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Partially observed Markov models

Definition
A partially observed Markov model is a pairwise homogeneous
Markov chain (Zn = (Xn,Yn),Fn)n≥0 with kernel K generally described
as

Xk+1|Fk ∼ Q(Xk ,Yk ; ·) ,
Yk+1|Fk ,Xk+1 ∼ G(Xk ,Yk ,Xk+1; ·) ,

(1)

I and such that only the {Yk}′s are observed.
Xk Xk+1

Yk+1Yk

Q

G
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Two important examples

Xk Xk+1

Yk+1Yk

Q
G

Xk Xk+1

Yk+1Yk

Q
G

Hidden Markov models ( HMM ) Obs.-Driv. models ( ODM )

An ODM moreover requires that

Q(Xk ,Yk ; ·) = δf Yk
(Xk )(·)

G(Xk ,Xk+1,Yk ; ·) = G(Xk+1; ·)
(2)
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Markov latent variables

As for HMM’s, {Xk} is Markov with a transition kernel

R(x0; A) =

∫
G(x0; dy0) 1A

(
f y0(x0)

)
(3)

I Parametric models are obtained by setting Q = Qθ (or for ODMs:
f y (x) = f θy (x)) and, sometimes, G = Gθ, θ ∈ Θ

I Partially dominated models :
dGθ(x ; ·)

dν
(y) = gθ(x ; y)

I Fully-dominated model : Kθ(z0, dz1) = kθ(z0, z1) µ⊗ ν(dz1).
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Examples of ODM
GARCH(1,1) by [Bollerslev(1986)]:

G(x ; ·) = N (0, x) and f y (x) = ω + ax + by2

In-GARCH, see [Davis et al.(2003)]:
G(x ; ·) = Poi(x) and f y (x) = ω + ax + by

Log-In-GARCH, see [Fokianos and Tjøstheim (2011)]:

G(x ; ·) = Poi(exp x) and f y (x) = ω + ax + b log(1 + y)

NBINGARCH(1,1) by [Zhu(2011)]:

G(x ; ·) = NB
(

r ,
1

1 + x

)
and f y (x) = ω + ax + by

NM(d)-GARCH(1,1), etc.
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Basic assumption and definitions

Ergodicity assumption
We assume that Kθ is ergodic for all θ ∈ Θ, and denote by πθ the
unique stationary distribution.
For all initial distribution η,

let Pθη be the probability on ((X×Y)N, (X ⊗ Y)⊗N) induced by Kθ

starting from (X0,Y0) ∼ η

Pθ is Pθ
πθ

extended to the negative time indices

P̃θ is Pθ restricted to YZ components
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Maximum likelihood inference

Maximum Likelihood Estimator (MLE) θη,n is defined as

θη,n ∈ argmaxθ∈Θ

{
pθη(Y1:n)

}
(4)

for some arbitrary initial dist. ξ.

In well-specified models, a standard consistency result consists in
showing that

limn→∞ θη,n = θ? , P̃θ?-a.s. (5)

where P̃θ? is the stationary distribution of Y1:∞.
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Posterior distribution

Consider the posterior distribution:

λn(A) =

∫
A λ(dθ)pθ,n∫
Θ λ(dθ)pθ,n

.

where
1. pθ,n = pθ(Y1, . . . ,Yn) where Y1, . . . ,Yn are the observations
2. λ is a (possibly infinite) measure, called the prior.

I p?n denote the real density of the observations Y1:n.
I the parameter set (Θ,d) is a metric space and denote by T its Borel
σ-field.
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The true value of the parameter

Definition
p?n and pθ?,n merge with probability 1 if and only if

lim
n→∞

1
n

log
pθ?,n
p?n

= 0 P-a.s.

θ? is called the ”true value” of the parameter.

We are interested in finding conditions under which the posterior
consistency property holds, i.e.

