

Posterior consistency for partially-observed Markov models LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay

Joint work with Randal Douc and Jimmy

Olsson.

Models Bayesian setting

Page 2 / 37

François Roueff

Models Bayesian setting

Main results

Our setting Checking the \mathbb{P} -remoteness property: NSC Checking the \mathbb{P} -remoteness property: AMLE Checking the approximate merging property: complete MC.

Models Bayesian setting

Main results

Our setting Checking the \mathbb{P} -remoteness property: NSC Checking the \mathbb{P} -remoteness property: AMLE Checking the approximate merging property: complete MC.

Some extensions

Support of the complete chain depending on the parameter Toward non-stationarity

Models Bayesian setting

Main results

Our setting Checking the \mathbb{P} -remoteness property: NSC Checking the \mathbb{P} -remoteness property: AMLE Checking the approximate merging property: complete MC.

Some extensions

Support of the complete chain depending on the parameter Toward non-stationarity

Models Bayesian setting

Main results

Some extensions

Introduction Models Bayesian setting

Main results

Some extensions

Conclusion, summary and remaining questions...

Page 4 / 37

Partially observed Markov models

Definition

A partially observed Markov model is a pairwise homogeneous Markov chain $(Z_n = (X_n, Y_n), \mathcal{F}_n)_{n \ge 0}$ with kernel **K** generally described as

$$\begin{aligned} X_{k+1} | \mathcal{F}_k &\sim Q(X_k, \mathbf{Y}_k; \cdot) ,\\ \mathbf{Y}_{k+1} | \mathcal{F}_k, X_{k+1} &\sim \mathbf{G}(X_k, \mathbf{Y}_k, X_{k+1}; \cdot) , \end{aligned} \tag{1}$$

▶ and such that only the $\{Y_k\}'$ s are observed.

副務憲統 Two important examples

An ODM moreover requires that

$$Q(X_k, Y_k; \cdot) = \delta_{f_{Y_k}(X_k)}(\cdot)$$
$$G(X_k, X_{k+1}, Y_k; \cdot) = G(X_{k+1}; \cdot)$$

(2)

Markov latent variables

As for HMM's, $\{X_k\}$ is Markov with a transition kernel

$$R(x_0; A) = \int G(x_0; \mathrm{d}y_0) \mathbf{1}_A \left(f_{y_0}(x_0) \right)$$
(3)

▶ Parametric models are obtained by setting $Q = Q^{\theta}$ (or for ODMs: $f_y(x) = f_y^{\theta}(x)$) and, sometimes, $G = G^{\theta}$, $\theta \in \Theta$

- ► Partially dominated models : $\frac{dG^{\theta}(x; \cdot)}{d\nu}(y) = g^{\theta}(x; y)$
- ► Fully-dominated model : $\mathbf{K}_{\theta}(z_0, \mathrm{d}z_1) = k_{\theta}(z_0, z_1) \ \mu \otimes \nu(\mathrm{d}z_1).$

GARCH(1, 1) by [Bollerslev(1986)]:

 $G(x; \cdot) = \mathcal{N}(0, x)$ and $f_y(x) = \omega + ax + by^2$

In-GARCH, see [Davis et al.(2003)]: $G(x; \cdot) = Poi(x)$ and $f_y(x) = \omega + ax + by$

Page 8 / 37

GARCH(1, 1) by [Bollerslev(1986)]:

 $G(x; \cdot) = \mathcal{N}(0, x)$ and $f_y(x) = \omega + ax + by^2$

In-GARCH, see [Davis et al.(2003)]: $G(x; \cdot) = Poi(x)$ and $f_y(x) = \omega + ax + by$

Log-In-GARCH, see [Fokianos and Tjøstheim (2011)]:

 $G(x; \cdot) = \operatorname{Poi}(\exp x)$ and $f_y(x) = \omega + ax + b \log(1 + y)$

NBINGARCH(1, 1) by [Zhu(2011)]:

$$G(x; \cdot) = \mathcal{NB}\left(r, \frac{1}{1+x}\right)$$
 and $f_y(x) = \omega + ax + by$

副務憲統 Basic assumption and definitions

Ergodicity assumption

We assume that \mathbf{K}_{θ} is ergodic for all $\theta \in \Theta$, and denote by π^{θ} the *unique* stationary distribution.

