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From stationary to locally stationary ARCH processes

Classical stationary ARCH model of Engle (1982)

Xt = ξt

√√√√a0 +

p∑
j=1

aiX2
t−i, E(ξ0) = 0,Var (ξ0) = 1, ξ i.i.d

A classical formulation used to model correlation of the squares (or absolute

values) of financial returns Xt = Pt−Pt−1

Pt−1
. Pt = (daily) stock price, stock

market index or currency exchange rates.

But stationarity is realistic only on short periods,

unconditional variance can be time-varying,
stationarity and short memory is incompatible with slow decays in the ACF,
ARCH parameters are suspected to be time-varying (estimates of parameters on
subsamples seem not the same).
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From stationary to locally stationary ARCH processes

Illustration with the index S&P500 from 1996 to 2005
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From stationary to locally stationary ARCH processes

First model. ARCH versus time-varying unconditional
variance

A simple model proposed by Starica & Granger (2005),

Xt = σ(t/T )ξt, 1 ≤ t ≤ T,

with ξ i.i.d and σ determistic function with smooth changes (locally i.i.d process).

Compatible with the autocorrelograms of financial returns.

This simple model can produce significantly better volatility forecasts than the
GARCH(1, 1) (for S&P 500).

According to Starica & Granger: ”Most of the dynamics of the S&P 500
series (1928− 2000) seems to be concentrated in shifts of the unconditional
variance”.
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From stationary to locally stationary ARCH processes

T = 1000, ξt ∼ N (0, 1), σ(t/T )2 = 2 + sin(2πt/1000)
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From stationary to locally stationary ARCH processes

Second model: time-varying unconditional variance and
ARCH

”multiplicative volatility model” introduced by Engle & Rangel (2008)

Xt = σ

(
t

T

)
Yt

where Y ARCH type stationary process (ARCH, GARCH(1, 1)...) and σ is a
deterministic smooth function.

Nonstationary time series model. Extends the two previous models (ARCH and
model of Starica & Granger).

Inference: splines decomposition for σ (Engle & Rangel), kernel estimation of
σ2(t/T ) = EX2

t and parametric inference for the residuals (Hafner & Linton,
2010).

Lionel Truquet, CREST-ENSAI (Rennes, France)



From stationary to locally stationary ARCH processes

Third model: the time varying ARCH process

Xt = ξtσt = ξt

√√√√a0

(
t

T

)
+

p∑
i=1

ai

(
t

T

)
X2
t−i,T , t = p+ 1, . . . , T.

ξ i.i.d , Eξ0 = 0, Var ξ0 = 1.

Model introduced and studied by Dahlhaus and Subba Rao (AoS, 2006),
Fryzlewicz, Sapatinas and Subba Rao (AoS, 2008).

The aj ’s are smooth functions (e.g Lipschitz continuity).

Locally approximated by stationary ARCH processes

Xt(u) = ξt

√√√√a0(u) +

p∑
i=1

ai(u)Xt−i(u)2,

p∑
i=1

ai(u) < 1.
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From stationary to locally stationary ARCH processes

Links between the three models

Model 1: Starica & Granger. Model 2: Engle & Rangel. Model 3: tv-ARCH.
With non time-varying lag coefficients:

Xt = ξt

√√√√a0

(
t

T

)
+

p∑
i=1

aiX2
t−i.

We have Xt =
√
a0
(
t
T

)
Yt where

Y 2
t = ξ2t

(
1 +

p∑
i=1

a0
(
t−i
T

)
a0
(
t
T

) aiY 2
t−i

)
≈ ξ2t

(
1 +

p∑
i=1

aiY
2
t−i

)
,

because
a0( t−i

T )
a0( t

T )
= 1 +O

(
1
T

)
. This restriction leads to the multiplicative

volatility model with a stationary ARCH component.

Then: Model 1 ⊂ Model 2 ⊂ Model 3.
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From stationary to locally stationary ARCH processes

What amount of nonstationarity/nonlinearity ?

Xt = ξt

√√√√a0

(
t

T

)
+

p∑
i=1

ai

(
t

T

)
X2
t−i.

Test: H0 non time-varying lag coefficients vs H1 time-varying lag coefficient.

Test the second order dynamic (or ARCH effect): H0 a1:p = 0 vs H1 one of
the ai’s is time-varying.

tv-ARCH is the most general but the most difficult to handle and to interpret...
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From stationary to locally stationary ARCH processes

Example: ARCH effect or no ARCH effect? (Figure:
Fryzlewicz et al.)

