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For univariate distributions, L-moments are expressed as the expectation of
a particular linear combination of order statistics. X1, ...,Xr iid copies of X
with E (|X |) < ∞. The r -th L-moment is defined by

λr =
1
r

r−1
∑
k=0

(−1)k
(
r − 1
k

)
E[Xr−k :r ] (1)

where X1:r ≤ ... ≤ Xr :r denotes the order statistics. The four first
L-moment can be considered as a measure of location, dispersion,
skewness and kurtosis. Indeed λ1 = E(X ), λ2 = (1/2)E (|X − Y |) with
Y an independent copy of . λ3 : the expected distance between the mean
of the extreme terms and the median one in a sample of three i.i.d.
replications of X , and λ4 :the expected distance between the extreme
terms of a sample of four replicates of X with respect to a multiple of the
distance between the two central terms.
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L-moments constitute a robust alternative to traditional moments.
Applications dealing with heavy-tailed distributions. Hosking:"The main
advantage of L-moments over conventional moments is that L-moments,
being linear functions of the data, suffer less from the effect of sampling
variability: L-moments are more robust than conventional moments to
outliers in the data and enable more secure inferences to be made from
small samples about an underlying probability distribution. Also as seen
through (1) the L-moments are determined by the expectation of extreme
order statistics, and vice versa". This motivates their success for the
inference in models pertaining to the tail behavior of random
phenomenons.
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Example
The family of all the distributions of a r.v. X whose second, third and
fourth L-moments verify :

λ2 = σ(1− 2−1/ν)Γ(1+ 1/ν)

λ3 = λ2[3− 2 1−3
−1/ν

1−2−1/ν )]

λ4 = λ2[6+
5(1−4−1/ν)−10(1−3−1/ν)

1−2−1/ν )]

(2)

for any σ > 0, ν > 0. These distributions share their first L-moments of
order 2, 3 and 4 with those of a Weibull distribution with scale and shape
parameter σ and ν. Shift invariance. the r.v. Y shares the same
L-moments λr with those of X but for r = 1 : a neighborhood of the
continuum of all Weibull distributions on [a,∞) or on (−∞, a] when a
belongs to R. Hence this model aims at describing a shape constraint on
the tail of the distribution of the data, independently of its location.
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Example
The model which is the space of the distributions whose second, third and
fourth L-moments verify :

λ2 =
σ

(1+ν)(2+ν)

λ3 = λ2
1−ν
3+ν

λ4 = λ2
(1−ν)(2−ν)
(3+ν)(4+ν)

(3)

for any σ > 0, ν ∈ R. These distributions share their first L-moments with
those of a generalized Pareto distribution with scale and shape parameter
σ and ν. A neighborhood of the whole continuum of Pareto distributions
on [a,∞) or on (−∞, a] when a belongs to R.
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Open and interesting questions: how "large are those neighbourhoods", etc
For example

Proposition
Suppose X is positive with finite expectation (its quantile function is
denoted by Q). Let u0 > 1/2.

P[X > Q(u0)] ≤
λ2

Q(u2)−Q(u1)

with

u1 =
1−
√
8u0 − 7
2

u2 =
1+
√
8u0 − 7
2
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L-moments
Definition and characterizations
The r -th L-moment λr is defined as a particular expectation of L-statistics

λr =
1
r

r−1
∑
k=0

(−1)k
(
r − 1
k

)
E[Xr−k :r ] (4)

The first four L-moments are

λ1 = E[X ]
λ2 = 1

2E[X2:2 − X1:2]
λ3 = 1

3E[X3:3 − 2X2:3 + X1:3]
λ4 = 1

4E[X4:4 − 3X3:4 + 3X2:4 − X1:4].

The expectations of the extreme order statistics characterize a distribution:
if E (|X |) is finite, either of the sets {E (X1:n) , n = 1, ..} or
{E (Xn:n) , n = 1, ..} characterize the distribution of X .;hence L-moments
characterize the distribution of X .
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Writing the L-moments of a distribution F as an inner product of the
corresponding quantile function with a specific complete orthonormal
system of polynomials in L2 (0, 1) . The shifted Legendre polynomials
define such a system of functions.

Definition
The shifted Legendre polynomial of order r is

Lr (t) =
r

∑
k=0

(−1)k
(
r
k

)2
tr−k (1− t)k =

r

∑
k=0

(−1)r−k
(
r
k

)(
r + k
k

)
tk .