- For all initial distribution η ,
 - let $\mathbb{P}_{\eta}^{\theta}$ be the probability on $((X \times Y)^{\mathbb{N}}, (\mathcal{X} \otimes \mathcal{Y})^{\otimes \mathbb{N}})$ induced by \mathbf{K}_{θ} starting from $(X_0, Y_0) \sim \eta$

P $^{\theta}$ is $\mathbb{P}^{\theta}_{\pi^{\theta}}$ extended to the negative time indices

$$\underline{\tilde{\mathbb{P}}}^{\theta}$$
 is \mathbb{P}^{θ} restricted to $Y^{\mathbb{Z}}$ components

• Maximum Likelihood Estimator (MLE) $\theta_{\eta,n}$ is defined as

$$\theta_{\eta,n} \in \operatorname{argmax}_{\theta \in \Theta} \left\{ \mathsf{p}_{\eta}^{\theta}(Y_{1:n}) \right\}$$
(4)

for some arbitrary initial dist. ξ .

In well-specified models, a standard consistency result consists in showing that

$$\lim_{n \to \infty} \theta_{\eta, n} = \theta_{\star}, \quad \tilde{\mathbb{P}}^{\theta_{\star}} \text{-a.s.}$$
(5)

where $\tilde{\mathbb{P}}^{\theta_{\star}}$ is the stationary distribution of $Y_{1:\infty}$.

Introduction Models Bayesian setting

Main results

Some extensions

Conclusion, summary and remaining questions...

Page 11 / 37

François Roueff

Consider the posterior distribution:

$$\lambda_n(\mathbf{A}) = \frac{\int_{\mathbf{A}} \lambda(\mathrm{d}\theta) \mathbf{p}_{\theta,n}}{\int_{\Theta} \lambda(\mathrm{d}\theta) \mathbf{p}_{\theta,n}}$$

where

- 1. $p_{\theta,n} = p_{\theta}(Y_1, \ldots, Y_n)$ where Y_1, \ldots, Y_n are the observations
- 2. λ is a (possibly infinite) measure, called the prior.
- p_n^* denote the real density of the observations $Y_{1:n}$.
- the parameter set (Θ, d) is a metric space and denote by T its Borel σ-field.

Definition p_n^* and $p_{\theta_\star,n}$ merge with probability 1 if and only if $\lim_{n \to \infty} \frac{1}{n} \log \frac{p_{\theta_\star,n}}{p_n^*} = 0 \quad \mathbb{P}\text{-a.s.}$

 θ_{\star} is called the "true value" of the parameter.

副選択的 The true value of the parameter

Definition

 p_n^{\star} and $p_{\theta_{\star},n}$ merge with probability 1 if and only if

$$\lim_{n\to\infty}\frac{1}{n}\log\frac{p_{\theta_{\star},n}}{p_n^{\star}}=0 \quad \mathbb{P}\text{-a.s.}$$

 θ_{\star} is called the "true value" of the parameter.

We are interested in finding conditions under which the posterior consistency property holds, i.e.

$$\lambda_n \underset{n \to \infty}{\Longrightarrow} \delta_{\theta_\star} \quad \mathbb{P}\text{-a.s.}$$

By the Portmanteau Lemma, it is equivalent to show that P-a.s.,

 $\limsup_{n} \lambda_n(\mathcal{C}) \leq \delta_{\theta_*}(\mathcal{C}), \quad \mathcal{C} \text{ closed set in } \Theta$

i.e. for all $A_{\rho} = \{\theta \in \Theta : d(\theta, \theta_{\star}) \ge 1/p\}$

