad f = \exp(-V) \left(-\partial_{123}V + \partial_1 V \partial_{23}V + \partial_2 V \partial_{13}V + \partial_3 V \partial_{12}V - \partial_1 V \partial_2 V \partial_3 V \right)$$

B)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Density of multivariate max-stable distributions

• Differentiating the cdf $F = \exp(-V)$ yields the density :

$$\begin{aligned} d &= 2: \qquad f = \exp(-V) \left(-\partial_{12}V + \partial_1 V \partial_2 V \right) \\ d &= 3: \qquad f = \exp(-V) \left(-\partial_{123}V + \partial_1 V \partial_{23}V + \partial_2 V \partial_{13}V + \partial_3 V \partial_{12}V - \partial_1 V \partial_2 V \partial_3 V \right) \end{aligned}$$

General case by Faa-di Bruno derivation formula :

$$f = \exp(-V) \sum_{ au \in \mathcal{P}_d} \prod_{j=1}^{\ell} (-\partial_{ au_j} V)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with \mathcal{P}_d the set of partitions $\tau = (\tau_1, \ldots, \tau_\ell)$ of $\{1, \ldots, d\}$.

Density of multivariate max-stable distributions

• Differentiating the cdf $F = \exp(-V)$ yields the density :

$$\begin{aligned} d &= 2: \qquad f = \exp(-V) \left(-\partial_{12}V + \partial_1 V \partial_2 V \right) \\ d &= 3: \qquad f = \exp(-V) \left(-\partial_{123}V + \partial_1 V \partial_{23}V + \partial_2 V \partial_{13}V + \partial_3 V \partial_{12}V - \partial_1 V \partial_2 V \partial_3 V \right) \end{aligned}$$

General case by Faa-di Bruno derivation formula :

$$f = \exp(-V) \sum_{ au \in \mathcal{P}_d} \prod_{j=1}^{\ell} (-\partial_{ au_j} V)$$

with \mathcal{P}_d the set of partitions $\tau = (\tau_1, \ldots, \tau_\ell)$ of $\{1, \ldots, d\}$.

Combinatorial explosion of the number B_d of terms :

$$B_5 \approx 10^2$$
, $B_{10} \approx 10^5$, $B_{20} \approx 10^{13}$.

うつつ 川 へきゃくきゃくりゃ

Interpretation : partition of occurrence times

• Let $\mathbf{Z} \sim F$ and \mathbf{X}_i , i = 1, 2, ... (with Fréchet margins) in its MDA :

$$\mathbf{M}_n = n^{-1} \max_{1 \leq i \leq n} \mathbf{X}_i \stackrel{d}{\longrightarrow} \mathbf{Z}.$$

B)

Interpretation : partition of occurrence times

• Let $\mathbf{Z} \sim F$ and \mathbf{X}_i , i = 1, 2, ... (with Fréchet margins) in its MDA :

$$\mathbf{M}_n = n^{-1} \max_{1 \le i \le n} \mathbf{X}_i \stackrel{d}{\longrightarrow} \mathbf{Z}.$$

► Random partition T_n ∈ P_d associated to occurrence times of maxima, i.e., j and k in the same set if M_{n,j} and M_{n,k} come from same the X_j.

A D > A B > A B > A B >

Stephenson-Tawn approach

- ▶ Weak convergence as $n \to \infty$: (**M**_{*n*}, T_n) \xrightarrow{d} (**Z**, T).
- Stephenson and Tawn (2005) propose to use the additional information of occurrence times Π based on the joint LLH of (Z, T) with simple form

$$L(\mathbf{z},\tau) = \exp\{-V(\mathbf{z})\} \prod_{j=1}^{\ell} \{-\partial_{\tau_j} V(\mathbf{z})\}.$$

・ ・ ・ ・ ・ ・ ・ ・

► Wadsworth (2015) has shown that the poor approximation *T_n* ≈ *T* may cause bias and has proposed a first order bias correction.

Full LLH based inference for $\mathbf{Z} \sim F_{\theta}$

▶ Parametric model $\mathbf{Z} \sim F_{\theta}, \theta \in \Theta$, with likelihood

$$L(\mathbf{z}| heta) = \sum_{ au \in \mathcal{P}_d} L(\mathbf{z}, au \mid heta)$$

ן∎

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Full LLH based inference for $\mathbf{Z} \sim F_{\theta}$

▶ Parametric model $\mathbf{Z} \sim F_{\theta}, \theta \in \Theta$, with likelihood

$$L(\mathbf{z}|\theta) = \sum_{\tau \in \mathcal{P}_d} L(\mathbf{z}, \tau \mid \theta)$$