(5)
Let us define for r ≥ 1, Kr as the integrated shifted Legendre polynomials

Kr (t) =
∫ t

0
Lr−1(u)du = −t(1− t)

J (1,1)r−2 (2t − 1)
r − 1 (6)

with J (1,1)r−2 the corresponding Jacobi polynomial
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All L-moments λr but λ1 are shift invariant, hence independent upon λ1.
If F is continuous, the expectation of the j-th order statistics Xj :r is

E[Xj :r ] =
r !

(j − 1)!(r − j)!

∫
R
xF (x)j−1(1− F (x))r−jF(dx). (7)

We can state the following result.
If r ≥ 2 and

∫
R
|x | dF (x) < +∞, then

λr =
∫ 1

0
F−1(t)dKr (t) = −

∫ 1

0
Kr (t)F−1(dt). (8)
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Estimation of L-moments
Let x1, ..., xn be iid realizations of a random variable X with distribution F
and L-moments λr . Define Fn the empirical cdf of the sample and lr the
corresponding plug-in estimator of λr ,

lr =
∫ 1

0
F−1n (t)Lr−1(t)dt. (9)

This estimator of λr is biased; the unbiased estimators of L-moments are
the following U-statistics

l (u)r =
1(
n
r

) ∑
1≤i1<···<ir≤n

1
r

r−1
∑
k=0

(−1)k
(
r − 1
k

)
xir−k :n.

These two estimators lr and l
(u)
r of the L-moment λr have the same

asymptotic properties.
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Models
Constraints on moments
Let θ in Θ , an open subset of Rd and let g : (x , θ) ∈ R×Θ→ Rl be a
l-valued function, each component of which is parametrized by
θ ∈ Θ ⊂ Rd . Define

Mθ :=
{
F s.t.

∫
R
g(x , θ)F(dx) = 0

}
and the semi parametric model defined by moment conditions is the
collection of probability measures in

M :=
⋃

θ∈Θ

Mθ. (10)

These semiparametric models are defined by l conditions pertaining to l
moments of the distributions and are widely used in applied statistics.
When d > l : Hansen (GMM); Owen (empirical likelihood approach).
Newey and Smith or B and Keziou (empirical divergence approach).
linearity with respect to the cumulative distribution function (cdf) which
brings a dual formulation of the optimization problem for estimation.
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Constraints on L-moments
Similarly as for models defined by (10), we can introduce semiparametric
linear quantile (SPLQ) models through

⋃
θ∈Θ

Lθ :=
⋃

θ∈Θ

{
F s.t.

∫ 1

0
F−1(u)k(u, θ)du = f (θ)

}
(11)

where Θ ⊂ Rd , k : (u, θ) ∈ [0; 1]×Θ→ Rl and f : Θ→ Rl . Here F−1

denotes the generalized inverse function of F , the distribution function of
the measure F. A specific choice for k(u, θ) produces constraints on the
L−moments of F.
Example

λr =
∫ 1

0
F−1(t)dKr (t) 2 ≤ r ≤ l

λr = fr (θ).

Typically models defined by a finite number of constraints on functions of
the moments of the order statistics.
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Models defined by L-moments conditions
We consider models defined by l constraints on their first L-moments

−E

[
1
r

r−1
∑
k=0

(−1)k
(
r − 1
k

)
Xk :r

]
= fr (θ) 2 ≤ r ≤ l (12)

where Θ is some open set in Rd and fj : Θ→ R are some given functions
defined on Θ.
Semi Parametric Linear Quantile Models, with (u, θ) 7→ k(u, θ)
independent on θ, defined by

k(u, θ) = −L(u) := −

 L2(u)
...

Ll (u)

 (13)

The SPLQ model (11) may be written as

L :=
⋃

θ∈Θ

Lθ =
⋃

θ∈Θ

{
F s.t.

∫ 1

0
L(u)F−1(u)du = −f (θ)

}
. (14)
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We may write equation (12) for r ≥ 2 as follows, making use of the
integrated shifted Legendre polynomials Kr in place of Lr .