Figure : USD/GBP exchange rates (1990− 1999). Estimation of a0 (left) and a1 (right)
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From stationary to locally stationary ARCH processes

Parameter stability and semiparametric inference

General problem:
Xt = ξt

√
J ′tα(t/T ) +K ′tβ,

where Jt (resp. Kt) contains lag squares or 1 and α (resp. β) contains some of the
coefficients.

1 Test H0: β non time-varying.

2 Inference in such semiparametric models (main focus on the case a1:p
constant).

3 Test the second order dynamic in the semiparametric model.

X2
t = J ′tα(t/T ) +K ′tβ + Zt, E (Zt|Ft−1) = 0.

⇒ semiparametric inference in a time-varying regression model

Recent references for this problem: Chen & Hong (2012), Zhang & Wu (2012).
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Statistical inference. Asymptotic results
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Statistical inference. Asymptotic results

Inference in tv-ARCH using kernel estimation (Fryzlewicz
et al. 2008)

Estimator of (a0(u), . . . , ap(u)) minimizing

α 7→
T∑

t=p+1

Wb

(
u− t

T

)
Pt

X2
t − α0 −

p∑
j=1

αjX
2
t−j

2

.

Localization with a kernel W and a bandwidth b. Framework of the
nonparametric estimation of the regression function with fixed design.

Asymptotically normal estimates for a given choice of weights Pt (e.g

Pt =
(

1 +
∑p
j=1X

2
t−j

)−2
).

A two-step procedure for efficiency: the optimal weights (asymptotic variance)
are Pt = σ−4t .

A cross-validation procedure can be used for bandwidth selection.
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Statistical inference. Asymptotic results

Partially linear regression

X2
t = J ′tα

(
t

T

)
+K ′tβ + σ2

t

(
ξ2t − 1

)
.

Step 1: weighted approach√
PtX

2
t =

√
PtJ

′
tα

(
t

T

)
+
√
PtK

′
tβ +

√
Ptσ

2
t

(
ξ2t − 1

)
.

Step 2: projection onto V ectL2

(√
PtJt

)
.

P1,t =
√
PtJ

′
tE−1 (PtJtJ

′
t)E

(
PtJtX

2
t

)
,

P2,t =
√
PtJ

′
tE−1 (PtJtJ

′
t)E (PtJtK

′
t) .√

PtX
2
t − P1,t =

(√
PtKt − P2,t

)′
β +

√
Ptσ

2
t

(
ξ2t − 1

)
.
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Statistical inference. Asymptotic results

Partially linear regression

X2
t = J ′tα

(
t

T

)
+K ′tβ + σ2

t

(
ξ2t − 1

)
.

Step 3: projections estimation with a kernel (non-parametric regression), e.g

P̂1,t =
√
P tJ

′
t

 T∑
i=p+1

Wb

(
t− i
T b

)
PiJiJ

′
i

−1 T∑
i=p+1

Wb

(
t− i
T

)
PiJiX

2
i .

β̂ least squares estimator for β (without localization).

Step 4: From Step 3, deduce an estimation of the optimal weights Pt = 1
σ4
t

and use a plug-in estimator.

α̂(
t

T
) =

 T∑
i=p+1

Wb

(
t− i
T

)
PiJiJ

′
i

−1 T∑
i=p+1

Wb

(
t− i
T

)
Pi

(
JiX

2
i − JiK ′iβ̂

)
.
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Statistical inference. Asymptotic results Asymptotic results for the parametric component

Sommaire

1 From stationary to locally stationary ARCH processes

2 Statistical inference. Asymptotic results
Asymptotic results for the parametric component
Estimation of the nonparametric component

3 Testing parameter constancy/second order dynamic

4 Implementation and a few simulations

5 Some illustrations on real data sets

Lionel Truquet, CREST-ENSAI (Rennes, France)



Statistical inference. Asymptotic results Asymptotic results for the parametric component

Asymptotic normality 1: assumptions

1 Eξ4+δ0 <∞,

2 Weights: Pt = 1

(γ0( t
T )+

∑p
`=1 γ`(

t
T )X2

t−j)
2 . γ` > 0 are Lipschitz, ` = 0, 1, . . . , p.

