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Elephant in the room: what sample rate is adequate?
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Model Setup: LSW Processes (NvSK00)

Let Xt be time series of interest.

Suppose Xt modeled by a locally stationary wavelet process

with evolutionary wavelet spectrum {Sj(z)}∞j=1, z ∈ (0,1).

That is:

Xt =
∞∑

j=1

∞∑
k=−∞

wj,k ψj,k−t ξj,k , (1)

where {ξj,k} is set of uncorrelated random variables with mean
zero and variance one and . . .
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Model Setup 2 (NvSK2000, JRSSB)

{ψj,k} are nondecimated discrete wavelets & amplitudes wj,k .

Process ‘controlled’ by time-scale spectrum {Sj(z)}∞j=1, where
z ∈ (0,1) is rescaled time (i.e. z = t/T ).

Have evolutionary wavelet spectrum (EWS): Sj(k/T ) ≈ w2
j,k .

Smoothness of Sj(z) as fn of z, controls nonstationarity.

Sj(z) = Sj =⇒ stationarity.
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Example: discrete wavelets, e.g. Haar

Oscillatory vectors. E.g. Haar

ψ1 = 2−1/2(1,−1),

ψ2 = 2−1(1,1,−1,−1),

ψ3 = 2−3/2(1,1,1,1,−1,−1,−1,−1),

and so on.
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Example: discrete Haar wavelets, ψ1, ψ2
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Example: EWS for concatenated Haar (NvSK00)

HaarConcat EWS

Nondecimated transform Haar wavelet
Time
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Example: Concatenated Haar realization (NvSK00)
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Definitions (NvSK00)

Autocorrelation wavelet:

Ψj(τ) =
∑

k

ψj,kψj,k−τ ,

for j ∈ N, τ ∈ Z.
see, e.g. Saito & Beylkin, 92, Berkner & Wells 98, NvSK00, E&N 05.

Inner product operator of {Ψj(τ)}:

Aj,` =
∑
τ

Ψj(τ)Ψ`(τ).

for j , ` ∈ N.
NvSK00, Eckley and Nason (2005).
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LSW Process: usual estimation (NvSK00)

Given data, Xt , can compute raw wavelet periodogram
Ij,k = d2

j,k where dj,k is discrete non-decimated wavelet
transform of Xt :

dj,k =
T∑

t=1

Xt ψj,k−t .

NvSK00 show that (u ≈ v =⇒ u = v +O(T−1)):

E(I`,m) = E(d2
`,m) ≈

∞∑
j=1

Aj,`Sj(m/T ),

where A is invertible: get estimator of S from I.
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White Noise

Suppose Xt ∼WN(0, σ2) (uncorrelated).

Then E(dj,k ) = 0 and

E(Ij,k ) = var(dj,k ) =
∑

t

var(Xt )ψ
2
j,k−t = σ2

∑
t

ψ2
j,k = σ2, (2)

as wavelets have norm one for all scales j .
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Aliasing

Given a time series {Xt}Tt=1 for T some integer.

Integer samples =⇒ highest (Nyquist) freq is π.

Sample 2× slower, 2t , then the highest freq halves to π/2, etc.

Aliasing occurs when ∃ power at freqs exceeding Nyquist freq

Wagon wheel effect
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Problem with Aliasing

Hard to know when it occurs — does anybody test for it?
Can cause problems for spectrum/covariance estimation.
Higher freq peaks moved into lower bands.
Lower freq spectral peaks distorted by higher ones.
Hence, can have strong influence on scientific
understanding, modelling.
and, maybe, forecasting.
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History of Aliasing

Many sources explain aliasing and some recommend:

low-pass filtering: obvious loss of info

increase sampling rate. Not always possible in, e.g., social
sciences, meteorological, climate or finance.

Even when you can increase sample rate, storage waste risk

What about non-stationary series (second-order)?
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The Hinich-Wolinsky Aliasing Test, JASA 1988

Based on the bispectrum (third-order cumulant estimator).
Initially, highly controversial, but later clarified by Hinich
and Messier (IEEE Trans. Sig. Proc. 1995).
Permits construction of aliasing hypothesis test for
stationary series.
Rejection of H0 can mean not random or not stationary or
aliased or not mixing. I.e. confounding of effects.
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Locally stationary (LS) series

A LS series can change its spectrum over time.
With fixed sampling rate a LS series could sometimes be
aliased and sometimes not, in one realization.
Can ask: is series aliased and where?
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Dyadic subsampling on LSW

We use subsampling to induce aliasing (not the only way)

LSW processes behave nicely under dyadic subsampling . . .