−E

[
1
r

r−1
∑
k=0

(−1)k
(
r − 1
k

)
Xk :n

]
=
∫ 1

0
Kr (u)F−1(du) = fr (θ). (15)
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Example
Weibull type: we define k and f by

k(u, θ) = −

 L2(u)
L3(u)
L4(u)


and

f (θ) =

 f2(θ)
f3(θ)
f4(θ)

 =

 σ(1− 2−1/ν)Γ(1+ 1/ν)

f2(θ)[3− 2 1−3
−1/ν

1−2−1/ν )]

f2(θ)[6+
5(1−4−1/ν)−10(1−3−1/ν)

1−2−1/ν )]


where θ = (σ, ν) ∈ R∗+ ×R∗+ and u ∈ [0; 1].
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Example
Pareto type: we define k and f by

k(u, θ) = −

 L2(u)
L3(u)
L4(u)


and

f (θ) =

 f2(θ)
f3(θ)
f4(θ)

 =


σ

(1+ν)(2+ν)

f2(θ) 1−ν
3+ν

f2(θ)
(1−ν)(2−ν)
(3+ν)(4+ν)


where θ = (σ, ν) ∈ R∗+ ×R and u ∈ [0; 1].
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Extension to models defined by order statistics
conditions
The moments of order statistics given by equation satisfy

E[Xj :r ] =
∫ 1

0
Pj :r (u)F−1(u)du

where

Pj :r (u) =
r !

(j − 1)!(r − j)!u
j−1(1− u)r−j .

Any expectation of the moment of some L-statistics writes

−
r

∑
i=1
ajE[Xj :r ] =

∫ 1

0
Pa(u)F−1(u)du, Pa(u) = −

r

∑
i=1
ajPj :r (u).

These models are SPLQ with

L :=
⋃
θ

Lθ =
⋃
θ

{
F s.t.

∫ 1

0
P(u)F−1(u)du = −f (θ)

}
(16)

where P : u ∈ [0; 1] 7→ P(u) ∈ Rl is an array of l polynomials.
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ϕ-divergences
Let ϕ : R→ [0,+∞] be a strictly convex function with ϕ(1) = 0 such
that dom(ϕ) = {x ∈ R|ϕ(x) < ∞} := (aϕ, bϕ) with aϕ < 1 < bϕ. If F
<< G two σ-finite measures of (R,B(R)) such that

Dϕ(G ,F ) =
∫

R
ϕ

(
dG
dF
(x)
)
dF (x) (17)

F = G iff Dϕ(F ,G ) = 0, when ϕ srtict convex.

Example
The class of power divergences parametrized by γ ≥ 0 is defined through
the functions

x 7→ ϕγ(x) =
xγ − γx + γ− 1

γ(γ− 1) .

The domain of ϕγ depends on γ. The Kullback-Leibler divergence is
associated to x > 0 7→ ϕ1(x) = x log(x)− x + 1, the modified
Kullback-Leibler (KLm) divergence to x > 0 7→ ϕ0(x) = − log(x) + x − 1,
the χ2-divergence to x ∈ R 7→ ϕ2(x) = 1/2(x − 1)2, etc.
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Estimates with L-moments constraints
Minimum of ϕ-divergences for p.m’s under L-moment
constraints
A plain approach to inference on θ : mimick the empirical minimum
divergence one, substituting the linear constraints with respect to the
distribution ∫

R
g(x , θ)F(dx) = E[g(X , θ)] = 0

by the corresponding linear constraints with respect to the quantile
measure

L(0)θ (F) = {G s.t. G� F,
∫ 1

0
K (u)G−1(du) = f (θ)}

For any parameter θ ∈ Θ, the distance between F and the submodel
L(0)θ (F) is defined by

Dϕ(L
(0)
θ (F),F) = inf

G∈L(0)θ (F)
Dϕ(G,F),
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Hence minimize the divergence between all probability measures satisfying
the constraint and the empirical measure Fn pertaining to the data set.
A Plug-in estimator is

Dϕ(L
(0)
θ (Fn),Fn) = inf

G∈L(0)θ (Fn)
Dϕ(G,Fn).

A natural estimator for θ may be defined by

θ̂
(0)
n = arg inf

θ∈Θ
Dϕ(L

(0)
θ (Fn),Fn)

= arg inf
θ∈Θ

inf
G∈L(0)θ (Fn)

1
n

n

∑
i=1

ϕ(nG(xi )).
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Existence of this estimator may not hold. L(0)θ (Fn) may be void: its
elements are multinomial distributions ∑n

i=1 wi δxi whose weights are
solutions of a family of l − 1 polynomial algebraic equation of degree l
(with n unknowns w1, ...,wn).

