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Introduction

Introduction

Segmentation/breakpoint detection problems arise in many fields.

General aim: Given a series of observations, find abrupt change-points in their
distribution.

Examples: Genomics Meteorology Geodesy

Time t Position along Time Time
the genome

Signal Yt Micro-array Temperature GPS location

Breakpoints Endpoints of Change of Earth’s crust
{tk} altered regions instrument shifts
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Introduction Issues and Outline

Issues and outline

1 Segmentation: statistical and algorithmic issues

Statistics: choice of the number of segments.
Algorithmic: optimal repartition of the breakpoints (efficient
exploration of the segmentation space).

2 Segmentation (breakpoint detection in the mean) of an independent
Gaussian process (model, inference procedure & algorithm)

3 Take into account for two types of dependence:

(i) When dealing with time-series, it is likely that
time-dependence exists.

(ii) When dealing with multiple series, it is likely that some
dependencies between series exist.

For each: model (how we model the dependence) / inference / simulation
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Independent Gaussian process Model

Breakpoint detection in the mean of an independent
Gaussian process

Model. The signal Y = (Y1, . . . , Yn)
is such that:

Yt = µk + ηt if t is in Ik = [tk−1 + 1, tk],

where {ηt} are i.i.d. N (0, σ2), the conven-
tion t0 = 0 and tK = n, and k = 1, . . . ,K.

Parameters. The breakpoints t = (t1, ..., tK−1), the means µ = (µ1, . . . , µK), the
variance σ2 and the number of segments K.

Inference.

K being fixed, estimation of t, µ and σ2 by maximum likelihood.

Choice of K. Penalized Log-Likelihood.
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Independent Gaussian process Inference

Estimation of t, µ and σ2

The optimization problem consists in

max
t∈Mn,K

max
σ>0

max
µ∈RK

−n log(2πσ2)− 1

2σ2

K∑
k=1

tk∑
t=tk−1+1

(yt − µk)2,

where Mn,K = {(t1, . . . , tK−1) ∈ NK−1, 0 = t0 < t1 < . . . , tK−1 < tK = n}.
Maximized in σ, it becomes

min
t∈Mn,K

min
µ∈RK

crit(t, µ) = min
t∈Mn,K

min
µ∈RK

K∑
k=1

tk∑
t=tk−1+1

(yt − µk)2.

Estimation of µ and t:

The estimation of µ is straightforward µ̂k = 1
nk

∑
t∈Ik

Yt

How to find the breakpoints t? We have to minimize

crit(t, µ̂) =
K∑
k=1

tk∑
t=tk−1+1

(Yt − µ̂k)2.
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Independent Gaussian process Computational issue

Algorithmics

There are
(
n−1
K−1

)
possible ways to divide a series with length n into K segments

(n = 1000, K = 10→ 1021 possibilities).

→ A naive search is hopeless.

Dynamic programming (DP) allows to recover the optimal segmentation with
O(Kn2) complexity, provided that the contrast to be optimized is additive.

In the independent case, we have to minimize

K∑
k=1

tk∑
t=tk−1+1

(Yt − µ̂k)2

Note that on very large signals: ’Pruned’ DP with a complexity O(Kn logn) [Rigaill,

2010]
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Independent Gaussian process Model selection

Choice of K

Classical penalized criterion: AIC and BIC.

Numerous criteria have been proposed

Penalized likelihood [Lavielle, 2005; Lebarbier, 2005] (K̂ = Argmax
K

L̂K − pen(K) with

pen(K) = βK and pen(K) = c2K + c1 log(CKn ) respectively).

ICL [Rigaill et al., 2011];

mBIC [Zhang and Siegmund, 2007]
...

mBICK(Y ) = −
(
n−K

2
+ 1

)
log SSwg + log Γ

(
n−K

2
+ 1

)
−

1

2

K∑
k=1

log n̂k − (K − 1) logn

where log SSwg = mint minµ
∑K
k=1

∑tk
t=tk−1+1(yt − µk)2 and n̂k = t̂k − t̂k−1.

mBIC achieves the best performances (see [Picard et al., 2011b]).
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Two types of dependence Outline

Summary and proposed works

Breakpoint detection in the mean of an independent Gaussian process.

Algorithmics: DP

Choice of the number of segments : mBIC

Take into account for two types of dependence:

When dealing with one time-series, it is likely that time-dependence exists: we
model it with an AR(1) (PhD thesis of Souhil Chakar).

