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Spatial Data
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• The ground ozone levels taken on
4th April in the Ohio Valley, USA.

• Each point corresponds to a
measurement station.

• Central to the analysis of spatial data is understanding the underlying process (usually

assumed to be stochastic) which generates the data. Typically, this means modelling

the spatial covariance structure of the stochastic process.
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Classical spatial procedures
• Nonparametric covariance estimation methods include:

– Estimation of the Variogram (see Cressie (1993)).
– Directly estimating the covariance nonparametrically and then

“adjusting it” by taking Fourier transforms to ensure it is non-negative
definite (Hall et. al. (1994)).

• Parametric covariance estimation methods include:

– Likelihood approaches based on composite Gaussian likelihood (Stein
et. al. (2005)).

– Spectral/Whittle approaches (Fuentes (2007), Matsuda and Yajima
(2009)).

• Often the underlying assumption is stationarity. This assumption needs
to be checked (Jun and Genton (2012)).
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• All the above procedures work quite well and their sampling properties
are understood.

• However, there is no real coherency in the approaches eg. nonparametric
covariance estimation procedure is completely different to the parametric
estimation procedure.

• The purpose of this talk is to develop a unified approach to some of
the problems described above, which we hope will yield statistics with
”good” statistical properties and are computationally feasible.

3



A time series motivation
• Our motivation comes from discrete time time series where several

parameters of interest can be written in terms of the functional

A(φ, f) =

∫ 2π

0

φ(ω)f(ω)dω.

where f is the spectral density function. Different φ lead to different
parameters (see Dahlhaus and Janas (1996)).

• Given the stationary time series {Xt}Tt=1, to estimate A(φ, f) we replace
f with the periodogram IT (ωk) = |JT (ωk)|2

A(φ, IT ) =
1

T

T∑
k=1

φ(ωk)|JT (ωk)|2, JT (ωk) =
1√
2π

T∑
t=1

Xte
itωk.

4



A(φ, IT ) =
1

T

T∑
k=1

φ(ωk)|JT (ωk)|2

• ωk = 2πk
T are often called the Fourier frequencies.

• A(φ, IT ) is an estimator of A(φ, f) (includes the Whittle likelihood,
spectral density estimator, covariance estimator etc).

• Can a similar class of statistics be defined for spatial data observed at
irregular locations?
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Overview

• We define frequency grid over which we define the class the statistics.

• Consider the sampling properties of this class of statistics:

– The mean and variance.
– There are stark differences between Gaussian and non-Gaussian.
– Obtain a CLT.

• The variance is difficult to directly estimate and we propose a simple
method for estimating the variance.

• Flavour of proofs.
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The observations

• Typically, for spatial data one observes a spatial process {Z(s); s ∈ Rd}
only at a finite number of locations:

– Locations denoted as {sj; j = 1, . . . , n} on square of length λ
([−λ/2, λ/2]d; one can also use a rectangle).

– Observations: {(Z(sj), sj); j = 1, . . . , n}.
– We assume that the locations {sj} are iid random variables that are

independent of the spatial process.

• We will assume that process is covariance stationary with
cov[Z(s1), Z(s2)] = c(s1 − s2). If the process were not nonstationary
the results would be very different.
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• Asymptotic formulation:

– Mixed domain asymptotics: The spatial domain λ → ∞ and the
number of locations n → ∞ at such a rate that λd/n → 0. In other
words the locations get denser as the field grows.
We will work mainly under this asymptotic set-up.

– Pure increasing domain asymptotics: when λ and n → ∞ in such a
way that λd/n→ c (0 < c <∞).
Essentially all the results hold in the Gaussian case (with an additional
bias), however in the non-Gaussian case some differences arise.

– A different asymptotic formulation is to keep the domain λ fixed, but
let the number observations n→∞. Under this set-up the estimators
will be biased and no CLT can be derived (not considered here).
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The Fourier transform of irregular sampled spatial data

• Unlike discrete time time series, there is no unique way of defining the
Fourier transform of in irregular locations.