λr = −
∫ 1

0
Kr (t)G−1(dt) ; 2 < r ≤ l . (18)

takes the form

n

∑
i=1
Kr

(
i

∑
a=1

wa

)
(xi+1:n − xi :n) = −fr (θ); 2 < r ≤ l .

By (18) the quantile function plays a similar role as the distribution
function in the classical moment equations. We will then change the
functional to be minimized in order to be able to use duality for the
optimization step. Divergences between quantile measures.
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Minimum of ϕ-divergences for quantile measures, primal
problem
For any θ in Θ the submodel Lnθ is Let N be the class of all σ−finite
positive measures on R. Making use of equation (15) define

Lnθ :=

{
G−1 ∈ N s.t. G−1 � F−1n and −

∫ 1
0 L(u)G

−1(u)du
=
∫ 1
0 K (u)G

−1(du) = f (θ)

}

the family of all measures G−1 with support included in
{1/n, 2/n, .., (n− 1) /n} which satisfy the l − 1 constraints pertaining to
the L-moments.
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A natural proposal for an estimation procedure in the SPLQ model is then
to consider the minimum of a ϕ-divergence between quantile measures
through

θ̂n = arg inf
θ∈Θ

inf
G−1∈Lnθ

∫ 1

0
ϕ

(
dG−1

dF−1n
(u)
)
F−1n (du)

= arg inf
θ∈Θ

inf
∆

n−1
∑
i=1

ϕ

(
yi+1 − yi
xi+1:n − xi :n

)
(xi+1:n − xi :n)

∆ :=

{
(yi+1 − yi ≥ 0) , 1 ≤ i ≤ n− 1,

n−1
∑
i=1
K (i/n)(yi+1 − yi ) = f (θ)

}
.

Both the constraint and the divergence criterion are expressed in function
of G−1 and the constraint is linear with respect to this measure. This
allows to use classical duality results in order to effi ciently compute the
estimator θ̂n.Condition (yi+1 − yi ≥ 0) 1 ≤ i ≤ n− 1 may be relaxed
when G−1 is a σ− finite signed measure, nonwhithstanding notation (!) .
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Dual representations of the divergence under L-moment
constraints
The minimization of ϕ-divergences under linear equality constraint is
performed using Fenchel-Legendre duality. It transforms the constrained
problems into an unconstrained one in the space of Lagrangian parameters.
Let ψ denote the Fenchel-Legendre transform of ϕ, namely, for any t ∈ R

ψ(t) := sup
x∈R

{tx − ϕ(x)} .
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Let θ ∈ Θ and F be fixed.

Theorem

If there exists some G−1 in Lθ(F−1) such that aϕ < dG−1/dF−1 < bϕ

F−1-a.s. then

inf
G−1∈Lθ(F−1)

∫ 1

0
ϕ

(
dG−1

dF−1

)
dF−1 = sup

ξ∈Rl
ξT f (θ)−

∫ 1

0
ψ(ξTK (u))F−1(du).

(19)
Moreover, if ψ is differentiable and if there exists a solution ξ∗ of the dual
problem which is an interior point of{

ξ ∈ Rl s.t.
∫

R
ψ(ξTK (u))F−1(du) < ∞

}
,

then ξ∗ is the unique maximum in (19) and∫
ψ′
(
(ξ∗)T K (u)

)
K (u)F−1(du) = f (θ).
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The estimator
Dual Problem for all θ

inf
G−1∈Lθ(F−1n )

∫ 1

0
ϕ

(
dG−1

dF−1n

)
dF−1n = sup

ξ∈Rl
〈ξ, f (θ)〉−

∫ 1

0
ψ(〈ξ,K (u)〉)F−1n (du).

Hence

θn := arg inf
θ
sup
ξ∈Rl

ξT f (θ)−
∫ 1

0
ψ(ξTK (u))F−1n (du).
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Example

The χ2-divergence ϕ(x) = (x−1)2
2 , then ψ(t) = 1

2 t
2 + t and for each θ

ξ∗1 = Ω−1n

(
f (θ)−

∫
K (Fn(x))dλ

)
with

Ωn =
∫
K (Fn(x))K (Fn(x))T dλ

Hence the estimator
θ̂n = arg inf

θ∈Θ
dnΩ−1n dn

with
dn := f (θ)−

∫
K (Fn(x))dλ

shares similarities with the GMM estimator.
This divergence should thus be favored for its fast implementation.
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Asymptotic properties of the estimators under
L-moment conditions
Theorem
Let x1, ..., xn be an observed sample drawn iid from a distribution F0 with
finite expectation. Let us suppose that

there exists θ0 such that F0 ∈ Lθ0 , θ0 is the unique solution of the
equation f (θ) = f (θ0)

f is continuous and Θ ⊂ Rd is compact

the matrix Ω0 =
∫
K (F0(x))K (F0(x))T dx is non singular.