 $\limsup_n \lambda_n(A_p) = 0 , \quad \mathbb{P}\text{-a.s.}$

Page 14 / 37

Bosterior consistency condition

By the Portmanteau Lemma, it is equivalent to show that P-a.s.,

 $\limsup_n \lambda_n(C) \le \delta_{\theta_*}(C), \quad C \text{ closed set in } \Theta$

i.e. for all $A_p = \{\theta \in \Theta : d(\theta, \theta_{\star}) \ge 1/p\}$

 $\limsup_n \lambda_n(A_p) = 0 , \quad \mathbb{P}\text{-a.s.}$

Note that

$$\lambda_n(\mathbf{A}) = rac{\int_{\mathbf{A}} \lambda(\mathrm{d} heta) \mathbf{p}_{ heta,n}}{\int_{\Theta} \lambda(\mathrm{d} heta) \mathbf{p}_{ heta,n}}$$

.

Bosterior consistency condition

By the Portmanteau Lemma, it is equivalent to show that P-a.s.,

 $\limsup_{n} \lambda_n(C) \le \delta_{\theta_*}(C), \quad C \text{ closed set in } \Theta$

i.e. for all $A_p = \{ \theta \in \Theta : d(\theta, \theta_{\star}) \ge 1/p \}$

 $\limsup_n \lambda_n(A_p) = 0 , \quad \mathbb{P}\text{-a.s.}$

Note that

$$\lambda_n(\mathbf{A}) = rac{\int_{\mathbf{A}} \lambda(\mathrm{d} heta) \mathbf{p}_{ heta,n} / \mathbf{p}_n^\star}{\int_{\Theta} \lambda(\mathrm{d} heta) \mathbf{p}_{ heta,n} / \mathbf{p}_n^\star} \ .$$

$$\lambda_n(\mathbf{A}) = \frac{\int_{\mathbf{A}} \lambda(\mathrm{d}\theta) p_{\theta,n} / p_n^{\star}}{\int_{\Theta} \lambda(\mathrm{d}\theta) p_{\theta,n} / p_n^{\star}}$$

.

Definition

We say that a set $A \in \mathcal{T}$ is **P**-remote if and only if

$$\limsup_{n\to\infty} n^{-1} \log \left(\int_A \frac{p_{\theta,n}}{p_n^*} \, \lambda(\mathrm{d}\theta) \right) < 0 \quad \mathbb{P}\text{-a.s.}$$

$$\lambda_{n}(\boldsymbol{A}) = \frac{\int_{\boldsymbol{A}} \lambda(\mathrm{d}\boldsymbol{\theta})\boldsymbol{p}_{\boldsymbol{\theta},n}/\boldsymbol{p}_{n}^{\star}}{\int_{\boldsymbol{\Theta}} \lambda(\mathrm{d}\boldsymbol{\theta})\boldsymbol{p}_{\boldsymbol{\theta},n}/\boldsymbol{p}_{n}^{\star}} = \boxed{\frac{\int_{\boldsymbol{A}} \lambda(\mathrm{d}\boldsymbol{\theta})\boldsymbol{p}_{\boldsymbol{\theta},n}}{\int_{\boldsymbol{\Theta}} \lambda(\mathrm{d}\boldsymbol{\theta})\boldsymbol{p}_{\boldsymbol{\theta},n}}}$$

Definition

Moreover, we say that a set *A* is approximately \mathbb{P} -remote if and only if for all $\varepsilon > 0$ there exists a set $K_{\varepsilon} \in \mathcal{T}$ such that

(i)
$$A \cap K_{\varepsilon}$$
 is \mathbb{P} -remote;

(ii)
$$\limsup_{n\to\infty} \lambda_n(K_{\varepsilon}^c) \leq \varepsilon$$
 \mathbb{P} -a.s.

Typically, K_{ϵ} is a compact set.