λn =⇒
n→∞

δθ? P-a.s.
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Posterior consistency condition

By the Portmanteau Lemma, it is equivalent to show that P-a.s.,

lim sup
n

λn(C) ≤ δθ?(C) , C closed set in Θ

i.e. for all Ap = {θ ∈ Θ : d(θ, θ?) ≥ 1/p}

lim sup
n

λn(Ap) = 0 , P-a.s.
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Remoteness

λn(A) =

∫
A
λ(dθ)pθ,n/p?n∫

Θ λ(dθ)pθ,n/p?n
.

Definition
We say that a set A ∈ T is P-remote if and only if

lim sup
n→∞

n−1 log
(∫

A

pθ,n
p?n

λ(dθ)

)
< 0 P-a.s.
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Approximate remoteness

λn(A) =

∫
A
λ(dθ)pθ,n/p?n∫

Θ λ(dθ)pθ,n/p?n
=

∫
A λ(dθ)pθ,n∫
Θ λ(dθ)pθ,n

.

Definition
Moreover, we say that a set A is approximately P-remote if and only if
for all ε > 0 there exists a set Kε ∈ T such that

(i) A ∩ Kε is P-remote;

(ii) lim sup
n→∞

λn(K c
ε ) ≤ ε P-a.s.

Typically, Kε is a compact set.
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Main assumption

λn(A) =

∫
A λ(dθ)pθ,n/p?n∫
Θ
λ(dθ)pθ,n/p?n

.

Assumption (A1)
For all δ > 0, there exists a set Θδ ∈ T such that λ(Θδ) > 0 and for all
θ ∈ Θδ,

lim inf
n→∞

n−1 log
pθ,n
p?n
≥ −δ P-a.s. (6)

IThis can be seen as an asymptotic merging property since (6)
implies

0 ≥ lim sup
n→∞

n−1 log
pθ,n
p?n
≥ lim inf

n→∞
n−1 log

pθ,n
p?n
≥ −δ P-a.s.



Page 18 / 37 François Roueff

Immediate consequence

Theorem ([Barron et al.(1999)], adapted)
Assume (A1) . Then all approximately P-remote sets A satisfy

lim
n→∞

λn(A) = 0 , P-a.s. (7)

Objectives:
1. Give sufficient and handy conditions for getting the posterior

consistency for partially observed Markov models.
2. Treat the case of non compact parameter spaces
3. Treat the case of non stationary observations
4. Give explicit Θδ such that Assumption (A1) can be easily

checked.
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Fully dominated partially observed Markov
chains

Assumption
The Markov kernel Kθ? is Fully-dominated model with kθ(z, z ′) > 0
and has a unique stationary distribution π?.
In this case, we set
I The true distribution is P = Pθ?π? ;
I The true density p?n is the corresponding density applied to Y1:n,

p?n = pθ?,π?(Y1:n);
I The target density pθ,n with parameter θ is given by

pθ,n = pθ,η(Y1:n) for some arbitrary initial distribution η.
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Checking the P-remoteness property: a
necessary and sufficient condition

Proposition (A necessary and sufficient condition)
The set A ∈ T is P-remote if and only if there exists a sequence
(Bn)n∈N of sets in F such that Bn ∈ Fn for all n ∈ N and

lim sup
n→∞

n−1 log
∫

A
λ(dθ)Pθ,n(Bn) < 0 ,

P
(

lim inf
n→∞

Bn

)
= 1 .
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The Necessary and Sufficient condition is obtained with

Bn =

{∫
A
λ(dθ)

pθ,n
p?n
≤ %n

}
,

while, in concrete examples, the condition is used with

Bn =

{∣∣∣∣∣ 1
n −m

n−m∑
k=1

1C(Yk :k+m)− Pθ?,n(Y0:m ∈ C)

∣∣∣∣∣ ≤ ε
}



Page 24 / 37 François Roueff

The Necessary and Sufficient condition is obtained with

Bn =

{∫
A
λ(dθ)

pθ,n
p?n
≤ %n

}
,

while, in concrete examples, the condition is used with

Bn =

{∣∣∣∣∣ 1
n −m

n−m∑
k=1

1C(Yk :k+m)− Pθ?,n(Y0:m ∈ C)

∣∣∣∣∣ ≤ ε
}



Page 25 / 37 François Roueff

Introduction

Main results
Our setting
Checking the P-remoteness property: NSC
Checking the P-remoteness property: AMLE
Checking the approximate merging property: complete MC.

