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Risk process : Insurance company's reserve evolution

R(t) = u + ct −
N(t)∑
i=1

Xi .
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Classical assumptions

R(t) = u + ct −
N(t)∑
i=1

Xi ,

where

(N(t))t≥0 : Poisson process with parameter λ > 0.

↪→ Claim inter-occurrence times (Vi )i≥1 : sequence of independent and
exponentially distributed with parameter λ random variables.

Claim amounts (Xi )i≥1 : sequence of independent and identically distributed
positive random variables.

(Xi )i≥1 is independent from (Vi )i≥1.

Remark : by convention,
∑N(t)

i=1
Xi = 0 if N(t) = 0.
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Classical problems

Finite-time ruin probability:

ψ(u,T ) = P(∃τ ∈ [0,T ] , R(τ) < 0|R(0) = u),

and in�nite-time ruin probability:

ψ(u) = lim
T→∞

ψ(u,T ).
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Light-tailed vs Heavy-tailed

Light-tailed Heavy-tailed

A random variable X is said light-

tailed if

∃r > 0 , E
[
e
rX
]
< +∞ .

Examples : exponential, gamma,

Weibull with shape parameter

greater than 1.

A random variable X is said

heavy-tailed if

∀r > 0 , E
[
e
rX
]

= +∞ .

Examples : lognormal, Pareto,

Burr, Weibull with shape param-

eter less than 1.
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Subexponential distribution

A distribution K ∈ R+ is said to be subexponential if, with K = 1− K ,

lim
x→∞

K ∗ K (x)

K (x)
= 2 .

We denote K ∈ S.

In particular, if X1, . . . ,Xn are i.i.d. with distribution K , then

P(X1 + . . .+ Xn > x) ∼ P(max(X1, . . . ,Xn) > x) ∼ nK̄ (x) , x →∞ .

�Principle of a single big jump�

Examples : Log-normal, Pareto, Burr,...
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Regularly varying distribution

A distribution K ∈ R+ is said to be regularly varying with index α ≥ 0 if, with
K = 1− K ,

lim
x→∞

K (tx)

K (x)
= t−α .

We denote K ∈ R−α.

In particular, there exists a function L ∈ R0 such that

K (x) = L(x)x−α .

Examples : Pareto, Burr,...
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Mittag-Le�er distribution

V is Mittag-Le�er distributed with parameters λ > 0 and H ∈ (0, 1] if

P(V > t) = EH(−λtH) , for t ≥ 0

where

EH(z) =
∞∑
k=0

zk

Γ(1 + Hk)

is the Mittag-Le�er function (Γ denotes the Euler's Gamma function)

which is de�ned for any complex number z .
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De�nition 1 : Renewal process

NH(t) = max{n ≥ 0 : Un ≤ t} =
∑
k≥1

1Uk≤t ,

with

Un =
∑n

k=1 Vk for n ≥ 1 ;

and (Vk)k≥1 are i.i.d. with Mittag-Le�er distribution with parameters

λ > 0 and H ∈ (0, 1].

⇒ (NH(t))t≥0 is a fractional Poisson process with parameters λ and H.
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De�nition 2 : Time-changed usual Poisson process

Let :

(N(t))t≥0 be a Poisson process with parameter λ > 0 ;

(EH(t))t≥0 be the right continuous inverse of a standard H-stable

subordinator (DH(t))t≥0. (i.e. EH(t) = inf{r > 0 : DH(r) > t}
where E

[
e−sDH(t)

]
= exp(−tsH)).

⇒ (NH(t))t≥0 := N(EH(t))t≥0 is a fractional Poisson process with

parameters λ > 0 and H ∈ (0, 1].

Remark: From Meerschaert et al. (2011), De�nition 1 and De�nition 2 are
equivalent.
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First properties

Let (NH(t))t≥0 be a fractional Poisson process with parameters λ > 0 and

H ∈ (0, 1].

We have that

(N1(t))t≥0 is a classical Poisson process with parameter λ > 0 ;

LH(ξ) := E(exp(−ξV1)) =
λ

λ+ ξH
;

if H ∈ (0, 1), then P(V1 > t) ∼t→∞
t−H

λΓ(1−H)
. ;

as a consequence, for H ∈ (0, 1) the inter-arrival times are regularly

varying with parameter H, so heavy-tailed, and with in�nite mean ;

(NH(t))t≥0 is light-tailed, i.e. E [exp{ξNH(t)}] <∞ for any ξ ∈ R.
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Long-range dependence

Let (XHj )j≥1 be the fractional Poissonian noise, de�ned for j ≥ 1 by

XHj := NH(j)− NH(j − 1).

Theorem

The fractional Poissonian noise (XHj )j≥1 has the long-range dependence

property for any H ∈ (0;1).