• Following Matsuda and Yajima (2009) and Bandyopadhyay and Lahiri
(2009) we define the Fourier transform:

Jn(ω) =
λd

n

n∑
j=1

Z(sj) exp(is′jω) ω ∈ Rd

(note Masry (1978) defined something similar for continuous time time
series with Poission sampling).

• Computing Jn(ω) at all frequencies ω ∈ Rd is infeasible.
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Jn(ω) =
λd

n

n∑
j=1

Z(sj) exp(is′jω) ω ∈ Rd

• Question Can we “gridify” Rd in such a way that we do not loose any
information on Jn(ω)?

What are the analogous “Fourier frequencies” for the Fourier transform
of observations observed at irregular locations.
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• We focus on the frequencies ωk = (2πk1/λ, . . . , 2πkd/λ) (k =
(k1, . . . , kd)).

Case d = 2.
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Properties of the Fourier transform (Assumptions)

• Spatial Process The covariance of the tails of the tails decay sufficiently
fast |c(s)| ∼ C|s|−(2+δ) (a type of short memory assumption).

• Location density The locations {sj} are iid random variables defined on
[−λ/2, λ/2]d and the sampling density is density λ−dh(s/λ).
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The Fourier representation of the location density
h(s) =

∑
j∈Zd γj exp(ij′ω) is such that the Fourier coefficients satisfy∑

j∈Zd |γj| <∞. Thus |γj| → 0 as |j|1 →∞.
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Properties of the Fourier transform

• Under general random sampling of locations:

cov [Jn(ωk1), Jn(ωk2)] = 〈γ, γ(k2−k1)〉f (ωk1) +
c(0)γk2−k1λ

d

n
+O

(
1

λ

)
,

where 〈γ, γr〉 =
∑

j∈Zd γjγj+r and f(ω) =
∫
Rd c(s) exp(is′ω)ds is the

spatial spectral density.

• var[Jn(ωk)] = f(ωk)
∫
Rd h(s)2ds+O(λdn−1 + λ−1).

• cov [Jn(ωk1), Jn(ωk2)] = O(|γk1−k2|+ λdn−1 + λ−1).

Recall that γk are the Fourier coefficients of the location density.
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• In discrete time time series the frequency domain is limited to [0, 2π].
Whereas when the locations are irregular, the frequency grid is not limited
(since aliasing cannot arise). In theory we can identify all frequencies
(see Shapiro and Silverman (1960)).

• In the case the locations come from a uniform distribution
(h(s) =

∏d
i=1 I[−1/2,1/2](si)) we have a stronger result:

cov [Jn(ωk1), Jn(ωk2)] =

{
f(ωk) +O(1λ + λd

n ) k1 = k2(= k)
O( 1

λd−b
) k1 − k2 6= 0

where b = the number of zero elements in the vector k1−k2 (or number of
common elements between k1 and k2) and f(ω) =

∫
Rd c(s) exp(is′ω)ds

is the spatial spectral density.
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• The results imply that the Fourier transform defined on the grid ωk =
(2πk1, . . . , 2πkd)/λ is not highly correlated and suggest that estimators
can be defined on such a grid.

• Bandyopadhyay, Lahiri and Nordman (2015) use the Fourier transform
on a wider grid in order to define the spatial empirical likelihood.
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The integrated Fourier transform
Define the analogous version of the integrated periodogram 1:

Qa,λ(g; r) =
1

λd

a∑
k1,...,kd=−a

g(ωk)Jn(ωk)Jn(ωk+r)− bias r ∈ Zd.

• In the case that r = 0, Qa,λ is a sum over |Jn(ωk)|2. Heuristics suggest
that we can replace |Jn(ωk)|2 with the spectral density f(ωk), then
Qa,λ is an estimator of the functional

I
(
g;
a

λ

)
=

1

(2π)d

∫
[−a/λ,a/λ]d

g(ω)f(ω)dω → 1

(2π)d

∫
Rd
g(ω)f(ω)dω

if we let the frequency grid a be such that a/λ→∞ as λ→∞.

