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Main motivation

I For a parametric model Z ∼ Fθ of multivariate max-stable
distributions, the full LLHs are usually intractable.

I Direct maximum likelihood estimation is infeasible and one
popular alternative is pairwise composite likelihood
estimation (Padoan et al., 2010).

I Goal : introduce two methodological frameworks that can deal
with full LLHs : EM approach and Bayesian setup.

I improve frequentist efficiency,
I allow for Bayesian methods in extremes.
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Multivariate max-stable distributions

I Max-stable distributions are mathematically justified distributions
that can be used in the block maxima method in extreme value
theory.

I A multivariate r.v. Z ∼ F is called simple max-stable if the
margins are unit Fréchet and the max-stability property is
satisfied

F (z)n = F (z/n), z ∈ (0,+∞)d , n ≥ 1.

I The cdf F has the particular form

F (z) = exp(−V (z)), z ∈ (0,+∞)d ,

with V a −1 homogeneous function, i.e., V (uz) = u−1V (z),
called the exponent function.



Density of multivariate max-stable distributions

I Differentiating the cdf F = exp(−V ) yields the density :

d = 2 : f = exp(−V ) (−∂12V + ∂1V∂2V )

d = 3 : f = exp(−V ) (−∂123V + ∂1V∂23V + ∂2V∂13V + ∂3V∂12V − ∂1V∂2V∂3V )

I General case by Faa-di Bruno derivation formula :

f = exp(−V )
∑
τ∈Pd

∏̀
j=1

(−∂τj V )

with Pd the set of partitions τ = (τ1, . . . , τ`) of {1, . . . ,d}.

I Combinatorial explosion of the number Bd of terms :

B5 ≈ 102, B10 ≈ 105, B20 ≈ 1013.
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Interpretation : partition of occurrence times

I Let Z ∼ F and Xi , i = 1,2, . . . (with Fréchet margins) in its MDA :

Mn = n−1 max
1≤i≤n

Xi
d−→ Z.

I Random partition Tn ∈ Pd associated to occurrence times of
maxima, i.e., j and k in the same set if Mn,j and Mn,k come from
same the Xi .

Example with d = 4, n = 50 : Left : Tn = {1,2,34}. Right :
Tn = {12,34}.
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Stephenson-Tawn approach

I Weak convergence as n→∞ : (Mn,Tn)
d→ (Z,T ).

I Stephenson and Tawn (2005) propose to use the additional
information of occurrence times Π based on the joint LLH of
(Z,T ) with simple form

L(z, τ) = exp{−V (z)}
∏̀
j=1

{−∂τj V (z)}.

I Wadsworth (2015) has shown that the poor approximation
Tn ≈ T may cause bias and has proposed a first order bias
correction.



Full LLH based inference for Z ∼ Fθ

I Parametric model Z ∼ Fθ, θ ∈ Θ, with likelihood

L(z|θ) =
∑
τ∈Pd

L(z, τ | θ)

I Treat the occurrence time T has an unobserved latent variable.
Observations from Z : z1, . . . , zn ∈ Rd

Unobserved partitions from T : τ1, . . . , τn ∈ Pd
Model parameters : θ ∈ Θ

I Methodology :
I frequentist setup : EM algorithm for missing observations ;
I Bayesian setup : hierarchical model with prior distribution π(θ).
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Frequentist setup : EM approach

I EM algorithm is a 2-step recursive procedure :
I E : given θt , compute the conditional expectation

Q(θ, θt) = Eτ |z,θt [log L(z,T |θ)] ;

I M : compute the maximizer

θt+1 = argmax
θ

Q(θ, θt).

I Use rather a stochastic EM algorithm :
I MC-E : given θt , compute the Monte-Carlo expectation

Q(θ, θt) =
1
N

N∑
i=1

log L(z,T i |θt) with (T i)1≤i≤N
i.i.d.∼ L(τ | z, θt).

I Simplified notations here : n observations n partitions.
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Bayesian setup : MCMC approach

I Assess the posterior distribution

L(θ, τ1, . . . , τn | z1, . . . , zn) ∝ π(θ)
n∏

i=1

L(zi, τi |θ).

I MCMC approach with separate alternative updates :
I standard Metropolis-Hastings for θ ;
I conditional sampling for τ1, . . . , τn according to L(τi | zi, θ).