François Roueff

$$\lambda_{n}(\boldsymbol{A}) = \frac{\int_{\boldsymbol{A}} \lambda(\mathrm{d}\theta) \boldsymbol{p}_{\theta,n} / \boldsymbol{p}_{n}^{\star}}{\int_{\boldsymbol{\Theta}} \lambda(\mathrm{d}\theta) \boldsymbol{p}_{\theta,n} / \boldsymbol{p}_{n}^{\star}}$$

Assumption (A1)

For all $\delta > 0$, there exists a set $\Theta_{\delta} \in \mathcal{T}$ such that $\lambda(\Theta_{\delta}) > 0$ and for all $\theta \in \Theta_{\delta}$,

$$\liminf_{n \to \infty} n^{-1} \log \frac{p_{\theta,n}}{p_n^*} \ge -\delta \quad \mathbb{P}\text{-a.s.}$$
(6)

► This can be seen as an asymptotic merging property since (6) implies

$$0 \geq \limsup_{n \to \infty} n^{-1} \log \frac{p_{\theta,n}}{p_n^{\star}} \geq \liminf_{n \to \infty} n^{-1} \log \frac{p_{\theta,n}}{p_n^{\star}} \geq -\delta \quad \mathbb{P}\text{-a.s.}$$
Page 17/37
François Roueff

$$\lim_{n\to\infty}\lambda_n(A)=0\,,\quad\mathbb{P}\text{-a.s.}$$
(7)

Page 18 / 37

François Roueff

$$\lim_{n\to\infty}\lambda_n(A)=0,\quad \mathbb{P}\text{-a.s.}$$
(7)

Objectives:

1. Give sufficient and handy conditions for getting the posterior consistency for partially observed Markov models.

$$\lim_{n\to\infty}\lambda_n(A)=0,\quad \mathbb{P}\text{-a.s.}$$
(7)

Objectives:

- 1. Give sufficient and handy conditions for getting the posterior consistency for partially observed Markov models.
- 2. Treat the case of non compact parameter spaces

$$\lim_{n\to\infty}\lambda_n(A)=0,\quad \mathbb{P}\text{-a.s.}$$
(7)

Objectives:

- 1. Give sufficient and handy conditions for getting the posterior consistency for partially observed Markov models.
- 2. Treat the case of non compact parameter spaces
- 3. Treat the case of non stationary observations

$$\lim_{n\to\infty}\lambda_n(A)=0,\quad \mathbb{P}\text{-a.s.}$$
(7)

Objectives:

- 1. Give sufficient and handy conditions for getting the posterior consistency for partially observed Markov models.
- 2. Treat the case of non compact parameter spaces
- 3. Treat the case of non stationary observations
- 4. Give explicit Θ_{δ} such that Assumption ((A1)) can be easily checked.

Main results

Our setting Checking the \mathbb{P} -remoteness property: NSC Checking the \mathbb{P} -remoteness property: AMLE Checking the approximate merging property: complete MC.

Some extensions

Main results Our setting

Checking the \mathbb{P} -remoteness property: NSC Checking the \mathbb{P} -remoteness property: AMLE Checking the approximate merging property: complete MC.

Some extensions

Fully dominated partially observed Markov

Assumption

The Markov kernel $\mathbf{K}_{\theta_{\star}}$ is Fully-dominated model with $k_{\theta}(z, z') > 0$ and has a unique stationary distribution π_{\star} .

In this case, we set

- The true distribution is $\mathbb{P} = \mathbb{P}_{\pi_*}^{\theta_*}$;
- The true density p^{*}_n is the corresponding density applied to Y_{1:n}, p^{*}_n = p_{θ*,π*}(Y_{1:n});
- ► The target density $p_{\theta,n}$ with parameter θ is given by $p_{\theta,n} = p_{\theta,\eta}(Y_{1:n})$ for some arbitrary initial distribution η .

Main results

Checking the \mathbb{P} -remoteness property: NSC

Checking the \mathbb{P} -remoteness property: AMLE Checking the approximate merging property: complete MC.

