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Risk process : Insurance company’s reserve evolution

N(t)
R(t):u—i-ct—ZX,-.
i=1

R(t)
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Classical assumptions

N(t)

R(t)=u+ct—> X,
i=1
where

@ (N(t))t>0 : Poisson process with parameter A > 0.

— Claim inter-occurrence times (V;);>1 : sequence of independent and
exponentially distributed with parameter A random variables.

o Claim amounts (X;)i>1 : sequence of independent and identically distributed
positive random variables.

@ (X;)i>1 is independent from (V;)i>1.

t

Remark : by convention, Z’{uz(l) X; =0if N(t) =0.
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Classical problems

g
d
/T!l/ T ‘

RUIN

@ Finite-time ruin probability:
Y(u, T)=P(3T €[0,T], R(7) <0|R(0) = u),
@ and infinite-time ruin probability:

Y(u) = Tli_r)noolb(u, 7).
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Light-tailed vs Heavy-tailed

Light-tailed

A random variable X is said light-
tailed if

dr >0, E[e’X] < +00.

Examples : exponential, gamma,
Weibull with shape parameter
greater than 1.

Heavy-tailed
A random variable X is said
heavy-tailed if
Vr>0, E[e’x] = +00.

Examples : lognormal, Pareto,
Burr, Weibull with shape param-
eter less than 1.
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Subexponential distribution

A distribution K € R is said to be subexponential if, with K=1-K,

jim KK

o K (x)

We denote K € S.

In particular, if X1,...,X, are i.i.d. with distribution K, then

P(X1—|—...—|—X,,>x)~P(max(Xl,...,X,,)>x)~n}_((x),x—>oo.

“Principle of a single big jump”

Examples : Log-normal, Pareto, Burr, ...

8 /26



Introduction Fractional Poisson process Direct applications in ruin theory

Regularly varying distribution

Adi str|but|on K € R, is said to be regularly varying with index o > 0 if, with
K=1-K,
K
lim 7(tx) =0

X—$00 K(X)

—Q

We denote K € R_,.

In particular, there exists a function L € Rq such that

Examples : Pareto, Burr,...
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Mittag-Leffler distribution

V is Mittag-Leffler distributed with parameters A > 0 and H € (0, 1] if

P(V > t) = Eg(-\t") for t >0

where
== Zk:o (1 + Hk)

is the Mittag-Leffler function (I denotes the Euler's Gamma function)
which is defined for any complex number z.
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Definition 1 : Renewal process

N(t) =max{n >0 : Up <t} = Ty,
k>1

with
o Up=>7_(Vkforn>1;

@ and (Vi)k>1 are i.i.d. with Mittag-Leffler distribution with parameters
A>0and He (0,1].

= (N (t))e>o is a fractional Poisson process with parameters A and H.
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Definition 2 : Time-changed usual Poisson process
Let :
@ (N(t))e>0 be a Poisson process with parameter A > 0 ;
@ (En(t))e>0 be the right continuous inverse of a standard H-stable

subordinator (Dp(t))s>0. (i.e. En(t) =inf{r >0 : Du(r) > t}
where E [e7*Pn(t)] = exp(—ts')).

= (Nu(t))e>0 := N(En(t))e>0 is a fractional Poisson process with
parameters A > 0 and H € (0,1].

Remark: From Meerschaert et al. (2011), Definition 1 and Definition 2 are
equivalent.
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First properties

Let (Nu(t))e>o be a fractional Poisson process with parameters A > 0 and
He (0,1].

We have that

@ (Ni(t))t>0 is a classical Poisson process with parameter A > 0 ;

® Ln(€) = E(ew(~€VA)) = 3 gn

. tiH
o if He (0,1), then P(V] > t) ~t 00 m '

@ as a consequence, for H € (0, 1) the inter-arrival times are regularly
varying with parameter H, so heavy-tailed, and with infinite mean ;

o (N (t))e>o is light-tailed, i.e. E [exp{{Nu(t)}] < oo for any & € R.
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Long-range dependence

Let (XJ-H)J-Zl be the fractional Poissonian noise, defined for j > 1 by
X = Nyg(j) = Nu(j — 1).
Theorem

The fractional Poissonian noise (XJH) j>1 has the long-range dependence
property for any H € (0;1).

