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Introduction

In many applications, we observe a multitude of time series
Yi = {Yit : 1 ≤ t ≤ T} with 1 ≤ i ≤ n.

The observed time series often exhibit a nonstationary beha-
viour. In particular, their stochastic behaviour often appears
to gradually change over time.

Processes with time-varying parameters, or more generally,
locally stationary processes provide a neat way to model such
a behaviour. Simple examples are

Trend model: Yit = mi (
t
T ) + εit .

Volatility model: Yit = σi (
t
T ) εit .

AR model: Yit = ai (
t
T )Yit−1 + εit .



Introduction

In most applications, it is very restrictive to assume that
the parameter functions are the same for all time series.

However, it is often natural to impose a group structure
on the time series: we may suppose that the time series
can be grouped into a number of classes whose members
share the same parameter functions.

In the talk, we are interested in the statistical question
how to estimate the unknown group structure from the
data.



Model setting

Data: We observe n different time series

Yi = {Yit : 1 ≤ t ≤ T}

with 1 ≤ i ≤ n. Here, T →∞, whereas n may either be
bounded or n→∞.

Time trend model: Each time series Yi follows the model

Yit = mi

( t

T

)
+ εit for 1 ≤ t ≤ T ,

where mi are unknown nonparametric trend functions.

Error structure: We restrict attention to the simple case
that εit is i.i.d. both across i and t with E[εit ] = 0.



Model setting

Group structure: There are K groups of time series G1, . . . ,GK

with G1 ∪̇ . . . ∪̇ GK = {1, . . . , n} s.t. for each k ∈ {1, . . . ,K},

mi = mj for all i , j ∈ Gk .

Hence, the members of the class Gk all have the same time
trend function.

Aim: We want to estimate the unknown groups G1, . . . ,GK

along with their unknown number K .



Estimation of the classes G1, . . . ,GK

Define the squared L2-distance between mi and mj by

∆ij =
∫

(mi (w)−mj(w))2π(w)dw ,

where π is some weight function. Estimate this by

∆̂ij =
∫ (

m̂i (w)− m̂j(w)
)2
π(w)dw ,

where m̂i is a standard NW estimator of the form

m̂i (w) =

∑T
t=1 Wh( t

T − w)Yit∑T
t=1 Wh( t

T − w)
.

Here, h is the bandwidth and W is a kernel with Wh(x) =
h−1W (x/h).



Estimation of the classes G1, . . . ,GK

Preliminary estimation problem:

Pick some time series i and let G ∈ {G1, . . . ,GK} be the
unknown class to which i belongs.

Let S ⊆ {1, . . . , n} be some index set with G ⊆ S .

We want to estimate the group G from the set S .

Notation: Denote the ordered distances by

∆i(1) ≤ ∆i(2) ≤ . . . ≤ ∆i(nS )

∆̂i [1] ≤ ∆̂i [2] ≤ . . . ≤ ∆̂i [nS ]

with nS = |S |.



Estimation of the classes G1, . . . ,GK

The ordered distances ∆i(j) have the following property: There
exists a point p = pi ,S such that

∆i(j)

{
= 0 for j ≤ p

≥ c for j > p

with c = ∆i(p+1) > 0. As a consequence, G = {(1), . . . , (p)}.
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Estimation of the classes G1, . . . ,GK

Under appropriate regularity conditions, it holds that

∆̂i [j]

{
= op(1) for j ≤ p

≥ c + op(1) for j > p

with some c > 0. If p = |G | were known, we could thus simply
estimate G = {(1), . . . , (p)} by G̃ = {[1], . . . , [p]}.
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Estimation of the classes G1, . . . ,GK

As p is not known, we estimate it by a thresholding procedure:
Let τn,T ↘ 0 such that max1≤j≤p ∆̂i [j] ≤ τn,T with prob. tending
to 1 and estimate p = pi ,S by

p̂ = p̂i ,S = max
{
j ∈ {1, . . . , nS} : ∆̂i [j] ≤ τn,T

}
.

Our estimator of G is now defined as Ĝ = {[1], . . . , [ p̂ ]}.
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Estimation of the classes G1, . . . ,GK

Iterative algorithm:

1st Step: - Set S1 = {1, . . . , n}, pick some index i1 ∈ S1,
and write ∆̂i1[1] ≤ . . . ≤ ∆̂i1[nS1

].

- Compute p̂ = p̂i1,S1 and estimate the class to

which i1 belongs by Ĝ1 = {[1], . . . , [p̂]}.

kth Step: - Let Ĝ1, . . . , Ĝk−1 be the class estimates from the
previous iteration steps.

- Set Sk = {1, . . . , n} \
⋃k−1

`=1 Ĝ`, pick some index

ik ∈ Sk , and write ∆̂ik [1] ≤ . . . ≤ ∆̂ik [nSk ].

- Compute p̂ = p̂ik ,Sk and estimate the class to

which ik belongs by Ĝk = {[1], . . . , [p̂]}.