. . . because wavelets behave nicely under dyadic subsampling.

They become increasingly like white noise under subsampling

This can be directly and mathematically seen, as follows
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Impact of subsampling on LSW (Corollary 1)

Let {Xt} be LSW with EWS {Sj(z)}∞j=1.

If Yt = X2r t then Yt admits the representation

Yt = Ft + Lt ,

where Lt is LSW with spectrum given in next slide and Ft is
process with EFt = 0 and

cov(Ft ,Ft+τ ) ≈ δ0,τ

r∑
j=1

Sj(2r t/T ).

If Xt stationary then Ft ∼WN(0,
∑r

j=1 Sj).
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EW Spectrum of subsampled LSW (Theorem 2)

Let Yt = X2r t , our new result shows:

D(r)
`,m := E(d2

`,m) ≈
r∑

j=1

Sj(2r m/T ) +
∞∑

j=r+1

Aj−r ,`Sj(2r m/T ).

` is relative to the new series, Yt .
E.g. for r = 1 get

D(1)
`,m := E(d2

`,m) ≈ S1(2m/T ) +
∞∑

j=2

Aj−1,`Sj(2m/T ).

Compare to NvSK00 original result:

E(d2
`,m) ≈

∞∑
j=1

Aj,`Sj(m/T ),
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Differences between expected periodograms (r = 1)

After subsampling highest frequency spectrum S1(z) is no
longer estimable directly.
The highest freq info, S1(z), contaminates estimate of all
the other bands `. This is LSW aliasing.
The matrix is now Aj−1,` not Aj,`.
Quantities are on 2m/T not m/T because of the
subsampling.

Proof relies on Ψj(2r v) = Ψj−r (v) from Eckley and Nason
(2005), nice props of wavelets
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Detecting White Noise Components

(Subsamping) Aliasing Confounded with White Noise

Would be nice to use result to detect aliasing, BUT . . .

White Noise Gives Same Result

So cannot distinguish between white noise or aliasing

Can detect LACK of white noise/aliasing in this model.
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A test LSW spectrum
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Realization from test spectrum
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Dyadic subsampled r = 1 realization
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Dyadic sampled r = 1 spectrum

Nondecimated transform Haar wavelet
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Previous picture: levels enlarged

Nondecimated transform Haar wavelet
Time

S
ca

le

2
3

4
5

6
7

8
9

10

0 128 256 384 512
27 / 42



Introduction
Model Setup and Background

Aliasing by subsampling
Locally stationary series and dyadic subsampling

Detecting White Noise Components

Detecting White Noise Components

Our LSW “thought experiment” possibilities: what is Yt?

(a) Yt is LSW from subsampled LSW Xt .

(b) Yt = Ut + ηtεt , where

{Ut} is LSW with no white noise component ≡ S(U)
j∗ (z0) = 0 for

some j∗ = {1, . . . J}, η(z) some slowly varying function, εt white
noise. Means that Yt could be any non-subsampled LSW.

Both imply, w.l.o.g., S(Y )
j (z) = S(U)

j (z) + 2−jη2(z).
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The Hypotheses

So H0: no aliasing nor white noise at z0 = k0/T , equivalent to:

H0 : ∃j∗ ∈ {1, . . . , J} such that S(Y )
j∗ (z0) = 0.

versus HA : S(Y )
j (z0) > 0 ∀ j ∈ {1, . . . , J}, is equivalent to

HA : there is white noise component locally or aliasing at z0.

We don’t know S(Y )
j (z0), so have to estimate it.
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The Test (outline): Step 1

Define JNC to be the largest integer < log2

(
T/2+Nh−2

Nh−1

)
.

Define the set NC = NC(T ,Nh) = {j : 1 ≤ j ≤ JNC}

NC are the non-cone scales.

Wavelet scales not adversely affected by edge effects.

Sanderson et al. (2010) show that EWS estimates converge in
probability for J < log2(T ). They choose J∗ = 0.7 log2(T ).

JNC < log2(T ) for T > 2(Nh − 2).
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The test at z0 = k0/T continued.

Step 2: Compute Iz = (I1,k , . . . , IJNC ,k )T raw wavelet pgram,
k = 1, . . . ,T , z = k/T .

Step 3: Apply simple running mean to Ij,k over k to obtain
estimate Îz0 at z0, using manual or CV bandwidth.