1Requires O(n2ad) computing operations.
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Examples: Bounded frequency grid a = O(λ)

• Whittle likelihood (g = f−1θ (·))

Qa,λ(f−1θ ; 0) ∝ 1

λd

Cλ∑
k1,...,kd=−Cλ

(
log fθ(ωk) +

|Jn(ωk)|2

fθ(ωk)

)
.

We need to constrain the frequency grid since fθ(ω) → 0 as |ω| → ∞.
Discretised version of the Matusda and Yajima (2009) Whittle likelihood.

• Spectral density estimator g = Wb(ω − ·) (and Wb(ω) = b−dW (ω/b)):

Qa,λ(Wb(ω), 0) =
1

λd

a∑
k1,...,kd=−a

Wb(ω − ωk)|Jn(ωk)|2.
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Examples: Unbounded frequency grid a/λ→∞

• A nonparametric estimator of the spatial (stationary) covariance function

g = eiv
′·:

ĉn(v) = T

(
2v

λ

)
Qa,λ(eiv

′·;0)

where T (u) is the triangle kernel. It can be shown that this covariance
estimator is a non-negative function.

• The quadratic loss function for parameter estimation:

Ln(θ) =
1

λd

a∑
k1,...,kd=−a

(
|Jn(ωk)|2 − fθ(ωk)

)2
.
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The quadratic loss Ln(θ) does not belong to the Qa,λ-class but similar
methods described below can be used to analysis it. Moreover, the
sampling properties of θ depend on ∇θLn(θ) which does belong to the
Qa,λ-class.
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Qa,λ(g; r) =
1

λd

a∑
k1,...,kd=−a

g(ωk)Jn(ωk)Jn(ωk+r)− bias r ∈ Zd.

Question What happens when r 6= 0?

If the sampling location density is uniform, then

• We will show that Qa,λ(g; r 6= 0) asymptotically behaves like an ancillary
variable to Qa,λ(g; 0); does not contain any mean information but does
contain information about the variance.

• In the case the process is nonstationary, it contains information about
the nonstationarity; this it can be used to test for stationarity.
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The mean
Let I(g; aλ) =

∫ a/λ
−a/λ g(ω)f(ω)dω. Then

• Uniform sampling density ({mj} are non-zero elements of r):

E [Qa,λ(g; r)] =

{
O
(

1
λd−b

∏d−b
j=1 (log λ+ log |mj|)

)
r ∈ Zd/{0}

I
(
g; aλ
)

+O
(
log λ
λ + 1

n

)
r = 0

.

• Non-uniform sampling density

E
[
Qa,λ(g; r)

]
= 〈γ, γ−r〉I

(
g;
a

λ

)
+O

(
log λ+ Ir 6=0 log |r|1

λ

)
.

2

2One can estimate〈γ, γ−r〉 using the methods proposed in Laurent (1996) or Gine and Nickl (2008).
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The covariance: Under general sampling

Under Gaussianity of the random field:

• λd supa,r1,r2 |cov {Qa,λ(g; r1), Qa,λ(g; r2)}| <∞

• Additional conditions on the smoothness of the spectral density

λdcov [Qa,λ(g; r1), Qa,λ(g; r2)]

= Γr1−r2Ca/λ +O

log2(a)

[
log a+ log λ

λ

]
+
λd

n︸ ︷︷ ︸
=`a,λ,n

+
|r1|1 + |r2|1

λ


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• λdcov [Qa,λ(g; r1), Qa,λ(g; r2)] = Γr1−r2Ca/λ + o(1).

• Γr =
∑

j1+j2+j3+j4=r γj1γj2γj3γj4; a product of the Fourier coefficients
of the spatial density.