Remark : a stationary renewal process (N;);>o has the property of
Var(Ny)
t

long-range dependence if limsup,_, = 00. But it is not the case

here, so...
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Long-range dependence

Definition (Heyde and Yang (1997))

A process (Xm)m>1 (not necessarily stationary) has the property of
long-range dependence if the block mean process
=t
Y(m) o j’:tzferl XJ
t - i—t
'Ji:tzferl Var(XJ')

defined for an integer t > 1 satisfies

Jj=tm

: ) (m)) _
mIinOo Z Var(X;) | Var (Yt ) = 400 .
j=tm—m+1
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Applications

@ Storm origins, raindrop release and arrival on the ground, alluvial
events, earthquakes : see Benson et al. (2007) for more details.

Example : Raindrop sizes for timescales greater than tens to hundreds
of seconds : Lavergnat and Gole (1998) with H = 0.68.

@ Self-similarity of web traffic : Resnick (2000) with H = 0.66.
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In ruin theory

NH(I‘)
R(t)=u+ct— > X,
i=1
where

@ (Ny(t))r>o : fractional Poisson process with parameters A > 0 and
H e (0,1).

— Claim inter-occurrence times (V;);>1 : sequence of independent and
Mittag-Leffler distributed with parameter A and H € (0, 1) random variables.

@ Claim amounts (X;)i>1 : sequence of independent and identically distributed
positive random variables.

@ (Xi)i>1 is independent from (V;)i>1.

(

Remark : by convention, Z,N:Ii £ X; = 0if Ngg(t) =0.
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With exponential claim amounts (1) : X; ~ E(u)

Proposition
The distribution of the ruin time T has a density p, given by

5 > u(u + ct)" L ct .
po(t) = ewluren 3 1 i ) (“* n+1> RO, @)
n=0 :

where f;" denotes the n—fold convolution of the function fi; defined by for t > 0
by

fH(t) = UtHilEH7H(7>\tH) (2)

where
k

Eop(z) = kz:;) m

is the generalized two-parameter Mittag-Leffler function.

Proof : Direct application of Borovkov and Dickson (2008), since it is a Sparre-Andersen process.
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With exponential claim amounts (2) : X; ~ E(u)

Proposition
For any x > 0 it holds that

€ [ ettt =1y ew { w1 -y(©)} . €>0

where y(§) is the unique solution of the equation

, £€>0. (3)

y({) = A H
A+ (€4 en(1 - y())

Proof : Direct application of Theorem 1 in Malinovskii (1998).
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With exponential claim amounts (3) : X; ~ E(u)

Proposition

Under the assumptions of this section, we have

v = (1-2) e,

where v > 0 is the unique solution of

Proof : Direct application of Theorem VI.2.2 in Asmussen and Albrecher (2010).
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With heavy-tailed claim amounts (1)
Proposition

If the distribution F of the claim sizes is sub-exponential, then

AU F ()
P(u,t) ~ Tt +0H)

as u goes to +0o0.

Proof :

Ng(t) Ng(t)
P ZX,->u+ct <YP(u,t) <P ZX,->u ;
i=1

i=1

Ng (t) Ng(t)
P ( > X > u+ct> ~P ( > X > U) ~ E(Nnu(t)) F(u);

i—1 i—1
AtH

and from Lageras (2005) : E(Nu(t)) = rarm
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With heavy-tailed claim amounts (2) (In progress...)

Since (Np(t))e>o0 is a renewal process, a random walk can be easily
exhibited :

50:0,SnI(Xl—CV1)+~--+(X,,—CV,,).

With
M = sup{S,, n > 0},

we have, for u > 0,
Y(u) =P(M > u).

So from Denisov et al. (2004), we get :
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With heavy-tailed claim amounts (3) (In progress...)

Proposition

Assume that P(X1 > x) = L(x)x~“ for some slowly regularly varying
function L and a > 0 (so X1 € R_,).

o Ifa > H then

P(u) ~ —AFC(Har(—aI)—I) y—otH]

(v) u— 0.

o Ifa=H then

A oo L (t)
I/J(U)NCHF—(I{)/U Tdt, u— 0.
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Thank you for your attention !
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