Fractional Poisson process: long-range dependence and applications in ruin theory

Romain Biard LMB, Franche-Comté University

Workshop "Extremes - Copulas - Actuarial science"

Joint work with B Saussereau

Outline

- 2 Fractional Poisson process
- Oirect applications in ruin theory

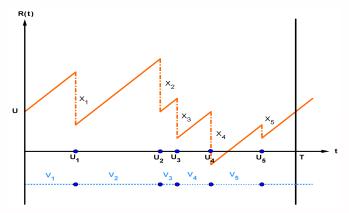
Introduction

- Fractional Poisson process
- Oirect applications in ruin theory

.

Risk process : Insurance company's reserve evolution

$$R(t) = u + ct - \sum_{i=1}^{N(t)} X_i.$$



Classical assumptions

$$R(t) = u + ct - \sum_{i=1}^{N(t)} X_i ,$$

where

• $(N(t))_{t\geq 0}$: Poisson process with parameter $\lambda > 0$.

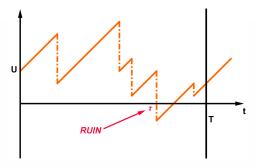
 \hookrightarrow Claim inter-occurrence times $(V_i)_{i \ge 1}$: sequence of independent and exponentially distributed with parameter λ random variables.

 Claim amounts (X_i)_{i≥1} : sequence of independent and identically distributed positive random variables.

•
$$(X_i)_{i\geq 1}$$
 is independent from $(V_i)_{i\geq 1}$.

Remark : by convention, $\sum_{i=1}^{N(t)} X_i = 0$ if N(t) = 0.

Classical problems



• Finite-time ruin probability:

.

$$\psi(u, T) = P(\exists \tau \in [0, T], R(\tau) < 0 | R(0) = u),$$

• and infinite-time ruin probability:

$$\psi(u) = \lim_{T\to\infty} \psi(u, T).$$

Light-tailed vs Heavy-tailed

Light-tailed	Heavy-tailed
A random variable X is said light-	A random variable X is said
tailed if	heavy-tailed if
$\exists r > 0 , E\big[\mathrm{e}^{rX}\big] < +\infty .$	$\forall r > 0, \ \mathbf{E} \left[\mathrm{e}^{r X} ight] = +\infty.$
Examples : exponential, gamma,	Examples : lognormal, Pareto,
Weibull with shape parameter	Burr, Weibull with shape param-
greater than 1.	eter less than 1.

Subexponential distribution

A distribution $K \in \mathbb{R}_+$ is said to be subexponential if, with $\overline{K} = 1 - K$,

$$\lim_{x\to\infty}\frac{\overline{K*K}(x)}{\overline{K}(x)}=2.$$

We denote $K \in \mathcal{S}$.

In particular, if X_1, \ldots, X_n are i.i.d. with distribution K, then

$$\mathsf{P}(X_1+\ldots+X_n>x)\sim\mathsf{P}(\max(X_1,\ldots,X_n)>x)\sim n\bar{K}(x)\,,\,x\to\infty\,.$$

"Principle of a single big jump"

Examples : Log-normal, Pareto, Burr,...

Regularly varying distribution

A distribution $K \in \mathbb{R}_+$ is said to be regularly varying with index $\alpha \ge 0$ if, with $\overline{K} = 1 - K$,

$$\lim_{x\to\infty}\frac{K(tx)}{\overline{K}(x)}=t^{-\alpha}$$

We denote $K \in \mathbb{R}_{-\alpha}$.

In particular, there exists a function $L \in \mathbb{R}_0$ such that

$$\overline{K}(x) = L(x)x^{-lpha}$$

Examples : Pareto, Burr,...

- Practional Poisson process
- Oirect applications in ruin theory

Mittag-Leffler distribution

V is Mittag-Leffler distributed with parameters $\lambda > 0$ and $\mathrm{H} \in (0,1]$ if

$$\mathsf{P}(\mathit{V}>t)=\mathit{E}_{\mathrm{H}}(-\lambda t^{\mathrm{H}})\,, ext{for}\,\,t\geq 0$$

where

$$E_{\mathrm{H}}(z) = \sum_{k=0}^{\infty} rac{z^k}{\Gamma(1 + \mathrm{H}k)}$$

is the Mittag-Leffler function (Γ denotes the Euler's Gamma function) which is defined for any complex number z.

Definition 1 : Renewal process

$$N_{\mathrm{H}}(t) = \max\{n \ge 0 : U_n \le t\} = \sum_{k \ge 1} \mathbb{1}_{U_k \le t},$$

with

•
$$U_n = \sum_{k=1}^n V_k$$
 for $n \ge 1$;

• and $(V_k)_{k\geq 1}$ are i.i.d. with Mittag-Leffler distribution with parameters $\lambda > 0$ and $H \in (0, 1]$.