► Treat the occurrence time *T* has an **unobserved latent variable**. Observations from **Z** : $z_1, ..., z_n \in \mathbb{R}^d$ Unobserved partitions from *T* : $\tau_1, ..., \tau_n \in \mathcal{P}_d$ Model parameters : $\theta \in \Theta$

・ロト・4日・4日・4日・日・900

Full LLH based inference for $\mathbf{Z} \sim F_{\theta}$

▶ Parametric model $\mathbf{Z} \sim F_{\theta}, \theta \in \Theta$, with likelihood

$$L(\mathbf{z}| heta) = \sum_{ au \in \mathcal{P}_d} L(\mathbf{z}, au \mid heta)$$

- ► Treat the occurrence time *T* has an **unobserved latent variable**. Observations from **Z** : $z_1, ..., z_n \in \mathbb{R}^d$ Unobserved partitions from *T* : $\tau_1, ..., \tau_n \in \mathcal{P}_d$ Model parameters : $\theta \in \Theta$
- Methodology :
 - frequentist setup : EM algorithm for missing observations;
 - Bayesian setup : hierarchical model with prior distribution $\pi(\theta)$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Frequentist setup : EM approach

- EM algorithm is a 2-step recursive procedure :
 - **E** : given θ_t , compute the **conditional expectation**

$$Q(heta, heta_t) = \mathbb{E}_{ au \mid \mathbf{z}, heta_t} \left[\log L(\mathbf{z}, T \mid heta) \right];$$

M : compute the maximizer

$$\theta_{t+1} = \operatorname*{argmax}_{\theta} Q(\theta, \theta_t).$$

Frequentist setup : EM approach

- EM algorithm is a 2-step recursive procedure :
 - **E** : given θ_t , compute the **conditional expectation**

$$Q(heta, heta_t) = \mathbb{E}_{ au \mid \mathbf{z}, heta_t} \left[\log L(\mathbf{z}, T \mid heta) \right];$$

M : compute the maximizer

$$\theta_{t+1} = \operatorname*{argmax}_{\theta} Q(\theta, \theta_t).$$

- Use rather a stochastic EM algorithm :
 - MC-E : given θ_t , compute the Monte-Carlo expectation

$$Q(\theta, \theta_t) = \frac{1}{N} \sum_{i=1}^{N} \log L(\mathbf{z}, T^i | \theta_t) \quad \text{with} \quad (T^i)_{1 \le i \le N} \stackrel{i.i.d.}{\sim} L(\tau \mid \mathbf{z}, \theta_t)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Frequentist setup : EM approach

- EM algorithm is a 2-step recursive procedure :
 - **E** : given θ_t , compute the **conditional expectation**

$$Q(heta, heta_t) = \mathbb{E}_{ au \mid \mathbf{z}, heta_t} \left[\log L(\mathbf{z}, T \mid heta) \right];$$

M : compute the maximizer

$$\theta_{t+1} = \operatorname*{argmax}_{\theta} Q(\theta, \theta_t).$$

- Use rather a stochastic EM algorithm :
 - MC-E : given θ_t , compute the Monte-Carlo expectation

$$Q(\theta, \theta_t) = \frac{1}{N} \sum_{i=1}^{N} \log L(\mathbf{z}, T^i | \theta_t) \quad \text{with} \quad (T^i)_{1 \le i \le N} \overset{i.i.d.}{\sim} L(\tau \mid \mathbf{z}, \theta_t).$$

= 900

▶ Simplified notations here : *n* observations ~→ *n* partitions.

Bayesian setup : MCMC approach

Assess the posterior distribution

$$L(\theta, \tau_1, \ldots, \tau_n \mid \mathbf{z_1}, \ldots, \mathbf{z_n}) \propto \pi(\theta) \prod_{i=1}^n L(\mathbf{z_i}, \tau_i \mid \theta).$$

Bayesian setup : MCMC approach

Assess the posterior distribution

$$L(\theta, \tau_1, \ldots, \tau_n \mid \mathbf{z_1}, \ldots, \mathbf{z_n}) \propto \pi(\theta) \prod_{i=1}^n L(\mathbf{z_i}, \tau_i \mid \theta).$$

MCMC approach with separate alternative updates :

- standard Metropolis-Hastings for θ;
- conditional sampling for τ_1, \ldots, τ_n according to $L(\tau_i | \mathbf{z}_i, \theta)$.

・ロト・4日・4日・4日・日・900

Bayesian setup : MCMC approach

Assess the posterior distribution

$$L(\theta, \tau_1, \ldots, \tau_n \mid \mathbf{z_1}, \ldots, \mathbf{z_n}) \propto \pi(\theta) \prod_{i=1}^n L(\mathbf{z_i}, \tau_i \mid \theta).$$

- MCMC approach with separate alternative updates :
 - standard Metropolis-Hastings for θ;
 - conditional sampling for τ_1, \ldots, τ_n according to $L(\tau_i | \mathbf{z}_i, \theta)$.
- Both approaches require :
 - conditional sampling : Gibbs sampler by Dombry et al. (2013);

・ ・ ・ ・ ・ ・ ・ ・

• explicit formulas for $V_{\theta}(\mathbf{z})$, $\partial_{\tau_i} V_{\theta}(\mathbf{z})$.