I Both approaches require :
I conditional sampling : Gibbs sampler by Dombry et al. (2013) ;
I explicit formulas for Vθ(z), ∂τj Vθ(z).
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Gibbs sampler for L(τ | z, θ)

I Combinatorial explosion avoided : number of possible updates
τ∗ ∈ Pd such that τ∗−j = τ−j is{

|τ | if {xj} is a partitioning set of τ ,
|τ |+ 1 otherwise.

I Proposal distribution easily computed :

P[T = τ∗ | T−j = τ−j ] ∝
∏|τ∗|

k=1{−∂τ∗
k
Vθ(z)}∏|τ |

k=1{−∂τk Vθ(z)}
.

where many terms cancel out except at most for of them.
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Explicit formulas for Vθ(z), ∂τj Vθ(z)

I In this talk, only the simple logistic model with θ ∈ (0,1) :

Vθ(z) =
(

z−1/θ
1 + · · ·+ z−1/θ

d

)θ
,

∂τj Vθ(z) = θ1−|τj | Γ(|τj | − θ)

Γ(1− θ)

(
d∑

i=1

z−1/θ
i

)θ−|τj |∏
i∈τj

z−1−1/θ
i

I Many other models where (integral) formulas are available :
I Brown-Resnick
I Extremal-t
I Reich-Shaby
I Dirichlet
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Simulation study : logistic model
I Simulate n = 100 samples z1, . . . zn from the d-dim. max-stable

logistic model for Z with parameter θ0 ∈ {0.1,0.7,0.9}.

I Run MC with uniform prior γ on (0,1), and take empirical
median of posterior L(θ|z1, . . . zn) as point estimate θ̂Bayes.
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FIGURE: Theta estimates (left) and partition size (right) along the Markov
Chain ; θ0 = 0.9, d = 10.
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Simulation study : Bayesian VS Pairwise Likelihood
θ0 = 0.1 θ0 = 0.7 θ0 = 0.9

d 6 10 50 6 10 50 6 10 50
Bias(θ̂Bayes) 2 2 2 10 6 1 -6 -3 2
s(θ̂Bayes) 36 27 12 240 179 79 239 182 84
Bias(θ̂PL) 1 0 2 13 12 16 26 31 41
s(θ̂PL) 40 30 13 275 237 173 313 273 246

TABLE: Sample bias and standard deviation of θ̂Bayes and θ̂PL, estimated from
1500 estimates ; figures multiplied by 10000.

θ0 = 0.1 θ0 = 0.7 θ0 = 0.9
6 10 50 6 10 50 6 10 50

MSE(θ̂Bayes)

MSE(θ̂PL)
82 83 78 76 57 21 58 44 11

TABLE: Relative efficiencies (%) of θ̂Bayes compared to θ̂PL.

Observations :
I Posterior median θ̂Bayes is unbiased.
I Substantially reduced std. deviations and MSEs with full LLHs.



Simulation study : marginal parameters

I Data : n = 100 observations from the logistic model (d = 10)
with parameter θ0 and GEV (µ0, σ0, ξ0) margins.

I MSE comparison of Bayes, pairwise LLH and independence LLH
estimators :

θ0 = 0.4 (known)
µ0 σ0 ξ0

Bayes 182 124 10
Pairwise 201 180 24
Independence 220 305 89

θ0 = 0.4 (unknown)
µ0 σ0 ξ0

Bayes 207 288 33
Pairwise 205 269 53
Independence 220 305 89

TABLE: MSEs of (µ0, σ0, ξ0)-estimates with Bayesian approach, pairwise LLH and

independence LLH, respectively ; figures multiplied by 10000.

I Observations :
I Small efficiency gain for µ0 and σ0.
I Larger gain for the shape parameter ξ0.



Simulation study : in progress

I Robustness with data in the domain of attraction simulated from
an outer Clayton copula.

I Test for a linear trend in the marginal parameters :

Zi ∼ GEV (µi , σi , ξi ) with

 µi = µ0 + α · i
σi = σ0 + β · i
ξi = ξ0

.

A bayesian test procedure that takes into account (logistic)
dependence among the Zi ?



Logistic model : EM-approach

I Logistic model : n = 20 observations with d ∈ {2,5,10,20} and
θ ∈ {0.1, . . . ,0.9} ;

I MC-E : N = 1000 replicates via Gibbs sampling with d-thinning.
I EM-MLE : 50-EM iterations averaged over the last 30 iterations.
I Bias, standard deviation and rooted mean squared error :
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Logistic model : EM-approach

I Comparison True-MLE VS EM-MLE : relative error

RE = 100 · E
∣∣∣∣ α̂EM − α̂MLE

α̂MLE

∣∣∣∣ .
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