Ca/λ =
1

(2π)d

∫
2π[−a/λ,a/λ]d

f(ω)2
[
|g(ω)|2 + g(ω)g(−ω)

]
dω.

• The correlations decay for large lag differences |r1 − r2|1.

• The expressions are unwieldy, but simplifications can be made if the
sampling of locations are uniformly distributed.
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The covariance: uniform sampling
Simplications can be made in the case that the sampling is uniform:

λdcov [<Qa,λ(g; r1),<Qa,λ(g; r2)]

=

{
1
2Ca/λ +O

(
`a,λ,n + |r1|λ

)
r1 = r2

O (`a,λ,n) r1 6= r2 or − r2
,

• Similar results hold for the imaginary parts.

• Furthermore, λdcov
[
<Q̃a,λ(g; r1),=Q̃a,λ(g; r2)

]
= O (`a,λ,n) (if r1 6=

−r2).

• This means that real and imaginary parts are near uncorrelated and for
|r| small, the variance of the statistics are similar.
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Implications
• For any sampling scheme, the construction of the estimator Q̃a,λ(g; 0)

depends on the number of frequencies used

Qa,λ(g; 0) =
1

λd

a∑
k1,...,kd=−a

g(ωk)|Jn(ωk)|2 − bias r ∈ Zd.

However, we have shown that the rate of convergence does not depend
on a. In other words

E |Qa,λ(g; 0)− 〈γ,γ0〉I(g;∞)|2 = O

(
1

λd
+

(
λ

a

)β−1)
,

where f(ω) ∼ C|ω|−β1 for |ω|1 → ∞. O((λ/a)β−1) is the bias in
approximating I(g; aλ) with I(g;∞).

25



We can choose a as large is computationally feasible.

• However, in order to obtain an explicit expression for the variance
(λdvar [Qa,λ(g; r)] = Γ0Ca/λ + o(1)) we need to constrain the rate of

growth such that log3(a)/λ = o(1).

– Use a = O(λk) for some k > 1.

– The derivation gave sufficient conditions, but I suspect the rates
cannot be improved by much.
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The covariance for non-Gaussian random fields

• The result is simplest when stated for uniform sampling (but similar
results hold for non-uniform sampling):

λdcov [<Qa,λ(g; r1),<Qa,λ(g; r2)]

=


1
2[Ca/λ +Da/λ] +O

 `a,λ,n︸ ︷︷ ︸
same as Gaussian

+
(aλ)d

n2︸ ︷︷ ︸
extra

 r1 = r2

O
(
`a,λ,n + (aλ)d

n2

)
r1 6= r2

,

• Da/λ = 1
(2π)2d

∫
2π[−a/λ,a/λ]2d g(ω1)g(ω2)f4(−ω1,−ω2,ω2)dω1dω2,

where f4 the fourth order spectral density of the process.
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• We would expect the additional fourth order cumulant term (it is
analogous to that in time series) in the case the process is non-Gaussian.

• But there is also the additional O((aλ)
d

n2
). This terms is due to the

fourth order cumulant and arises from an interplay between the random
sampling sj and the fourth order cumulant of the spectral density.

• This term grows if a >> n2/d/λ. Therefore, unlike the Gaussian case
the growth the frequency grid is limited to a = O(n2/d/λ).

– In the non-Gaussian setting it is sensible to choose to a = O(n1/d), in
this case all the results hold for mixed asymptotics.

– However, under pure increasing domain asymptotics where n ∼ λ, this
constraint means that the frequency grid cannot grow. One solution
is to use a wider frequency grid (similar to the empirical likelihood
approach of Bandyopadhyay, Lahiri and Nordman (2015)).
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Central limit theorem
Under Gaussianity of the random field

• For q ≥ 3: |cumq [Qa,λ(g, r1), . . . , Qa,λ(g, rq)] | = O
(
log2d(q−2)(a)
λd(q−1)

)
.

