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Introduction

@ In many applications, we observe a multitude of time series
Vi=A{Yi: 1<t<T}withl<i<n.

@ The observed time series often exhibit a nonstationary beha-
viour. In particular, their stochastic behaviour often appears
to gradually change over time.

@ Processes with time-varying parameters, or more generally,
locally stationary processes provide a neat way to model such
a behaviour. Simple examples are

~+

Trend model:  Yir = mi() + €t
Volatility model:  Yj; = oi(F) €ie.
AR model:  Yir = a;(%) Yie-1 + €.

~+



Introduction

@ In most applications, it is very restrictive to assume that
the parameter functions are the same for all time series.

@ However, it is often natural to impose a group structure
on the time series: we may suppose that the time series
can be grouped into a number of classes whose members
share the same parameter functions.

@ In the talk, we are interested in the statistical question
how to estimate the unknown group structure from the
data.



Model setting

Data: We observe n different time series
Vi={Yi: 1<t<T}

with 1 </ < n. Here, T — oo, whereas n may either be
bounded or n — oc.

Time trend model: Each time series ); follows the model

t
Yit:mi<?>+5it for1<t<T,

where m; are unknown nonparametric trend functions.

Error structure: We restrict attention to the simple case
that ¢;; is i.i.d. both across i and t with E[¢;;] = 0.



Model setting

Group structure: There are K groups of time series Gy, ..., Gk
with Gy U...U Gk ={1,...,n} s.t. foreach k € {1,..., K},

m; = m; forall i,j € Gy.

Hence, the members of the class G, all have the same time
trend function.

Aim: We want to estimate the unknown groups Gi, ..., Gk
along with their unknown number K.



Estimation of the classes Gy, ..., Gk

Define the squared L>-distance between m; and m; by
B = [(mi(w) — my(w))2r(w)dw,

where 7 is some weight function. Estimate this by
Ay = [(mi(w) — () m(w)dw,

where m; is a standard NW estimator of the form

ZZlWh(t )Yit'
Zt 1Wh(% )

i(w) =

Here, h is the bandwidth and W is a kernel with Wj(x) =

h=1W(x/h).



Estimation of the classes Gy, ..., Gk

Preliminary estimation problem:

@ Pick some time series i and let G € {Gj,..., Gk} be the
unknown class to which i belongs.

o Let S C {1,...,n} be some index set with G C S.
@ We want to estimate the group G from the set S.

Notation: Denote the ordered distances by

Ajy < Ajo) <. < Ajng)
A <A <...<A

ilns]

with ng = [5|.



Estimation of the classes Gy, ..., Gk

The ordered distances Aj(;) have the following property: There
exists a point p = p; s such that

=0 forj<p
Ai) >c forj
> J>p

with ¢ = Aj,41) > 0. As a consequence, G = {(1),...,(p)}.




Estimation of the classes Gy, ..., Gk

Under appropriate regularity conditions, it holds that

A = 0p(1) forj<p
i >c+o0p(l) forj>p

with some ¢ > 0. If p = |G| were known, we could thus simply
estimate G = {(1),...,(p)} by G = {[1],....[p]}.

A
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Estimation of the classes Gy, ..., Gk
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Estimation of the classes Gy, ..., Gk

As p is not known, we estimate it by a thresholding procedure:
Let 7, 7\, 0 such that max;<j<, AiU] < 7,7 with prob. tending
to 1 and estimate p = p; s by




Estimation of the classes Gy, ..., Gk

Iterative algorithm:

1%t Step: -

kth Step: -

Set 51 = {1,...,n}, pick some index i1 € S,

and write A,-l[l] <...< Ail[ngl]'

Compute p = pj, s, and estimate the class to
which iy belongs by G; = {[1],....[p]}.

Let 61, cee C‘H be the class estimates from the
previous iteration steps.
Set Sk ={1,...,n}\ U?;ll Gy, pick some index

ix € Sk, and write Aik[l] <...< Aik[nsk]'

Compute p = pj, s, and estimate the class to
which i, belongs by G, = {[1],...,[p]}.



Estimation of the classes Gy, ..., Gk

We iterate the algorithm K Ay
times until Ai,?[i] < 7,1 for
all1 <j < ns. . In this case,
SR is not split into two parts 7,

any more and ER = 5;. o o ° °

Estimators:

@ The algorithm produces the partition {@k 1<k< }A(}
which serves as our estimator of the class structure

@ The number of classes K is implicitly estimated by the
number of iterations K.



Choice of the threshold parameter 7, 1

@ Let /i € G and suppose we want to estimate the unknown
class G.

@ As discussed above, we would ideally like to choose 7, 1 s.t.

maxlgjgp Al[/] § Tn,T-

~

o As maxi<j<p Ajj] = Maxjeq Au with prob. tending to one,
this means that we would like to choose 7, 1 s.t.

maxA,-- < Tn.T-
jec Y ’



Choice of the threshold parameter 7, 1

@ One can show that for any j € G with j #£ i,

ThY2A; — h~12B -5 N(O, V),
where
B =20%|W|]? [7(x)dx
V =8 |W x W2 [72(x)dx

and 02 = E[3]. Moreover,
Wi = [ w2 dx
5 2
W s W :/(/W(X)W(x+y)dx) dy.



Choice of the threshold parameter 7, 1

@ Roughly speaking, (*) says that

~ ., B Y .
Aj = A = g + 7_/71/22 with  Zjj ~ N(0,1).  (xx)

o Neglecting the approximation error in (%), we want to
choose 7, 1 s.t. maxjec Aj-;- < 7p,7. (Here, we set A% =0
since A,-; = 0 by construction.) We have

B VY

max A%, = mai<'A’F. = + T T max Z,J

with G_; = G \ {i}.



Choice of the threshold parameter 7, 1

@ Since the variables Z;; are standard normal,

1
(jegi(,- i = (2log|G]) )

~ /arlog |G|

@ Hence,

., B VYV
max A < 7+ Thi

with prob. approaching 1 as |G| — oco.

(2log |G|)*/?

@ This suggests that an appropriate threshold level is given by

B 1%
7—n.,T:7+ f



Choice of the threshold parameter 7, 1

@ Since the variables Zj; are standard normal,

1

VVarlog |G|

IP’(JrgaxZ,J (2log | G|) )

@ Hence,
B A%
A*
Max B = 7 T 712

(2log |G|)*/?

with prob. approaching 1 as |G| — .

@ This suggests that an appropriate threshold level is given by



Theoretical results

Consistency of the class estimates {Ek 1<k< }A(}

Let the threshold parameter 7, 7 converge to zero such that for
1<k <K,
P( max Ay <7p7) > 1.

NS
Then under appropriate regularity conditions,
P(K # K) = o(1)

and

P({Gi1<k <K} #{G:1<k<K}) =o(1).



lllustrative example

We consider a simulation
design with T = 100, n =
100, and the four groups

G = {1,...,40}

G, = {41,...,70}
Gs = {71,...,90}
Gy = {91,...,100}.

The error variance E[2] is
equal to 1.
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number of simulations
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Relationship to functional data clustering

A functional data model:

® Yi=mj(+)+eipfor1<t<Tandl<i<nwithi.id.
noise €jt.

@ The curves m; = (m;(w)),c[o,1) are Gaussian processes.

@ There are clusters of indices Gy, ..., Gk s.t. the Gaussian
processes m; have the same mean and covariance structure
within each cluster.

Relationship to our model:

@ The curves m; in the above functional data model are
random. Within each group, the observed sample paths m;
are realizations from the same Gaussian process.

@ In our setting, the curves m; are deterministic. Within each
group, the curves m; are exactly the same.
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