 $\Rightarrow (N_{
m H}(t))_{t\geq 0}$ is a fractional Poisson process with parameters λ and H.

Definition 2 : Time-changed usual Poisson process Let :

- $(N(t))_{t\geq 0}$ be a Poisson process with parameter $\lambda>0$;
- $(E_{\rm H}(t))_{t\geq 0}$ be the right continuous inverse of a standard H-stable subordinator $(D_{\rm H}(t))_{t\geq 0}$. (i.e. $E_{\rm H}(t) = \inf\{r > 0 : D_{\rm H}(r) > t\}$ where $\mathbf{E}\left[e^{-sD_{\rm H}(t)}\right] = \exp(-ts^{\rm H})$).

 $\Rightarrow (N_{\mathrm{H}}(t))_{t \geq 0} := N(E_{\mathrm{H}}(t))_{t \geq 0}$ is a fractional Poisson process with parameters $\lambda > 0$ and $\mathrm{H} \in (0, 1]$.

<u>Remark</u>: From Meerschaert et al. (2011), Definition 1 and Definition 2 are equivalent.

First properties

Let $(N_{
m H}(t))_{t\geq 0}$ be a fractional Poisson process with parameters $\lambda>0$ and ${
m H}\in(0,1].$

We have that

ullet $(N_1(t))_{t\geq 0}$ is a classical Poisson process with parameter $\lambda>0$;

•
$$L_{\mathrm{H}}(\xi) := \mathsf{E}(\exp(-\xi V_1)) = \frac{\lambda}{\lambda + \xi^{\mathrm{H}}};$$

• if
$$\mathrm{H}\in(0,1)$$
, then $\mathsf{P}(V_1>t)\sim_{t
ightarrow\infty}rac{t^{-\mathrm{H}}}{\lambda\Gamma(1-\mathrm{H})}$. ;

- as a consequence, for $H \in (0, 1)$ the inter-arrival times are regularly varying with parameter H, so heavy-tailed, and with infinite mean ;
- $(N_{
 m H}(t))_{t\geq 0}$ is light-tailed, i.e. $\mathsf{E}\left[\exp\{\xi N_{
 m H}(t)\}\right] < \infty$ for any $\xi \in \mathbb{R}.$

Long-range dependence

Let $(X_j^{\mathrm{H}})_{j\geq 1}$ be the fractional Poissonian noise, defined for $j\geq 1$ by $X_j^{\mathrm{H}}:=N_{\mathrm{H}}(j)-N_{\mathrm{H}}(j-1).$

Theorem

The fractional Poissonian noise $(X_j^{\mathrm{H}})_{j\geq 1}$ has the long-range dependence property for any $\mathrm{H} \in (0;1)$.

<u>Remark</u> : a stationary renewal process $(N_t)_{t\geq 0}$ has the property of long-range dependence if $\limsup_{t\to\infty} \frac{Var(N_t)}{t} = \infty$. But it is not the case here, so...

Long-range dependence

Definition (Heyde and Yang (1997))

A process $(X_m)_{m\geq 1}$ (not necessarily stationary) has the property of long-range dependence if the block mean process

$$Y_t^{(m)} = \frac{\sum_{j=tm-m+1}^{j=tm} X_j}{\sum_{j=tm-m+1}^{j=tm} \operatorname{Var}(X_j)}$$

defined for an integer $t \ge 1$ satisfies

$$\lim_{m\to\infty} \left(\sum_{j=tm-m+1}^{j=tm} \operatorname{Var}(X_j)\right) \operatorname{Var}\left(Y_t^{(m)}\right) = +\infty \ .$$

Applications

• Storm origins, raindrop release and arrival on the ground, alluvial events, earthquakes : see Benson et al. (2007) for more details.

Example : Raindrop sizes for timescales greater than tens to hundreds of seconds : Lavergnat and Gole (1998) with H = 0.68.

• Self-similarity of web traffic : Resnick (2000) with H = 0.66.

- Fractional Poisson process
- Oirect applications in ruin theory

In ruin theory

$$R(t) = u + ct - \sum_{i=1}^{N_{\mathrm{H}}(t)} X_i ,$$

where

 (N_H(t))_{t≥0}: fractional Poisson process with parameters λ > 0 and H ∈ (0, 1).

 \hookrightarrow Claim inter-occurrence times $(V_i)_{i \ge 1}$: sequence of independent and Mittag-Leffler distributed with parameter λ and $H \in (0, 1)$ random variables.

 Claim amounts (X_i)_{i≥1} : sequence of independent and identically distributed positive random variables.

•
$$(X_i)_{i\geq 1}$$
 is independent from $(V_i)_{i\geq 1}$.

Remark : by convention, $\sum_{i=1}^{N_{\rm H}(t)} X_i = 0$ if $N_{\rm H}(t) = 0$.

