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Zagreb University

Luminy, February 18th 2016



2/43

I. Regularly varying time series

II. Convergence to a stable process

III. Skorohod’s topologies



3/43

I. Regularly varying time series

We are interested in stationary time series {Xt , t ∈ Z} with heavy
tails or regularly varying tail.

A random variable X is said to have a regularly varying right tail
with tail index α (denoted RV (α)) if

lim
t→∞

P(X > tx)

P(X > t)
= x−α .

The tail balance condition is said to hold if |X | is regularly varying
at infinity and

lim
x→∞

P(X > x)

P(|X | > x)
= 1− lim

x→∞

P(X < −x)

P(|X | > x)
= p ∈ [0, 1] .
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Let {Xi , i ∈ N} is a sequence of i.i.d. random variables with the
same distribution as X . Set P(X > an) ∼ 1/n and

bn =


0 if α < 1 ,

a−1
n E[X11{|X1|≤an}] if α = 1 ,

a−1
n E[X1] if α > 1 ,

Then

{a−1
n

[nt]∑
n=1

(Xk − bn), t ≥ 0} ⇒ Λ

where Λ is an α-stable Lévy process with skewness β = 2p − 1 and
the convergence is with respect to Skorohod’s J1 topology on
D([0, 1]).

[Feller, 1971] [Resnick, 1987]
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Multivariate regular variation

We use the following non standard but convenient definition.

A vector (X0, . . . ,Xd) is multivariate regularly varying if there
exists a vector (Y0, . . . ,Yd) with Y0 6≡ 0 such that

L
(
X0

x
,
X1

x
. . . ,

Xd

x
| |X0| > x

)
→ (Y0, . . . ,Yd) .

I This convergence implies that X0 is multivariate regularly
varying and Y0 is a two sided Pareto random variable.

I If for some j ∈ {1, . . . , d}, Yj ≡ 0, then Xj is said to be
extremally independent from X0.
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Regularly varying time series

A strictly stationary real valued times series {Xt , t ∈ Z} is said to
be regularly varying if all its finite dimensional distributions are
regularly varying, i.e. for each n ≥ m ∈ Z, the vector (Xm, . . . ,Xn)
is regularly varying.

A sequence of i.i.d. random variables with regularly marginal
distribution is regularly varying.
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The tail process

It is convenient to characterize the extremal behaviour of the time
series by its tail process

{Yt , t ∈ Z} = fidi− lim
x→∞
{x−1Xt , t ∈ Z | |X0| > x} .

[Basrak and Segers, 2009]

I The only inconvenient is that it gives an arbitrary role to the
time origin 0.

I Y0 has a two sided Pareto distribution with skewness p:

P(Y0 > x) = pP(|Y0| > x) = px−α .
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Examples

I Linear processes with heavy tailed innovation;

I Stochastic recurrence equations (ARCH, GARCH);

I Stochastic volatility models with heavy tailed innovation or
heavy tailed volatility;

I MCMC algorithms with heavy tailed proposal distribution.
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Clusters

I For iid observations, extremes appear in isolation.

I For dependent time series, extremes may appear in cluster.

Precise definition of a cluster? related to the blocking method: the
original series is split into [n/rn] blocks of size rn.
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The extremal index

The extremal index is the inverse mean cluster size. Let un and rn
be sequences such that rn →∞, un →∞ and rnP(X1 > un)→ 0.

1

θ
= lim

n→∞
E

[
rn∑
i=0

1{Xi>un} | X0 > un

]

= lim
n→∞

rn∑
i=0

P(Xi > un | X0 > un) .

This limit does not always exist and may be infinite. If the
extremal index exists then θ ∈ [0, 1]. For i.i.d. observations or
extremally independent times series θ = 1.
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Figure : Pareto 3/2 distribution: iid and MA(1) with ρ = .9
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Figure : Partial sum process; Pareto 3 distribution: iid and MA(1) with
ρ = .9
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II. Convergence to a stable process

We want to investigate the convergence of the partial sum process

Sn(t) = a−1
n

[nt]∑
k=1

(Xk − bn)

to a Lévy stable process, both fidi convergence and functional
convergence.