Estimation of the classes G1, . . . ,GK

We iterate the algorithm K̂
times until ∆̂i

K̂
[j] ≤ τn,T for

all 1 ≤ j ≤ nS
K̂

. In this case,
S
K̂

is not split into two parts

any more and Ĝ
K̂

= S
K̂

. bb
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Estimators:

The algorithm produces the partition {Ĝk : 1 ≤ k ≤ K̂},
which serves as our estimator of the class structure
{Gk : 1 ≤ k ≤ K}.
The number of classes K is implicitly estimated by the
number of iterations K̂ .



Choice of the threshold parameter τn,T

Let i ∈ G and suppose we want to estimate the unknown
class G .

As discussed above, we would ideally like to choose τn,T s.t.

max1≤j≤p ∆̂i [j] ≤ τn,T .
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As max1≤j≤p ∆̂i [j] = maxj∈G ∆̂ij with prob. tending to one,
this means that we would like to choose τn,T s.t.

max
j∈G

∆̂ij ≤ τn,T .



Choice of the threshold parameter τn,T

One can show that for any j ∈ G with j 6= i ,

Th1/2∆̂ij − h−1/2B d−→ N(0,V), (∗)
where

B = 2σ2‖W ‖2
∫
π(x)dx

V = 8σ4‖W ∗W ‖2
∫
π2(x)dx

and σ2 = E[ε2
it ]. Moreover,

‖W ‖2 =

∫
W 2(x)dx

‖W ∗W ‖2 =

∫ (∫
W (x)W (x + y)dx

)2
dy .



Choice of the threshold parameter τn,T

Roughly speaking, (∗) says that

∆̂ij ≈ ∆∗ij :=
B
Th

+

√
V

Th1/2
Zij with Zij ∼ N(0, 1). (∗∗)

Neglecting the approximation error in (∗∗), we want to
choose τn,T s.t. maxj∈G ∆∗ij ≤ τn,T . (Here, we set ∆∗ii = 0

since ∆̂ii = 0 by construction.) We have

max
j∈G

∆∗ij = max
j∈G−i

∆∗ij =
B
Th

+

√
V

Th1/2
max
j∈G−i

Zij

with G−i = G \ {i}.



Choice of the threshold parameter τn,T

Since the variables Zij are standard normal,

P
(

max
j∈G−i

Zij ≥ (2 log |G |)1/2
)
≤ 1√

4π log |G |
.

Hence,

max
j∈G

∆∗ij ≤
B
Th

+

√
V

Th1/2
(2 log |G |)1/2

with prob. approaching 1 as |G | → ∞.

This suggests that an appropriate threshold level is given by

τn,T =
B
Th

+

√
V

Th1/2
(2 log |G |)1/2.



Choice of the threshold parameter τn,T

Since the variables Zij are standard normal,

P
(

max
j∈G−i

Zij ≥ (2 log |G |)1/2
)
≤ 1√

4π log |G |
.

Hence,

max
j∈G

∆∗ij ≤
B
Th

+

√
V

Th1/2
(2 log |G |)1/2

with prob. approaching 1 as |G | → ∞.

This suggests that an appropriate threshold level is given by

τn,T =
B̂
Th

+

√
V̂

Th1/2
(2 log n)1/2.



Theoretical results

Consistency of the class estimates {Ĝk : 1 ≤ k ≤ K̂}:

Let the threshold parameter τn,T converge to zero such that for
1 ≤ k ≤ K ,

P
(

max
i ,j∈Gk

∆̂ij ≤ τn,T
)
→ 1.

Then under appropriate regularity conditions,

P(K̂ 6= K ) = o(1)

and

P
({

Ĝk : 1 ≤ k ≤ K̂
}
6=
{
Gk : 1 ≤ k ≤ K

})
= o(1).



Illustrative example

We consider a simulation
design with T = 100, n =
100, and the four groups

G1 = {1, . . . , 40}
G2 = {41, . . . , 70}
G3 = {71, . . . , 90}
G4 = {91, . . . , 100}.

The error variance E[ε2
it ] is

equal to 1.
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Illustrative example

number of classification errors

nu
m

be
r 

of
 s

im
ul

at
io

ns

0
50

15
0

25
0

0 3 6 9 12 16 20

K̂

nu
m

be
r 

of
 s

im
ul

at
io

ns

0
20

0
40

0
60

0
80

0

3 4 5 6 7



Relationship to functional data clustering

A functional data model:

Yit = mi (
t
T ) + εit for 1 ≤ t ≤ T and 1 ≤ i ≤ n with i.i.d.

noise εit .

The curves mi = (mi (w))w∈[0,1] are Gaussian processes.

There are clusters of indices G1, . . . ,GK s.t. the Gaussian
processes mi have the same mean and covariance structure
within each cluster.

Relationship to our model:

The curves mi in the above functional data model are
random. Within each group, the observed sample paths mi

are realizations from the same Gaussian process.

In our setting, the curves mi are deterministic. Within each
group, the curves mi are exactly the same.
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