Remark : a stationary renewal process (Nt)t≥0 has the property of

long-range dependence if lim supt→∞
Var(Nt)

t
=∞. But it is not the case

here, so...
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Long-range dependence

De�nition (Heyde and Yang (1997))

A process (Xm)m≥1 (not necessarily stationary) has the property of

long-range dependence if the block mean process

Y
(m)
t =

∑j=tm
j=tm−m+1 Xj∑j=tm

j=tm−m+1Var(Xj)

de�ned for an integer t ≥ 1 satis�es

lim
m→∞

 j=tm∑
j=tm−m+1

Var(Xj)

 Var

(
Y

(m)
t

)
= +∞ .
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Applications

Storm origins, raindrop release and arrival on the ground, alluvial

events, earthquakes : see Benson et al. (2007) for more details.

Example : Raindrop sizes for timescales greater than tens to hundreds

of seconds : Lavergnat and Gole (1998) with H = 0.68.

Self-similarity of web tra�c : Resnick (2000) with H = 0.66.
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In ruin theory

R(t) = u + ct −
NH(t)∑
i=1

Xi ,

where

(NH(t))t≥0 : fractional Poisson process with parameters λ > 0 and
H ∈ (0, 1).

↪→ Claim inter-occurrence times (Vi )i≥1 : sequence of independent and
Mittag-Le�er distributed with parameter λ and H ∈ (0, 1) random variables.

Claim amounts (Xi )i≥1 : sequence of independent and identically distributed
positive random variables.

(Xi )i≥1 is independent from (Vi )i≥1.

Remark : by convention,
∑N

H
(t)

i=1
Xi = 0 if NH(t) = 0.
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With exponential claim amounts (1) : X1 ∼ E(µ)
Proposition

The distribution of the ruin time τ has a density pτ given by

pτ (t) = e−µ(u+ct)
∞∑
n=0

µn(u + ct)n−1

n!

(
u +

ct

n + 1

)
f
∗(n+1)
H

(t) , (1)

where f ∗n
H

denotes the n−fold convolution of the function fH de�ned by for t ≥ 0
by

fH(t) = utH−1EH,H(−λtH) (2)

where

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)

is the generalized two-parameter Mittag-Le�er function.

Proof : Direct application of Borovkov and Dickson (2008), since it is a Sparre-Andersen process.
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With exponential claim amounts (2) : X1 ∼ E(µ)

Proposition

For any x > 0 it holds that

ξ

∫ ∞
0

e−ξtψ(u, t)dt = 1− y(ξ) exp
{
− uµ

(
1− y(ξ)

)}
, ξ > 0

where y(ξ) is the unique solution of the equation

y(ξ) =
λ

λ+
(
ξ + cµ(1− y(ξ))

)
H

, ξ > 0. (3)

Proof : Direct application of Theorem 1 in Malinovskii (1998).
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With exponential claim amounts (3) : X1 ∼ E(µ)

Proposition

Under the assumptions of this section, we have

ψ(u) =

(
1− γ

µ

)
e−γu ,

where γ > 0 is the unique solution of

γH − µγH−1 +
λ

cH
= 0 . (4)

Proof : Direct application of Theorem VI.2.2 in Asmussen and Albrecher (2010).
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With heavy-tailed claim amounts (1)

Proposition

If the distribution F of the claim sizes is sub-exponential, then

ψ(u, t) ∼ λtH F (u)

Γ(1 + H)

as u goes to +∞.

Proof :

P

NH(t)∑
i=1

Xi > u + ct

 ≤ ψ(u, t) ≤ P

NH(t)∑
i=1

Xi > u

 ;

P

NH(t)∑
i=1

Xi > u + ct

 ∼ P
NH(t)∑

i=1

Xi > u

 ∼ E(NH(t))F (u) ;

and from Lageras (2005) : E(NH(t)) =
λtH

Γ(1 +H)
.
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With heavy-tailed claim amounts (2) (In progress...)

Since (NH(t))t≥0 is a renewal process, a random walk can be easily

exhibited :

S0 = 0 , Sn = (X1 − cV1) + · · ·+ (Xn − cVn) .

With

M = sup{Sn, n ≥ 0} ,

we have, for u > 0,

ψ(u) = P(M > u) .

So from Denisov et al. (2004), we get :
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With heavy-tailed claim amounts (3) (In progress...)

Proposition

Assume that P(X1 > x) = L(x)x−α for some slowly regularly varying

function L and α > 0 (so X1 ∈ R−α).
If α > H then

ψ(u) ∼ λΓ(α−H)

cHΓ(α)
u−α+HL(u) u →∞ .

If α = H then

ψ(u) ∼ λ

cHΓ(H)

∫ +∞

u

L(t)

t
dt , u →∞ .
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Thank you for your attention !
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