Very old story: [Davis, 1983] → [Basrak and Krizmanić, 2014]

The main ingredients are a weak dependence condition and an
anticlustering condition.
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Temporal weak dependence condition

place your favorite weak dependence condition here (WD)

A convenient assumption is that the series is absolutely regular
(β-mixing) with fast rate. This allows to replace the original
sequence X1, . . . ,Xn by a sample X ∗1 , . . . ,X

∗
n which consists of

n/rn independent blocks of length rn = o(n) and each block has
the same distribution as the corresponding original block.

Under geometric decay of the coefficients, the choice block size rn
is largely irrelevant (logarithmic).

Ex: functions of geometrically ergodic irreducible Markov chains.

I Linear processes can be studied by ad-hoc techniques
(truncation).

I Certain forms of long memory processes can also be dealt
with.
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The anticlustering condition

Let un and rn be sequences such that rn →∞, un →∞ and
rnP(X1 > un)→ 0.

lim
m→∞

lim sup
n→∞

P
(

max
m≤i≤rn

Xi > un | X0 > un

)
= 0 (AC )

Obviously holds for m-dependent sequences; hard to check in
general.

Condition AC implies that the extremal index exists and is
positive. The mean cluster size is finite.

[Smith, 1992], [Davis and Hsing, 1995].
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The point process of exceedences

The point process of exceedence is defined by

Nn =
n∑

k=1

δ k
n

Xk
an

.

For t ∈ [0, 1] and u > 0,

Nn([0, t]× [u,∞]) = #{k ≤ n | k/n ≤ t , Xk > anu} ,

P (Nn([0, t]× [u,∞]) = 0) = P
(

max
1≤k≤nt

Xk ≤ anu

)
.
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Convergence of the point process of exceedences

Under the regular variation condition and conditions AC and WD,
Nn ⇒ N with

N =
∞∑
i=1

∑
j∈Z

δTi ,PiQi,j

I N0 =
∑∞

ı=1 δTi ,Pi
is a PRM on [0, 1]× ([−∞, 0) ∪ (0,∞])

with mean measure dt{(1− p)1{x<0} + p1{x>0}}α|x |−α−1dx .

I the sequences {Qi ,j , j ∈ Z} are i.i.d. and independent of N0;
their common distribution is related to that of the tail process
conditioned to have a record at time 0..

[Davis and Hsing, 1995], [Basrak et al., 2012],
[Basrak and Tafro, 2015].
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The summation functional

Let Mp be the set of finite point measures on
[0, 1]× E0 = [0, 1]× R̄ \ {0}. The summation functional

Mp → R

N 7→
∫ 1

0

∫
E0

xN(dtdx)

is continuous1 on Mp endowed with the topology of vague
convergence.

1nearly
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For simplicity of notation, we assume that the distribution of X1 is
symmetric, so we forget the centering. Fix ε > 0.

Sn(t) = a−1
n

[nt]∑
k=1

Xk1{|Xk |>εan} + a−1
n

[nt]∑
k=1

Xk1{|Xk |≤εan} = S1,n + S2,n .

Asymptotic negligibility of small jumps: for every η > 0 and
t ∈ (0, 1],

lim
ε→0

lim sup
n→∞

P(S2,n(t) > η) = 0 . (AN)

True for α < 1; must be assumed for α ∈ (1, 2).
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By a continuous mapping argument, for fixed t,

S2,n(t) = a−1
n

[nt]∑
k=1

Xk1{|Xk |>εan} =

∫ t

0

∫
ε<|x |≤∞

xNn(dtdx)

⇒n→∞

∫ t

0

∫
ε<|x |≤∞

xN(dtdx)⇒ε→0 Λ(t) .

where Λ is an α-stable Lévy process.

The asymptotic negligibility of the small jumps ensures that
Sn(t)⇒ Λ(t).

Fidi convergence is proved similarly.
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In the case α < 1, the points of the limit of the PPE are summable
and the limiting process Λ has an explicit form:

Λ(t) =
∑

i :Ti≤t

∑
k∈Z

PiQi ,j .