Some extensions

Checking the P-remoteness property: a

Proposition (A necessary and sufficient condition) The set $A \in \mathcal{T}$ is **P**-remote if and only if there exists a sequence $(B_n)_{n \in \mathbb{N}}$ of sets in \mathcal{F} such that $B_n \in \mathcal{F}_n$ for all $n \in \mathbb{N}$ and

$$\limsup_{n \to \infty} n^{-1} \log \int_{\mathcal{A}} \lambda(\mathrm{d}\theta) \mathbb{P}_{\theta,n}(B_n) < 0 ,$$
$$\mathbb{P}\left(\liminf_{n \to \infty} B_n\right) = 1 .$$

The Necessary and Sufficient condition is obtained with

$$\mathcal{B}_n = \left\{ \int_{\mathcal{A}} \lambda(\mathrm{d} heta) rac{\mathcal{P}_{ heta,n}}{\mathcal{P}_n^\star} \leq arrho^n
ight\} \; ,$$

Page 24 / 37

François Roueff

The Necessary and Sufficient condition is obtained with

$$\mathcal{B}_n = \left\{ \int_{\mathcal{A}} \lambda(\mathrm{d} heta) rac{\mathcal{p}_{ heta,n}}{\mathcal{p}_n^\star} \leq arrho^n
ight\} \; ,$$

while, in concrete examples, the condition is used with

$$B_n = \left\{ \left| \frac{1}{n-m} \sum_{k=1}^{n-m} \mathbb{1}_C(Y_{k:k+m}) - \mathbb{P}_{\theta_*,n}(Y_{0:m} \in C) \right| \le \epsilon \right\}$$

Page 24 / 37

Main results

Our setting Checking the P-remoteness property: NSC Checking the P-remoteness property: AMLE Checking the approximate merging property: complete MC.

Some extensions

Checking the P-remoteness property: Ap-

Definition

Let *K* be a compact subset of Θ . We say that a random sequence $(\hat{\theta}_n)_{n \in \mathbb{N}}$ adapted to the filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ are Approximate Maximum Likelihood Estimators (AMLE) on *K* if it is valued in *K* and, for all $n \in \mathbb{N}$,

 $n^{-1}\log p_{\hat{\theta}_n,n} \ge n^{-1}\log p_n^{\star} + \epsilon_n \quad \text{with} \quad \lim_{n \to \infty} \epsilon_n = 0 \quad \mathbb{P}\text{-a.s.}$

Checking the P-remoteness property: Ap-

Definition

Let *K* be a compact subset of Θ . We say that a random sequence $(\hat{\theta}_n)_{n \in \mathbb{N}}$ adapted to the filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ are Approximate Maximum Likelihood Estimators (AMLE) on *K* if it is valued in *K* and, for all $n \in \mathbb{N}$,

 $n^{-1}\log p_{\hat{\theta}_n,n} \ge n^{-1}\log p_n^{\star} + \epsilon_n \quad \text{with} \quad \lim_{n \to \infty} \epsilon_n = 0 \quad \mathbb{P}\text{-a.s.}$

Proposition

Let K be a compact subset of Θ such that $\lambda(K) < \infty$. If

▶ All sequences $(\hat{\theta}_n)_{n \in \mathbb{N}}$ of AMLE on K are strongly consistent,

then, for all closed set A not containing θ_* , the set $A \cap K$ is \mathbb{P} -remote.

Main results

Our setting Checking the P-remoteness property: NSC Checking the P-remoteness property: AMLE Checking the approximate merging property: complete MC.

Some extensions

► How to prove (A1)?

Page 28 / 37

François Roueff

► How to prove (A1)?

For all $\theta \in \Theta_{\delta}$, we write

$$\liminf_{n\to\infty} n^{-1}\log\frac{p_{\theta,\eta}(Y_{1:n})}{p_{\theta_\star,\pi_\star}(Y_{1:n})} \geq \liminf_{n\to\infty} n^{-1}\log\frac{p_{\theta,\eta}(Z_{1:n})}{p_{\theta_\star,\pi_\star}(Z_{1:n})} \quad \mathbb{P}\text{-a.s.} \ ,$$

By the Birkhoff ergodic theorem, the right-hand side converges to

 $\blacksquare(\theta_{\star},\theta) := \mathbb{E}_{\pi_{\star}}^{\theta_{\star}} [\mathrm{KL} \left(\mathsf{K}_{\theta_{\star}}(Z_{0},\cdot) \| \mathsf{K}_{\theta}(Z_{0},\cdot) \right)].$

Page 28 / 37

► How to prove (A1)?