3 The kernel W is continuously differentiable and supported on [−1, 1].

4 the bandwidth parameter b (only one for simplicity):b
√
T →∞, b2

√
T → 0,

5 Lipschitz coefficients, a0 > 0, supu∈[0,1]
∑p
`=1 a`(u) < 1.
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Statistical inference. Asymptotic results Asymptotic results for the parametric component

Asymptotic normality 1

Theorem 1

√
T
(
β̂ − β

)
→T→∞ Nk

(
0,Var

(
ξ21
)

Σ−11 Σ2Σ−11

)
,

with

Σ1 = E
∫ 1

0

P1(u) (K1(u)−m(u)′J1(u)) · (K1(u)−m(u)′J1(u))
′
du,

Σ2 = Var
(
ξ21
)
E
∫
P1(u)2σ1(u)4 (K1(u)−m(u)′J1(u))·(K1(u)−m(u)′J1(u))

′
du,

and
m(u) = E−1 (P1(u)J1(u)J1(u)′)E (P1(u)J1(u)K1(u)′) .

If parameters are positive, a plug-in approach can be used to obtain a more efficient
estimator of β (semiparametric asymptotic efficiency when ξ0 ∼ N (0, 1)).
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Statistical inference. Asymptotic results Estimation of the nonparametric component
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Statistical inference. Asymptotic results Estimation of the nonparametric component

Asymptotic normality 2

Theorem 2

If b′ → 0, T b′ →∞,
√
Tb′

(
α̂(u)− α(u)− S−1u Du

)
is asymptotically Gaussian

with mean 0 and variance

Var
(
ξ21
)
×
∫ 1

−1
W 2(v)dv × Σ1(u)−1Σ2(u)Σ1(u)−1,

with Σ1(u) = E (P1(u)J1(u)J1(u)′) , Σ2(u) = E
(
P1(u)2σ1(u)4J1(u)J1(u)′

)
,

Su = E (P1(u)J1(u)J1(u)′) ,

Du =

T∑
i=p+1

Wb′

(
u− i

T

)(
PiJiX

2
i − Pi(u)Ji(u)Xi(u)2

)
+ ... = OP(b′).

Analogue to the asymptotic normality result of Fryzlewicz et al. Possibility to get a
more efficient estimation by plug-in (if coefficients of volatility are all positive).
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Testing parameter constancy/second order dynamic
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Testing parameter constancy/second order dynamic

H0: β(·) is constant v.s H1: β(·) non-constant.

For weights (Pt), set

ST =

∫ 1

0

(
β̂(u)− β̂

)′ (
β̂(u)− β̂

)
du.

Notations
O(u) = κ−1u ζuκ

−1
u , κu = E (Pt(u)Xt(u)Xt(u)′),

ζu = E
(
Pt(u)2σt(u)2Xt(u)Xt(u)′

)
, Xt(u) =

(
Jt(u)
Kt(u)

)
.

ωn =
∫ 1

0
Trace [AO(u)A′]

n
du, A

(
α
β

)
= β.

‖f‖22 =
∫ 1

−1 f(v)2dv, W ∗(x) =
∫ 1−2|x|
−1 W (v)W (v + 2|x|)dv.

Theorem 3

Assume Eξ8(1+δ)0 <∞, Tb2 →∞ and Tb3.5 → 0. Then

T
√
b

{
ST −

‖W‖22Var
(
ξ21
)
ω1

Tb

}
→ N

(
0, 4‖W ∗‖22Var 2

(
ξ21
)
ω2

)
.
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Testing parameter constancy/second order dynamic

Testing H0 : a1:p = 0 in sp-tv (constant lag coefficients)

We test a parameter is on the boundary.
Use the asymptotic behavior of

√
T â1:p and the χ2 limiting distribution of

T‖Σ̂−1/2â1:p‖2: technically possible (least squares objective function does not
require positivity) but unnatural ”bilateral” test (loss of power). Truncated
least squares cannot give a pivotal statistic.

Instead, use Pt = 1 for which we have,

Proposition 1

If Tb2 →∞, Tb4 → 0, E
(
ξ80) <∞ , then under H0,

â1:p = arg min
a

T∑
t=p+1

X2
t − P̂t,1 −

p∑
j=1

aj

(
X2
t−j − P̂2,t,j

)2

satisfies T
∑p
j=1 max (âj , 0)

2 →D σ2
∑p
j=1 max (Zj , 0)

2
, where Z standard

Gaussian vector and

σ2 =

∫ 1

0
Var

(
X0(u)2

)2
du(∫ 1

0
Var (X0(u)2) du

)2 .
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Implementation and a few simulations

Implementation

We choose Pt = 1/(µ̂+
∑p
j=1X

2
t−j)

2 with µ̂ = 1
T

∑T
t=1X

2
t .

Bandwidth selection for tv-ARCH: CV (leave one out) used in Fryzlewicz et al.