The order of the points is lost.
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What more do you want?

Tightness, functional convergence, convergence of functionals. Do
the following convergence hold?

sup
0≤t≤1

Sn(t)⇒ sup
0≤t≤1

Λ(t) ,∫ 1

0
Sn(t)dt ⇒

∫ 1

0
Λ(t)dt .

We will only discuss convergence of the supremum.
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Example
Consider the MA(1) process Xt = Zt + ϑZt−1 where {Zt , t ∈ Z} is
an i.i.d. positive regularly varying sequence with tail index
α ∈ (0, 1). Let an be the 1− 1/n quantile of Z1.

Sn(t) = a−1
n ϑZ0 + a−1

n (1 + ϑ)

[nt]−1∑
k=1

Zk + a−1
n Z[nt] .

If ϑ > 0 then

sup
0≤t≤1

Sn(t) ∼ (1 + ϑ) sup
0≤t≤1

a−1
n

[nt]∑
k=1

Zk .

If ϑ < 0 then this is not true. For ϑ = −1,

Sn(t) = a−1
n ϑZ0 + a−1

n Z[nt] ⇒ 0 ,

sup
0≤t≤1

Sn(t) ∼ an−1 max
1≤k≤n

Zk → Φα

the Fréchet distribution.
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The summation functional

We must now consider the summation functional as a functional
onto D([0, 1]). Set E0 = R̄ \ {0}.

Mp → D([0, 1])

N →
(
t →

∫ t

0

∫
E0

xN(dtdx)

)
.

We must endow D([0, 1]) with a topology.
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III. Skorohod’s topologies

The J1 topology is finer than the M1 topology which is finer than
the M2 topology.

The supremum functional is continuous wrt to the J1, M1 and M2

topologies.

The J1 topology can handle discontinuities but not unmatched
discontinuities nor multiple jumps.

The M1 topology can handle unmatched discontinuities and
multiple jumps of the same sign.

The M1 topology cannot handle multiple jumps of different signs.

The M2 topology can handle some cases of multiple jumps of
different signs.

[Whitt, 2002]

For convergence of integrals the S topology is sufficient.
[Jakubowski, 1997]
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Unmatched jump at the limit
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Multiple jumps of the same sign
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Multiple jumps of different signs
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Multiple jumps of different signs
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Convergence of the partial sum process

Let {Yj} be the tail process of the stationary regularly varying time
series {Xj}.

Theorem

Assume that Conditions AC (an, rn) and WD hold. Assume the
uniform asymptotic negligibility of small jumps if α ∈ [1, 2).

I If Yj = 0 for all j 6= 0 (extremal independence), Sn converges
to Λ in the J1 topology.

I If YiYj ≥ 0 for all i , j ∈ Z, then Sn converges to Λ in the M1

topology.

[Basrak et al., 2012] (M1 convergence); [Louhichi and Rio, 2011]
(M1 convergence for associated sequences).
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Figure : partial sum proces of MA(1) ρ = .7, α = 3/2. M1 convergence.
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Beyond the point process of exceedences and M2

convergence

The convergence of the point process of exceedences sums points
within a cluster so that the order of the exceedences within on
cluster is lost. The order determines the nature of the
convergence.

I For the AR(1) process with positive coefficent, the
exceedences occur in increasing order; M1 convergence holds.

I For the AR(1) process with negative coefficent, the
exceedences may occur in decreasing order; even M2

convergence fails.

The clusters must be considered as ordered sequences and the
order be kept. The point process of exceedences must be replaced
by the point process of clusters.

Related to cluster functionals [Drees and Rootzén, 2010],
[Mikosch and Wintenberger, 2015]
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Under the anticlustering condition, lim|t|→∞ Yt = 0.

Let `0 = {(un)n∈Z, lim|n|→∞ un = 0} and let ˜̀
0 be the quotient of

`0 by the shift operator. ˜̀
0 is a CSMS. The theory of PP

convergence of Daley and Vere-Jones can be applied.