Gibbs sampler for $L(\tau \mid \mathbf{z}, \theta)$

Gibbs sampler for $L(\tau \mid \mathbf{z}, \theta)$

- ► Combinatorial explosion avoided : number of possible updates $\tau^* \in \mathcal{P}_d$ such that $\tau^*_{-j} = \tau_{-j}$ is
 - $\begin{cases} |\tau| & \text{if } \{x_j\} \text{ is a partitioning set of } \tau, \\ |\tau| + 1 & \text{otherwise.} \end{cases}$

Gibbs sampler for $L(\tau \mid \mathbf{z}, \theta)$

► Combinatorial explosion avoided : number of possible updates $\tau^* \in \mathcal{P}_d$ such that $\tau^*_{-j} = \tau_{-j}$ is

$$\begin{cases} |\tau| & \text{if } \{x_j\} \text{ is a partitioning set of } \tau, \\ |\tau| + 1 & \text{otherwise.} \end{cases}$$

Proposal distribution easily computed :

$$\mathbb{P}[T = \tau^* \mid T_{-j} = \tau_{-j}] \propto \frac{\prod_{k=1}^{|\tau^*|} \{-\partial_{\tau^*_k} V_{\theta}(\mathbf{z})\}}{\prod_{k=1}^{|\tau|} \{-\partial_{\tau_k} V_{\theta}(\mathbf{z})\}}$$

・ コ ト ・ 雪 ト ・ 目 ト ・

э

where many terms cancel out except at most for of them.

Explicit formulas for $V_{\theta}(\mathbf{z})$, $\partial_{\tau_j} V_{\theta}(\mathbf{z})$

▶ In this talk, only the simple logistic model with $\theta \in (0, 1)$:

$$V_{\theta}(\mathbf{z}) = \left(z_{1}^{-1/\theta} + \dots + z_{d}^{-1/\theta} \right)^{\theta},$$

$$\partial_{\tau_{j}} V_{\theta}(\mathbf{z}) = \theta^{1-|\tau_{j}|} \frac{\Gamma(|\tau_{j}|-\theta)}{\Gamma(1-\theta)} \left(\sum_{i=1}^{d} z_{i}^{-1/\theta} \right)^{\theta-|\tau_{j}|} \prod_{i \in \tau_{j}} z_{i}^{-1-1/\theta}$$

ן∎

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Explicit formulas for $V_{\theta}(\mathbf{z}), \partial_{\tau_j} V_{\theta}(\mathbf{z})$

▶ In this talk, only the simple logistic model with $\theta \in (0, 1)$:

$$V_{\theta}(\mathbf{z}) = \left(z_1^{-1/\theta} + \dots + z_d^{-1/\theta} \right)^{\theta},$$

$$\partial_{\tau_j} V_{\theta}(\mathbf{z}) = \theta^{1-|\tau_j|} \frac{\Gamma(|\tau_j|-\theta)}{\Gamma(1-\theta)} \left(\sum_{i=1}^d z_i^{-1/\theta} \right)^{\theta-|\tau_j|} \prod_{i \in \tau_j} z_i^{-1-1/\theta}$$

・ロト・1回ト・1回ト・1回ト 回 うへで

Many other models where (integral) formulas are available :

- Brown-Resnick
- Extremal-t
- Reich-Shaby
- Dirichlet

Simulation study : logistic model

Simulate n = 100 samples z₁,... z_n from the d-dim. max-stable logistic model for Z with parameter θ₀ ∈ {0.1, 0.7, 0.9}.

<□ > < @ > < E > < E > E のQ@

Simulation study : logistic model

Simulate n = 100 samples z₁,... z_n from the d-dim. max-stable logistic model for Z with parameter θ₀ ∈ {0.1, 0.7, 0.9}.

Run MC with uniform prior γ on (0, 1), and take empirical median of posterior L(θ|z₁,...z_n) as point estimate θ̂_{Bayes}.

Simulation study : logistic model

- Simulate n = 100 samples z₁,... z_n from the d-dim. max-stable logistic model for Z with parameter θ₀ ∈ {0.1, 0.7, 0.9}.
- Run MC with uniform prior γ on (0, 1), and take empirical median of posterior L(θ|z₁,...z_n) as point estimate θ̂_{Bayes}.

FIGURE: Theta estimates (left) and partition size (right) along the Markov Chain; $\theta_0 = 0.9$, d = 10.