Then
θ̂n → θ0 in probability as n→ ∞.
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Theorem
Let x1, ..., xn be an observed sample drawn iid from a distribution F0 with
finite variance. Assume regularity as above and

θ0 ∈ int(Θ)
J0 = Jf (θ0) the Jacobian of f with respect to θ in θ0 has full rank

f is continuously differentiable in a neighborhood of θ0

Then
√
n
(

θ̂n − θ0
ξ̂n

)
→d N

(
0,
(
HΣHT 0
0 PΣPT

))
with

Σ : =
∫ ∫ [

F (min (x , y)− F (x)F (y))K ′(F (x)K ′(F (y)T dxdy
]

H : = MJT0 Ω−1

M : =
(
JT0 Ω−1J0

)−1
P : = Ω−1 −Ω−1J0MJT0 Ω−1.
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The estimator of the divergence from F onto the model, namely

2n
[

ξTn f (θn)−
∫

ψ
(

ξTn K (Fn(t))
)
dt
]

does not converge to a χ2 distribution as in moment condition models.
However

Sn := nξTn

(
PnΣnPTn

)
− ξn →d χ2(l),

independently on θ0. Hence confidence areas are possible.
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Numerical applications : Inference for Generalized
Pareto family
The Generalized Pareto Distributions (GPD) µ = 0, a scale parameter σ
and a shape parameter ν. They can be defined through their density :

fσ,ν(x) =


1
σ

(
1+ ν xσ

)−1−1/ν 1x>0 if ν > 0
1
σ exp

( x
σ

)
1x>0 if ν = 0

1
σ

(
1+ ν xσ

)−1−1/ν 1−σ/ν>x>0 if ν < 0

Samples with size n = 100.
λ2 =

σ
(1+ν)(2+ν)

λ3 = λ2
1−ν
3+ν

λ4 = λ2
(1−ν)(2−ν)
(3+ν)(4+ν)

for any σ > 0, ν ∈ R. These distributions share their first L-moments with
those of a GPD with scale and shape parameter σ and ν. This estimation
can be compared with classical parametric estimators.
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The variance and the skewness of the GPD are given by var = E[(X −E[X ])2] = σ2

(1−ν)2(1−2ν)

t3 = E[
(

X−E[X ]
E[(X−E[X ])2 ]

)3
] = 2(1+ν)

√
1−2ν

1−3ν

var and t3 respectively exist since ν < 1/2 and ν < 1/3.
On the other hand, the four first L-moments are

λ1 = σ
1−ν

λ2 = σ
(1−ν)(2−ν)

λ3
λ2

= 1+ν
3−ν

λ4
λ2

= (1+ν)(2+ν)
(3−ν)(4−ν)

Assuming ν < 1 entails existence of the L-moments.
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Simulated GPD ν = .7, σ = 3

Michel Broniatowski, Alexis Decurninge (Institute) L-moments February 2016 34 / 39



Simulated GPD ν = .7,σ = 3, 10% outliers at 300
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Simulated GPD ν = .1,σ = 3, 10% outliers at 30
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Simulated Weibull ν = .4

σ = 3
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LH moments for statistical analysis of extreme
events
Linear combinations of high order statistics Wang 1997

λk1 : = E [Xk+1,k+1]

λk2 : =
1
2
E [Xk+2,k+2 − Xk+1,k+2]

λk3 : =
1
3
E [Xk+3,k+3 − 2Xk+2,k+3 + Xk+1,k+1]

λk4 : =
1
4
E [Xk+4,k+4 − 3Xk+3,k+4 + 3Xk+2,k+4 − Xk+1,k+4]

When k = 0 then L-moments.
λk1 location of Xk+1,k+1; λk2 =half last gap in a sample of size k + 1
(spreadness); λk3 =asymmetry in the upper tail for large k ; λk4
=peakedness on the upper part of the distribution.
As k is large characteristics of the upper part of the distribution. Wang
(1997): estimators for λkj , 1 ≤ j ≤ 4, and LH moments for GEV
distributions.Hence similar semiparametric models "close to GEV in the
upper tail" for instance.
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