For all $\theta \in \Theta_{\delta}$, we write

$$\liminf_{n\to\infty} n^{-1}\log\frac{p_{\theta,\eta}(Y_{1:n})}{p_{\theta_\star,\pi_\star}(Y_{1:n})} \geq \liminf_{n\to\infty} n^{-1}\log\frac{p_{\theta,\eta}(Z_{1:n})}{p_{\theta_\star,\pi_\star}(Z_{1:n})} \geq -\delta \quad \mathbb{P}\text{-a.s.} \ ,$$

By the Birkhoff ergodic theorem, the right-hand side converges to

$$\blacksquare(\theta_{\star},\theta) := \mathbb{E}_{\pi_{\star}}^{\theta_{\star}} [\mathrm{KL} \left(\mathsf{K}_{\theta_{\star}}(Z_{0},\cdot) \| \mathsf{K}_{\theta}(Z_{0},\cdot)\right)].$$

Then it suffices to check that, for all $\delta > 0$,

$$\lambda\left(\Theta_{\delta}
ight)>0 ext{ where } \left[\Theta_{\delta}:=\left\{ heta\in\Theta\,:\,\blacksquare(heta_{\star}, heta)\leq\delta
ight\}.$$

Main results

Some extensions

Support of the complete chain depending on the parameter Toward non-stationarity

Main results

Some extensions Support of the complete chain depending on the parameter Toward non-stationarity

- If $X_k = \psi_{\theta}(X_{k-1}) + U_k$ and $Y_k = \phi_{\theta}(X_k) + V_k$, where
 - 1. $U_k \stackrel{\text{i.i.d}}{\sim} f_{\theta}$ where f_{θ} is a density with respect to ν with a bounded support.
 - 2. $V_k \overset{\text{i.i.d}}{\sim} g_{\theta}$ where g_{θ} is a positive density with respect to μ .

Where the (papproximate merging) bound fails

- If $X_k = \psi_{\theta}(X_{k-1}) + U_k$ and $Y_k = \phi_{\theta}(X_k) + V_k$, where
 - 1. $U_k \stackrel{\text{i.i.d}}{\sim} f_{\theta}$ where f_{θ} is a density with respect to ν with a bounded support.
- 2. $V_k \stackrel{\text{i.i.d}}{\sim} g_\theta$ where g_θ is a **positive** density with respect to μ . More generally, assume that

$$\label{eq:K_theta} \begin{bmatrix} \mathsf{K}_{\theta}(z_0, \mathrm{d} z_1) = Q_{\theta}(x_0, \mathrm{d} x_1) g_{\theta}(x_1, y_1) \mu(\mathrm{d} y_1) \; , \\ \\ \text{with} \qquad g_{\theta} > 0 \; . \end{bmatrix}$$

Extension of the approximate merging

$$\begin{split} \liminf_{n \to \infty} n^{-1} \log \frac{p_{\theta, \eta}(Y_{1:n})}{p_{\theta_{\star}, \pi_{\star}}(Y_{1:n})} \\ \geq \liminf_{n \to \infty} n^{-1} \log \frac{\prod_{i=1}^{n} g_{\theta}(X'_{i}, Y_{i})}{\prod_{i=1}^{n} g_{\theta_{\star}}(X_{i}, Y_{i})} \geq -\delta \quad \mathbb{P}\text{-a.s.} \;, \end{split}$$

where

(*) (X_i, X'_i)_{i∈ℕ} is a Markov kernel coupling of (Q_{θ_{*}}, Q_θ) starting with an initial distribution γ of marginals π_{*} and η, and Y_i ~ g_{θ_{*}}(X_i, ·).
 In that case, we have used that θ ∈ Θ_δ satisfies

$$\blacksquare(\theta_{\star},\theta) := \mathbb{E}_{\gamma}^{\theta_{\star},\theta} \left[\mathrm{KL} \left(g_{\theta_{\star}}(X_{0},\cdot) \| g_{\theta}(X_{0}',\cdot) \right) \right] \geq \delta \; .$$

Main results

Some extensions Support of the complete chain depending on the parameter Toward non-stationarity

Many arguments rely on the fact that the observation process is stationary and ergodic under \mathbb{P} .