Let Λ = diag(2,4, . . . ,2JNC ). AJNC correction matrix (NvSK00)

Define Q̂z0 = ΛA−1
JNC

Îz0 .

Q̂z0 is approx. JNC-dim Gaussian: can calculate µ̂Q, Σ̂Q.
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The test at z0 = k0/T continued.

Step 2: Compute Iz = (I1,k , . . . , IJNC ,k )T raw wavelet pgram,
k = 1, . . . ,T , z = k/T .

Step 3: Apply simple running mean to Ij,k over k to obtain
estimate Îz0 at z0, using manual or CV bandwidth.

Let Λ = diag(2,4, . . . ,2JNC ). AJNC correction matrix (NvSK00)
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JNC
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The test at z0 = k0/T continued

Step 4: construct 100(1− α)% MV conf. region for Qz0 = ΛSz0 :

Ωα,z0 = {x : (x − µ̂Q)T Σ̂−1
Q (x − µ̂Q) ≤ cJNC ,α}.

where cJNC ,α is appropriate point of χ2
JNC

distribution.

Step 5: ∀j ∈ NC determine if Ωα,z0 intersects axis j .

Step 6: If any do, then accept H0, no aliasing nor white noise.

Equivalent to finding bound. box of MV ellipsoid (Barnes, 2014)
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Simulation using earlier test spectrum

Suppose LSW, Xt , has evolutionary wavelet spectrum

Sj (z) =


3
2 max

{
1− 4(2z − 1)2,0

}
j = 1,

1
2

[
max

{
1− (4z − 1)2,0

}
+ max

{
1− (4z − 3)2,0

}]
j = 3,

0 otherwise,
(3)

where z ∈ (0,1)
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Simulation: Test Spectrum

Time, z
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Simulation: Empirical Size/Power

Table : Empirical size/power (%) of the test over 1000 realizations
from the test EWS.

z, D5 wavelet z, D10 wavelet
T 0.1 0.25 0.34 0.50 0.1 0.25 0.34 0.50

256 1 81 96 100 0 79 97 99
512 0 30 76 95 0 14 71 92

1024 0 14 79 99 0 11 82 99
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Real data: hi-res wind speed data

Data: hi-res wind speed data at 1Hz

Simple Trend removed by first differences

Evidence of nonstationarity (subjective and objectively)

Is 1Hz sample rate enough?
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Wind Speed Data + Results of Test
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Wind Speed Discussion

Evidence for aliasing/white noise compt. between t = 100 &
300.

Working “guess”: aliasing before about t = 300 (or could be
white noise)

Idea: apply regular rolling local periodogram “after” t = 300

See what happens to frequency content after that . . .
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Wind Example: Rolling Spectral Estimates
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Peak frequency decreases over time

Let tc be centre of rolling window.

Let fc be peak frequency in that time window.

tc 292 302 312 322
fc 0.438 0.406 0.395 0.358

Indicator of power redistributing to lower frequencies.
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Robust to mismatch of analysis and synthesis wavelet

Xt LSW process synthesized using wavelets ψ(s).

Xt analysed using ψ(a) wavelets to form periodogram.

Method works irrespective of choice of synthesis and analysis
wavelets because it works through white noise components.

Subsampling produces white noise components (irrespective of
ψ(s));

Test looks for white noise components (irrespective of ψ(a)).
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Summary

IF your time series is LSW then

You can identify periods of aliasing or white noise
components.
You can identify periods of NOT ALIASED.

Similar ideas do not work for Fourier because . . .

. . . dyadic subsampling folds, but might not generate any white
noise component.

42 / 42



Introduction
Model Setup and Background

Aliasing by subsampling
Locally stationary series and dyadic subsampling

Detecting White Noise Components

Summary

IF your time series is LSW then

You can identify periods of aliasing or white noise
components.
You can identify periods of NOT ALIASED.

Similar ideas do not work for Fourier because . . .

. . . dyadic subsampling folds, but might not generate any white
noise component.

42 / 42



Introduction
Model Setup and Background

Aliasing by subsampling
Locally stationary series and dyadic subsampling

Detecting White Noise Components

Summary

IF your time series is LSW then

You can identify periods of aliasing or white noise
components.
You can identify periods of NOT ALIASED.

Similar ideas do not work for Fourier because . . .

. . . dyadic subsampling folds, but might not generate any white
noise component.

42 / 42


	Introduction
	Model Setup and Background
	Aliasing by subsampling
	Locally stationary series and dyadic subsampling
	Detecting White Noise Components