Bandwidth selection for sp-ARCH (constant lag coefficients): minimize over a
grid of bandwidths,

(b, a1:p) 7→
T∑

t=p+1

√PtX2
t − P̂

(−t)
1,t (b)−

p∑
j=1

aj

(√
PtX

2
t−j − P̂

(−t)
2,t,j (b)

)2

.

For statistical testing: get pivotal statistics and use Monte-Carlo simulation to
fix the critical value (as in Zhang & Wu, 2012): we simulate B realizations of
the pivotal statistic using T i.i.d N (0, 1).

Selection of order p: minimize {0, 1, . . . , pmax} 7→ log (RSS(p)) + p+1
T 2/3 .
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Implementation and a few simulations

Example of semiparametric inference

Xt = ξt

√
a0(t/T ) + 0.3X2

t−1 + 0.3X2
t−2,

a0(u) = 0.0001 + 0.006 · (1 + sin(6πu)), ξ0 ∼ t(5), T = 1500.

0 500 1000 1500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure : Estimation of a0, â1 = 0.3531 (s.e 0.051), â2 = 0.2904 (s.e 0.0588)
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Implementation and a few simulations

Testing parameter stability, p = 2, T = 2500, α = 10%

H0 : a0 constant (resp. a1 constant, a2 constant, (a1, a2) constant) when

a0(u) = 2 (1 + θ sin(2πu)) , a1(u) = 0.2+
θ

2
sin(2πu), a2(u) = 0.2+

θ

2
cos(2πu), 0 ≤ θ ≤ 0.45.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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Figure : Power curves when the noise is Gaussian (on the left) or follows a t−distribution
(on the right). Legend: − for a0 constant, −− for (a1, a2) constant, + for a1 constant
and ∗ for a2 constant.
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Implementation and a few simulations

Testing H0: (a1, a2) = (0, 0) vs H1: (a1, a2) 6= (0, 0)

a0(u) = 2 + sin(6πu), a1 = a2 = θ, T = 1000, α = 10%.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure : Power curves: ξ0 ∼ N (0, 1) (blue), ξ0 ∼ t(9) (red), ξ0 ∼ t(5) (yellow)
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Some illustrations on real data sets
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Some illustrations on real data sets

USD/RUP (19/12/2005-18/02/2015), T = 2303
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Some illustrations on real data sets

USD/RUP (19/12/2005-18/02/2015), T = 2303

Estimation of p: 1.

Non t-v a0 Non t-v a1 b̂NP â1 b̂SP
< 10−4 0.4215 0.035 0.1527 (s.e 0.0688) 0.028
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Some illustrations on real data sets

USD/Euro (03/01/2000-13/02/2015), T = 3799
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Some illustrations on real data sets

USD/Euro (03/01/2000-13/02/2015), T = 3799

Estimation of p: 0.

Non t-v a0 Non t-v a1 Non t-v a2 Non t-v (a1, a2) b̂
0.0005 0.138 0.1645 0.6415 0.028

Model with non time-varying coefficients does not give significant lag estimates.
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Some illustrations on real data sets

Applications to the FTSE 2005− 2015

.

0 500 1000 1500 2000 2500
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-0.08
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0
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0.1

Estimation of p: 5 (a bit large for accuracy in tv modeling).

â1 â2 â3
0.0547 (s.e 0.0321) 0.1155 (s.e 0.0320) 0.1204 (s.e 0.0311)

â4 â5 b̂SP
0.0942 (s.e 0.0367) 0.1201 (s.e 0.0324) 0.063
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Some illustrations on real data sets

The effect of adding a time-varying unconditional variance
on the second order dynamic
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Figure : Sum of the first five lag coefficients with respect to the value of bandwidth
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Some illustrations on real data sets

Limitations and directions for future works

Cross-Validation and hypothesis testing do not have the same focus
(bandwidth selection for testing?).

A global bandwidth could be too restrictive and local bandwidths more
adapted.

Break points are not considered.

Recent paper in connection with this work: Dalla, Giraitis, Phillips (2016)
apply CUSUM type tests for testing mean and variance stability and find that
”Changes in the volatility of S&P and IBM returns seems to be initiated by
economic events and news, rather than a form of stationary conditional
heteroscedasticity. Although short transition periods still might hide GARCH
type effects, modeling returns as independent variables with piecewise constant
unconditional variance seems to be an attractive alternative.”

Lionel Truquet, CREST-ENSAI (Rennes, France)


	From stationary to locally stationary ARCH processes
	Statistical inference. Asymptotic results
	Asymptotic results for the parametric component
	Estimation of the nonparametric component

	Testing parameter constancy/second order dynamic
	Implementation and a few simulations
	Some illustrations on real data sets