Many arguments rely on the fact that the observation process is stationary and ergodic under \mathbb{P} . What can be said if $\mathbb{P} = \mathbb{P}_{\eta^*}^{\theta_*}$ instead of $\mathbb{P}_{\pi_*}^{\theta_*}$?

Many arguments rely on the fact that the observation process is stationary and ergodic under \mathbb{P} . What can be said if $\mathbb{P} = \mathbb{P}_{n^*}^{\theta_*}$ instead of $\mathbb{P}_{\pi_*}^{\theta_*}$?

Proposition

If $k_{\theta_{\star}} > 0$, then for all $A \in \sigma(Z_{1:\infty})$ and all initial distribution η^* ,

$$\mathbb{P}_{\eta^*}^{\theta_\star}(A) = \mathbb{E}_{\pi_\star}^{\theta_\star} \left(\frac{\int \eta^*(\mathrm{d} z_0) k_{\theta_\star}(z_0, Z_1)}{\pi_\star(Z_1)} \, \mathbf{1}_A \right) \;,$$

As a consequence, $(\mathbb{P}_{\eta^*}^{\theta_*}(\lambda_n \Longrightarrow_{n \to \infty} \delta_{\theta_*}) = 1)$ if and only if $(\mathbb{P}_{\pi_*}^{\theta_*}(\lambda_n \Longrightarrow_{n \to \infty} \delta_{\theta_*}) = 1)$.

Main results

Some extensions

 The posterior consistency relies on two main properties: P-remoteness of closed sets avoiding θ_{*} and approximate merging.

- The posterior consistency relies on two main properties: P-remoteness of closed sets avoiding θ_{*} and approximate merging.
- 2. Fairly general sufficient conditions can be derived using explicit contrast functions.

- The posterior consistency relies on two main properties: P-remoteness of closed sets avoiding θ_{*} and approximate merging.
- 2. Fairly general sufficient conditions can be derived using explicit contrast functions.
- 3. Geometric rates of convergence or known results on MLE can be directly applied to prove remoteness of (closed/compact) sets.

- The posterior consistency relies on two main properties: P-remoteness of closed sets avoiding θ_{*} and approximate merging.
- 2. Fairly general sufficient conditions can be derived using explicit contrast functions.
- 3. Geometric rates of convergence or known results on MLE can be directly applied to prove remoteness of (closed/compact) sets.
- 4. Approximate remoteness for a more general parameter space can be derived (not mentioned here).

- The posterior consistency relies on two main properties: P-remoteness of closed sets avoiding θ_{*} and approximate merging.
- 2. Fairly general sufficient conditions can be derived using explicit contrast functions.
- 3. Geometric rates of convergence or known results on MLE can be directly applied to prove remoteness of (closed/compact) sets.
- 4. Approximate remoteness for a more general parameter space can be derived (not mentioned here).
- 5. The class of observation driven models need a specific treatment (not fully dominated).

- Barron, A., Chervish, M. and Wasserman, L. (1999) The consistency of posterior distributions in non parametric problems. *Ann. Statist.*, 27 (2), 536–561.
- Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. *J. Econometrics* 31, 307–327.
 - Davis, R. and Dunsmuir, W. and Streett, S. (2003). Observation-driven models for Poisson counts. *Biometrika* 90 (4), 777–790.
- **Fokianos, K. and Tjøstheim, D. (2011)**. Log-linear Poisson autoregression. *Journal of Multivariate Analysis* 102 (3), 563–578.

Leroux, B. G., 1992. Maximum-likelihood estimation for hidden Markov models. *Stoch. Proc. Appl.* 40, 127–143.

Line Series Anal. 32 (1),"54–67.