For a sequence rn of block size and mn = [n/rn], define the cluster

Cn,k = {a−1
n Xi , (k − 1)rn + 1 ≤ i ≤ krn} ,

add zeroes to the left and to the right and consider it as an
element of ˜̀

0.

Define the point process of clusters Ñ on [0, 1]× ˜̀
0:

Ñ =
m∑

k=1

δ k
n
,Cn,k
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Convergence of the point process of clusters

Under the regular variation condition and conditions AC and WD,
Ñn ⇒ Ñ with

Ñ =
∞∑
i=1

δTi ,{PiQi,j ,j∈Z}

where as previously

I N0 =
∑∞

ı=1 δTi ,Pi
is a PRM on [0, 1]× (0,∞] with mean

measure dtd(−x−α);

I the sequences {Qi ,j , j ∈ Z} are i.i.d. and independent of N0

and their distribution is that of the tail process conditioned to
have a record at time 0.
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The supremum of the partial sum process

For ε > 0, consider the mappings fε and gε on ˜̀
0 by

gε(x) =
∑
j

xj1{|xj |>ε} , fε(x) = sup
k

∑
j≤k

xj1{|xj |>ε} .

We define the mapping

Tε :Mp([0, 1]× ˜̀
0)→ D([0, 1])∑

i∈N
δti ,xi 7→

t → sup
ti≤t

∑
tj<ti

gε(xj) + fε(xi )


 .

For every ε > 0, the mapping Tε is continuous2 with respect to
the M1 topology on D([0, 1]).

2nearly
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The case α < 1

In that case the points are summable and it is possible to let ε→ 0
in the limit point process Tε. Set Un(t) = sup0≤s≤t Sn(s). Then

Un ⇒ U , wrt the M1 topology,

U(t) = sup
i :ti≤t

∑
j<i

∑
k∈Z

PjQj ,k + sup
k

∑
`≤k

PiQi ,`

 .

Questions:

We know that Sn converges fidi to a stable Lévy process Λ.

I Is U the supremum of Λ?

I Under what condition does Sn converge to Λ in the M2

topology?



40/43

A (N)SC for M2 convergence

If conditions WD and AC hold and

sup
k∈Z

∑
`≤k

Q1,` ≤

(∑
`∈Z

Q1,`

)
+

, (C ∗)

then U = Λ∗.

If moreover(∑
`∈Z

Q1,`

)
−

≤ inf
k∈Z

∑
`≤k

Q1,` ,

then M2 converence holds.
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Causal moving averages

Consider a causal moving average with regularly varying i.i.d.
innovation {Zt , t ∈ Z}:

Xt =
∞∑
k=0

akZt−k ,

with
∑∞

k=0 |ak | <∞ and
∑∞

k=0 ak > 0.

Then condition (C ∗) holds iff for all k ≥ 0,

0 ≤
k∑

k=0

ak ≤
∞∑
k=0

ak .

Then the partial sum process converges wrt M2 topology.

Conjectured by [Avram and Taqqu, 1992], proved by
[Basrak and Krizmanić, 2014].
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Records
Let m =

∑∞
i=1 δti ,xi ∈Mp([0, 1]× ˜̀

0). Define, for i ≥ 1 and j ∈ Z

Mi ,j = sup
j ′≤j

x ij ′ , Mi = sup
j∈Z

x ij ,

M ′i = sup
i ′<i

Mi ′ , M ′i ,j = M ′i ∨Mi ,j .

The counting process of records is defined on (0,∞) by

Rm(a, b] =
∑

i :a<ti≤b
1{X i

j>M′i,j−1}
, 0 < a ≤ b .

The application

Mp([0, 1]× ˜̀
0)→Mp((0,∞))

m→ Rm

is continuous at every m such that for all i , i ′ ≥ 1 and j , j ′ ∈ Z,
xi ,j 6= xi ′,j ′ if xi ,j > 0 .

Conjecture: the number of significant records is O(log(n)).
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Checking the anticlustering condition for Markov chains

For functions of irreducible Markov chains, the anticlustering
condition is implied by geometric convergence and nothing less.

[Roberts et al., 2006], [Mikosch and Wintenberger, 2013],
[Kulik et al., 2015].
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