• For general sampling of the locations

λd/2
[
Qa,λ(g,0)− 〈γ, γ0〉I

(
g;
a

λ

)]
D→ N (0,∆),

as log2(a)/λ1/2 → 0 and λd/n → ∞ as a, λ, n → ∞3. Similar result
holds for {Qa,λ(g, r); r 6= 0}.

3Recall

Qa,λ(g; 0) =
1

λd

a∑
k1,...,kd=−a

g(ωk)|Jn(ωk)|
2 − bias .
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• It is likely that similar results hold for non-Gaussian random fields (under
suitable mixing conditions); possibly by using some of the methods
developed by Soumendra Lahiri and co-authors. However, in this case
additional constraints are required on the growth of the unbounded
frequency grid a.

• The result shows that for a given g, Qa,λ(g,0) consistently estimates
〈γ, γ0〉I(g; aλ) and the estimator is Gaussian.

However, for both testing and the construction of CIs, the variance ∆ is
unknown and needs to be estimated.
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Variance estimation

• During the 1930’s Fisher introduced the notion of an ancillary variable.
These are statistics whose distribution does not depend on the parameter
of interest. For example in the case of Gaussian random variables Xi−X̄
are ancillary to the mean µ.

• In time series and spatial data ancillary variables are rarely used. However,
under certain conditions the Fourier transform can be asymptotically
treated as if it were ancillary.

• To do so, we return to the CLT of Qa,λ(g; r) in the case that the
sampling of the locations are uniformly distributed.
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• In the case that the sampling is uniform for r 6= 0 the real and imaginary
{Qa,λ(g; r)} “asymptotically” have zero mean and are uncorrelated.

• If Qa,λ(g; 0) is real and r1, . . . , rm ∈ Zd/{0} where ri 6= −rj, then

1

Ca/λ



[
Qa,λ(g; 0)− I

(
g; aλ
)]

√
2<Qa,λ(g; r1)

...√
2<Qa,λ(g; rm)√
2=Qa,λ(g; r1)

...√
2=Qa,λ(g; rm)


D→ N (0, I2m+1) .

• Thus for ri << λ Qa,λ(g; 0),
√

2<Qa,λ(g; rj) and
√

2=Qa,λ(g; rj)
asymptotically have the same variance.
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Constructing asymptotically pivotal quantities

• Therefore the variables {<Qa,λ(g; rj),=Qa,λ(g; rj); j = 1, . . . ,m} can
be considered as ancillary to Qa,λ(g; 0); they contain no information
about the parameter I(g; aλ) but they do contain information about the
variance.

• Estimating the variance Ca/λ

σ̂2
2m =

λd

m

m∑
j=1

|Qa,λ(g; rj)|2 .

The same estimator consistly
estimates the variance in the case of
non-Gaussian random fields.

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

r1

r2

●

●● ●

33



• Using that

1

Ca/λ



[
Qa,λ(g; 0)− I

(
g; aλ
)]

√
2<Qa,λ(g; r1)

...√
2<Qa,λ(g; rm)√
2=Qa,λ(g; r1)

...√
2=Qa,λ(g; rm)


D→ N (0, I2m+1) .

we can construct the asymptotically pivotal statistic

λd/2

(
Qa,λ(g; 0)− I(g; aλ)√

σ̂2
2m

)
D→ t2m.

Which can be used for testing and the construction of CIs.
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A flavour of proofs

Focus on the case of uniform sampling and dimension d = 1.

• We recall

cov
[
Jn(ωk1), Jn(ωk2)

]
=

{
f(ωk1) +O(1λ + λ

n) k1 = k2
O( 1

λ) k1 6= k2

• Returning to the statistic

Qa,λ(g; r) =
1

λ

a∑
k=−a

g(ωk)Jn(ωk)Jn(ωk+r)− bias.

Aim to show:

E
[
Q̃a,λ(g; r)

]
=

{
O( log λλ ) r 6= 0

I
(
g; aλ
)
+O

( log λ
λ + 1

n

)
r = 0

.
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• If the frequency grid is bounded (a = O(λ)); we can immediately apply
the DFT result.