Some extensions

Conclusion, summary and remaining questions...



Page 26 / 37 François Roueff

Checking the P-remoteness property: Ap-
proximate MLE

Definition
Let K be a compact subset of Θ. We say that a random sequence
(θ̂n)n∈N adapted to the filtration (Fn)n∈N are
Approximate Maximum Likelihood Estimators (AMLE) on K if it is
valued in K and, for all n ∈ N,

n−1 log pθ̂n,n ≥ n−1 log p?n + εn with lim
n→∞

εn = 0 P-a.s.

Proposition
Let K be a compact subset of Θ such that λ(K ) <∞. If
I All sequences (θ̂n)n∈N of AMLE on K are strongly consistent,

then, for all closed set A not containing θ?, the set A ∩ K is P-remote .
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Checking the approximate merging prop-
erty

IHow to prove (A1) ?

For all θ ∈ Θδ, we write

lim inf
n→∞

n−1 log
pθ,η(Y1:n)

pθ?,π?(Y1:n)
≥ lim inf

n→∞
n−1 log

pθ,η(Z1:n)

pθ?,π?(Z1:n)
P-a.s. ,

I By the Birkhoff ergodic theorem, the right-hand side converges to

(θ?, θ) := Eθ?π? [KL (Kθ?(Z0, ·)‖Kθ(Z0, ·))].

Then it suffices to check that, for all δ > 0,

λ (Θδ) > 0 where Θδ := {θ ∈ Θ : (θ?, θ) ≤ δ} .
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Where the approximate merging bound fails

If Xk = ψθ(Xk−1) + Uk and Yk = φθ(Xk ) + Vk , where

1. Uk
i.i.d∼ fθ where fθ is a density with respect to ν with a

bounded support .

2. Vk
i.i.d∼ gθ where gθ is a positive density with respect to µ.

More generally, assume that

Kθ(z0, dz1) = Qθ(x0, dx1)gθ(x1, y1)µ(dy1) ,

with gθ > 0 .
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Extension of the approximate merging
property

lim inf
n→∞

n−1 log
pθ,η(Y1:n)

pθ?,π?(Y1:n)

≥ lim inf
n→∞

n−1 log
∏n

i=1 gθ(X ′i ,Yi)∏n
i=1 gθ?(Xi ,Yi)

≥ −δ P-a.s. ,

where
(?) (Xi ,X ′i )i∈N is a Markov kernel coupling of (Qθ? ,Qθ) starting with an

initial distribution γ of marginals π? and η, and Yi ∼ gθ?(Xi , ·).
In that case, we have used that θ ∈ Θδ satisfies

(θ?, θ) := Eθ?,θγ

[
KL
(
gθ?(X0, ·)‖gθ(X ′0, ·)

)]
≥ δ .
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Toward non-stationary observation pro-
cesses

Many arguments rely on the fact that the observation process is
stationary and ergodic under P.

What can be said if P = Pθ?η∗ instead of Pθ?π? ?

Proposition
If kθ? > 0, then for all A ∈ σ(Z1:∞) and all initial distribution η∗,

Pθ?η∗(A) = Eθ?π?

(∫
η∗(dz0)kθ?(z0,Z1)

π?(Z1)
1A

)
,

As a consequence, (Pθ?η∗(λn =⇒n→∞ δθ?) = 1) if and only if
(Pθ?π?(λn =⇒n→∞ δθ?) = 1).
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1. The posterior consistency relies on two main properties:
P-remoteness of closed sets avoiding θ? and approximate
merging.

2. Fairly general sufficient conditions can be derived using explicit
contrast functions.

3. Geometric rates of convergence or known results on MLE can be
directly applied to prove remoteness of (closed/compact) sets.

4. Approximate remoteness for a more general parameter space can
be derived (not mentioned here).

5. The class of observation driven models need a specific treatment
(not fully dominated).
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