When dealing with multiple series, it is likely that some dependencies between
series exist: we propose a joint segmentation model and assume that the signals at
each position are correlated from one series to another.

Main problem: inference of t since the additivity condition is not satisfied and DP can
not be used.

Our strategy consists in removing the dependency so that this algorithm can be applied.
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A Gaussian AR(1) process Model

Breakpoint detection in the mean of a Gaussien AR(1)
process

Model. The signal Y = (Y1, . . . , Yn) is such that:

Yt = µk + ηt if t is in Ik = [tk−1 + 1, tk],

where {ηt}t∈Z is a zero-mean stationary AR(1) Gaussian process defined as

ηt = ρηt−1 + εt

where |ρ| < 1 and {εt} are i.i.d. N (0, σ2).

Parameters.
the breakpoints t = (t1, ..., tK−1), tk = [nτk]
the variance σ2

the means µ = (µ1, . . . , µK), δk = µk(1− ρ),
the auto-correlation ρ
the number of segments K
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A Gaussian AR(1) process Inference, algorithmics and strategy

Inference, algorithmics and strategy

Inference. We have to maximize the log-likelihood (conditionally to y0), yet optimized
with respect to σ, e.g. minimize

crit(ρ, t, δ) =
K∑
k=1

tk∑
t=tk−1+2

(yt − ρ yt−1 − δk)2

+(y1 − ρ y0 − δ0)2

+
K∑
k=2

((
ytk−1+1 −

δk
1− ρ

)
− ρ

(
ytk−1 −

δk−1

1− ρ

))2
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A Gaussian AR(1) process Inference, algorithmics and strategy

Inference, algorithmics and strategy

Inference.

crit(ρ, t, δ) =

K∑
k=1

tk∑
t=tk−1+2

(yt − ρ yt−1 − δk)2

+(y1 − ρ y0 − δ0)2

+

K∑
k=2

((
ytk−1+1 −

δk
1− ρ

)
− ρ

(
ytk−1 −

δk−1

1− ρ

))2

⇒ Due to the term that involves both δk−1 and δk, this criterion cannot be efficiently
minimized.
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A Gaussian AR(1) process Inference, algorithmics and strategy

Inference, algorithmics and strategy

Inference.

crit(ρ, t, δ) =

K∑
k=1

tk∑
t=tk−1+1

(yt − ρ yt1 − δk)2

⇒ Due to the global parameter ρ, this criterion cannot be efficiently minimized.

Proposed strategy.

Propose an estimator of the autocorrelation parameter ρ, denoted ρ̃n,

Minimize crit(ρ̃n, t, δ).
⇔

Apply the independent strategy on the decorrelated series yt − ρ̃nyt−1.
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A Gaussian AR(1) process Estimation of ρ

A robust estimator of ρ

A robust (to the presence of outliers) scale estimator (Rousseeuw and Croux
(1993)):

Sn ∝ medimedj |xi − xj | ,
Qn ∝ (|xi − xj |)(bn/4c) .

A robust estimator of the autocorrelation function of a stationnary time series
based on Qn (Ma and Genton (2000)):

ρ̃MG =
Q2
n(y+)−Q2

n(y−)

Q2
n(y+) +Q2

n(y−)
,

where y+ = (yi+1 + yi)1≤i≤n−1 and y− = (yi+1 − yi)1≤i≤n−1.
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A Gaussian AR(1) process Estimation of ρ

A robust estimator of ρ

Breakpoint detection: a more robust estimator of the autocorrelation parameter ρ.

medimedj |Yi − Yj |
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A Gaussian AR(1) process Estimation of ρ

A robust estimator of ρ

Breakpoint detection: a more robust estimator of the autocorrelation parameter ρ.