• If the frequency grid is unbounded a >> λ; the errors O(λ−1)
accumulant.

• In this case we have to expand Jn(ωk)

Qa,λ(g; r) = 1
n2

∑n
j1 6=j2=1

∑a
k=−a g(ωk)Z(sj1)Z(sj2)e

iωk(sj1−sj2)e−iωrsj2.

Taking expectations and exploit the randomness of locations:

E [Qa,λ(g; r)] ≈
a∑

k=−a

g(ωk)E [c(s1 − s2) exp(iωk(s1 − s2)− is2ωr)]

≈ 1

λ2

a∑
k=−a

g(ωk)

∫ λ/2

−λ/2

∫ λ/2

−λ/2
c(s1 − s2)eiωk(s1−s2)−is2ωrds1ds2.
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Using the standard trick in time series, we replace c(s1−s2) with the Fourier
representation of the covariance function

E [Qa,λ(g; r)]

≈ 1

λ2

a∑
k=−a

g(ωk)

∫
R
f(ω)

∫ λ/2

−λ/2

∫ λ/2

−λ/2
ei(s1−s2)ωeiωk(s1−s2)−is2ωrds1ds2dω

=
1

2π

a∑
k=−a

g(ωk)

∫ ∞
−∞

f(ω)sinc

(
λω

2
+ kπ

)
sinc

(
λω

2
+ (k + r)π

)
dω

=
1

π

∫ ∞
−∞

sinc(y)sinc(y + rπ)

∫ 2πa/λ

−2πa/λ
g(u)f

(
2y

λ
− u
)
dudy +O

(
1

λ

)

• sinc(y) = sin(y)/y. Using the griding of ωk = 2πk
λ in the construction

of Qa,λ leads to the orthonormal functions { 1√
π
sinc(y + rπ); r ∈ Z}.

37



• Under the assumption that f and f ′ are absolutely integrable we replace
f(2yλ − u) with f(−u). This separates the two integrals:

E [Qa,λ(g; r)]

=
1

π

∫ ∞
−∞

sinc(y)sinc(y + rπ)dy︸ ︷︷ ︸
0 if r 6=0 else 1

∫ 2πa/λ

−2πa/λ
g(u)f(−u)du

+
1

π

∫ ∞
−∞

sinc(y)sinc(y + rπ)

∫ 2πa/λ

−2πa/λ
g(u)

{
f(

2y

λ
− u)− f(−u)

}
dudy︸ ︷︷ ︸

O

(
log λ+Ir 6=0 log |r|

λ

)
.
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• Essentially the same method can be applied to the covariance and higher
order cumulants. The general recipe is:

(a) {Z(sj)} is a composite random variable in terms the process and random
location. Thus even if the process is Gaussian, Z(sj) is not Gaussian.

We use Brillinger (1969) to condition on the locations sj, which allows us
to reduce covariance and cumulants of {Z(sj)} in terms the covariance
and cumulants of the underlying spatial process. Duplicate locations can
cause a lot of problems, especially when the process is non-Gaussian.

(b) Represent the spatial covariance and cumulants in terms of spectral
densities or higher order spectral densities; this separates out the random
locations.

(c) Integrating out the density of the locations gives rise to products of
sinc functions (similar to the Dirichlet kernel) which satisfy several
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orthogonality and self-similar properties

1

π

∫
R

sinc(u)sinc(u+ rπ)du =

{
1 r = 0
0 r 6= 0

1

π

∫
R

sinc(u)sinc(u+ v)du = sinc(v).

• This allows us project everything onto a basis of sinc functions. Finding
the approximation errors is the difficult part.

In many ways this generalizes the results of Bochner and Kawata
(1958)/Kawata (1959) who considered Fourier transforms of continuous
time processes (observed over continuous time).
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