(日)

Simulation study : Bayesian VS Pairwise Likelihood

	$\theta_0 = 0.1$			6	$\theta_0 = 0.7$	7	$\theta_0 = 0.9$		
d	6	10	50	6	10	50	6	10	50
$Bias(\hat{\theta}_{Bayes})$	2	2	2	10	6	1	-6	-3	2
$s(\hat{ heta}_{ ext{Bayes}})$	36	27	12	240	179	79	239	182	84
$Bias(\hat{\theta}_{PL})$	1	0	2	13	12	16	26	31	41
$s(\hat{ heta}_{ ext{PL}})$	40	30	13	275	237	173	313	273	246

TABLE: Sample bias and standard deviation of $\hat{\theta}_{\text{Bayes}}$ and $\hat{\theta}_{\text{PL}}$, estimated from 1500 estimates ; figures multiplied by 10000.

	$\theta_0 = 0.1$			θ	$_{0}=0.$	7	$\theta_0 = 0.9$		
	6	10	50	6	10	50	6	10	50
$\frac{\textit{MSE}(\hat{\theta}_{\text{Bayes}})}{\textit{MSE}(\hat{\theta}_{\text{PL}})}$	82	83	78	76	57	21	58	44	11

TABLE: Relative efficiencies (%) of $\hat{\theta}_{\text{Bayes}}$ compared to $\hat{\theta}_{\text{PL}}$.

Observations :

- Posterior median $\hat{\theta}_{\text{Bayes}}$ is **unbiased**.
- Substantially reduced std. deviations and MSEs with full LLHs(Lm^B)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Simulation study : marginal parameters

- Data : n = 100 observations from the logistic model (d = 10) with parameter θ₀ and GEV(μ₀, σ₀, ξ₀) margins.
- MSE comparison of Bayes, pairwise LLH and independence LLH estimators :

	$\theta_0 = 0.4$ (known)					$\theta_0 = 0.4$ (unknown)		
	μ_0	σ_0	ξo			μ_0	σ_0	ξ0
Bayes	182	124	10		Bayes	207	288	33
Pairwise	201	180	24		Pairwise	205	269	53
Independence	220	305	89		Independence	220	305	89

· ・ ・ ・ ・ ・ ・

TABLE: MSEs of (μ_0, σ_0, ξ_0)-estimates with Bayesian approach, pairwise LLH and independence LLH, respectively; figures multiplied by 10000.

Observations :

- Small efficiency gain for μ_0 and σ_0 .
- Larger gain for the shape parameter ξ_0 .

Simulation study : in progress

- Robustness with data in the domain of attraction simulated from an outer Clayton copula.
- Test for a linear trend in the marginal parameters :

$$Z_i \sim GEV(\mu_i, \sigma_i, \xi_i) \quad \text{with} \begin{cases} \mu_i = \mu_0 + \alpha \cdot i \\ \sigma_i = \sigma_0 + \beta \cdot i \\ \xi_i = \xi_0 \end{cases}$$

・ ・ ・ ・ ゆ ・ ・ ゆ ・ ・ し ・ く り ・ く り ・

A bayesian test procedure that takes into account (logistic) dependence among the Z_i ?

Logistic model : EM-approach

- ▶ Logistic model : n = 20 observations with $d \in \{2, 5, 10, 20\}$ and $\theta \in \{0.1, \dots, 0.9\}$;
- MC-E : N = 1000 replicates via Gibbs sampling with *d*-thinning.
- EM-MLE : 50-EM iterations averaged over the last 30 iterations.
- Bias, standard deviation and rooted mean squared error :

Logistic model : EM-approach

Comparison True-MLE VS EM-MLE : relative error

$$RE = 100 \cdot \mathbb{E} \left| \frac{\hat{lpha}^{EM} - \hat{lpha}^{MLE}}{\hat{lpha}^{MLE}} \right|$$

▲□▶ ▲圖▶ ▲温▶ ▲温▶ 二温… №

References

C. Dombry, F. Eyi-Minko, and M. Ribatet. Conditional simulation of max-stable processes. *Biometrika*, 100(1) :111–124, 2013.

S. A. Padoan, M. Ribatet, and S. A. Sisson.

Likelihood-based inference for max-stable processes. J. Amer. Statist. Assoc., 105 :263–277, 2010.

A. Stephenson and J. A. Tawn.

Exploiting occurrence times in likelihood inference for componentwise maxima. *Biometrika*, 92(1) :213–227, 2005.

E. Thibaud, J. Aalto, D. S. Cooley, A. C. Davison, and J. Heikkinen.

Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures.

Available from http://arxiv.org/abs/1506.07836, 2015.

J. L. Wadsworth.

On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions.

・ ロ ト ・ 雪 ト ・ 目 ト ・

= 900

Biometrika, 2015.