With exponential claim amounts (1) : $X_1 \sim \mathcal{E}(\mu)$

Proposition

The distribution of the ruin time τ has a density p_{τ} given by

$$p_{\tau}(t) = e^{-\mu(u+ct)} \sum_{n=0}^{\infty} \frac{\mu^n (u+ct)^{n-1}}{n!} \left(u + \frac{ct}{n+1} \right) f_{\mathrm{H}}^{*(n+1)}(t) , \qquad (1)$$

where $f_{\rm H}^{*n}$ denotes the n-fold convolution of the function $f_{\rm H}$ defined by for $t\geq 0$ by

$$f_{\rm H}(t) = u t^{\rm H-1} E_{\rm H,H}(-\lambda t^{\rm H})$$
⁽²⁾

where

$$E_{lpha,eta}(z) = \sum_{k=0}^{\infty} rac{z^k}{\Gamma(lpha k + eta)}$$

is the generalized two-parameter Mittag-Leffler function.

<u>Proof</u>: Direct application of Borovkov and Dickson (2008), since it is a Sparre-Andersen process.

With exponential claim amounts (2) : $X_1 \sim \mathcal{E}(\mu)$

Proposition

For any x > 0 it holds that

$$\xi \int_0^\infty e^{-\xi t} \psi(u,t) dt = 1 - y(\xi) \exp\left\{-u\mu(1-y(\xi))
ight\}, \quad \xi > 0$$

where $y(\xi)$ is the unique solution of the equation

$$y(\xi) = \frac{\lambda}{\lambda + \left(\xi + c\mu(1 - y(\xi))\right)^{\mathrm{H}}} , \quad \xi > 0.$$
 (3)

<u>*Proof*</u> : Direct application of Theorem 1 in Malinovskii (1998).

With exponential claim amounts (3) : $X_1 \sim \mathcal{E}(\mu)$

Proposition

Under the assumptions of this section, we have

$$\psi(u) = \left(1 - \frac{\gamma}{\mu}\right) e^{-\gamma u},$$

where $\gamma > 0$ is the unique solution of

$$\gamma^{\rm H} - \mu \gamma^{\rm H-1} + \frac{\lambda}{c^{\rm H}} = 0.$$
(4)

<u>*Proof*</u> : Direct application of Theorem VI.2.2 in Asmussen and Albrecher (2010).

22 / 26

With heavy-tailed claim amounts (1)

Proposition

If the distribution F of the claim sizes is sub-exponential, then

$$\psi(u,t) \sim rac{\lambda t^{\mathrm{H}} \overline{F}(u)}{\Gamma(1+\mathrm{H})}$$

as u goes to $+\infty$.

Proof :

$$\begin{split} \mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)} X_{i} > u + ct\right) &\leq \psi(u,t) \leq \mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)} X_{i} > u\right);\\ \mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)} X_{i} > u + ct\right) &\sim \mathbf{P}\left(\sum_{i=1}^{N_{\mathrm{H}}(t)} X_{i} > u\right) \sim \mathbf{E}(N_{\mathrm{H}}(t)) \,\overline{F}(u);\\ \text{and from Lageras (2005)}: \, \mathbf{E}(N_{\mathrm{H}}(t)) = \frac{\lambda t^{\mathrm{H}}}{\Gamma(1 + \mathrm{H})}. \end{split}$$

23 / 26

With heavy-tailed claim amounts (2) (In progress...)

Since $(N_{\mathrm{H}}(t))_{t\geq 0}$ is a renewal process, a random walk can be easily exhibited :

$$S_0 = 0, S_n = (X_1 - cV_1) + \cdots + (X_n - cV_n).$$

With

$$M=\sup\{S_n,\ n\ge 0\}\,,$$

we have, for u > 0,

$$\psi(u)=\mathsf{P}(M>u).$$

So from Denisov et al. (2004), we get :

24 / 26

With heavy-tailed claim amounts (3) (In progress...)

Proposition

Assume that $P(X_1 > x) = L(x)x^{-\alpha}$ for some slowly regularly varying function L and $\alpha > 0$ (so $X_1 \in \mathcal{R}_{-\alpha}$).

• If $\alpha > H$ then

$$\psi(u) \sim \frac{\lambda \Gamma(\alpha - \mathrm{H})}{c^{\mathrm{H}} \Gamma(\alpha)} u^{-\alpha + \mathrm{H}} L(u) \quad u \to \infty$$

• If $\alpha = H$ then

$$\psi(u) \sim rac{\lambda}{c^{\mathrm{H}}\Gamma(\mathrm{H})} \int_{u}^{+\infty} rac{L(t)}{t} dt \,, \ \ u o \infty \,.$$

25 / 26

Thank you for your attention !