ρ̃n =

(
medi |Yi+2 − Yi|
medi |Yi+1 − Yi|

)2

− 1
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A Gaussian AR(1) process Convergence of ρ̃n and t̂n

Convergence of the estimators

Proposition (Convergence of ρ̃n)

ρ̃n satisfies the following Central Limit Theorem

√
n(ρ̃n − ρ)

d−→ N (0, σ̃2) , as n→∞

Proposition (Estimators of t and δ and convergence)

(δ̂n, t̂n) = arg min
(δ,t)∈RK×An,K

crit(ρ̃n, t, δ) ,τ̂n = t̂n/n,

where An,K = {t; 0 = t0 < t1 < . . . , < tK−1 < tK = n,∀k, tk − tk−1 ≥ ∆n} with a
real sequence (∆n) such that n−α∆n −→∞ when n→∞ and α > 0. Then

(‖ τ̂n − τ ‖) = OP (n−1) and
(
‖ δ̂n − δ ‖

)
= OP (n−1/2)

Notice that we have the same asymptotic properties than in the independent case

([Lavielle & Moulines, 2000] ; [Bai & Perron, 1998])
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A Gaussian AR(1) process Estimation of K

Model selection

For the independent case, we select K as follows:

K̂ = arg max
K

mBICK(Y )

where mBICK is the modified BIC criterion [Zhang & Siegmund, 2007].

For the Gaussian AR(1) process,

Proposition

Let denote X = (Yt − ρYt−1)t and X̃ = (Yt − ρ̃nYt−1)t, then

mBICm(X̃) = mBICm(X) +OP (1)

We propose
K̂ = arg max

K
mBICK(X̃)
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A Gaussian AR(1) process Post-processing for the breakpoints

Post-processing (PP )

5 10 15 20 25 30

0.
0

0.
4

0.
8

5 10 15 20 25 30−
0.

4
0.

2
0.

8
5 10 15 20 25 30−
0.

4
0.

2
0.

8

5 10 15 20 25 30−
0.

4
0.

2
0.

8

The decorrelation procedure introduces spurious breakpoints in the series, at distance 1
of the true breakpoints. The PP consists in removing segments of size 1:

PP =
{
t̂n,k ∈ t̂n

}
\
{
t̂n,k such that t̂n,i = t̂n,i−1 + 1 and t̂n,i+1 6= t̂n,i + 1

}
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A Gaussian AR(1) process Simulations

Simulation study

Performance of ρ̃n. Comparison of ρ̃n − ρ (in white) with ρ̃MG − ρ (in red) with
σ = 0.6 and n = 1600.

without breakpoints with breakpoints

Results. Without breakpoints, ρ̃MG performs better. This is the contrary in the presence
of breakpoints.
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A Gaussian AR(1) process Simulations

Simulation study

Selection of K. Different methods: LS (ρ̃n = 0), Robust (ρ̃n = ρ̃n) without PP and
with PP, Oracle (ρ̃n = ρ) without PP and with PP. σ = 0.1 and n = 1600.

ρ = 0.3 ρ = 0.6 ρ = 0.8
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Results. Same result for small σ and ρ. Otherwise, LS tends to strongly overestimate K;
Robust and Oracle tend to select twice the true number of segments; PP corrects it.
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A Gaussian AR(1) process Simulations

Simulation study

Breakpoint positionning. Frequencies of all possible breakpoint estimator with n = 1600.
σ = 0.1

ρ = 0.3 ρ = 0.6 ρ = 0.8
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Joint segmentation of correlated multiple series Model

Towards multiple sample analysis

Multiple series. One often deals with multiple series, observed

at different locations or

for different patients.

Series can be analyzed either independently or jointly.

Joint analysis allows to account for dependencies between series.

Model (joint segmentation) Denote Ymt the signal at position t (t = 1, . . . , n) for series
m (m = 1 . . . ,M),

∀t ∈ Imk , Ymt = µmk + Fmt,

where {Ft}t i.i.d. NM (0,Σ) (joint segmentation refers to the case where the

breakpoints are specific to each series).
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Joint segmentation of correlated multiple series Model

Graphical model and computational issue

Graphical model.

One series: OK with classical DP.
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Joint segmentation of correlated multiple series Model

Graphical model and computational issue

Graphical model.

Independent series: OK with 2-
stage DP (Σ = σ2I).
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Joint segmentation of correlated multiple series Model

Graphical model and computational issue

Graphical model.

Joint segmentation: Non-additivity
of the likelihood
→ DP cannot apply as such.

−2 logL(Y;φ) = N log (2π) + n log (|Σ|) +

n∑
t=1

‖Yt − µt‖
2

Σ−1
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Joint segmentation of correlated multiple series Factor model

Factor model

Factor model. Factor model refers to the rewriting of the covariance matrix: if Σ can be
written as

Σ = BB′ + Ψ, with B = [bqm] : M ×Q, Q < M,

then the model can be rewritten as

Ytm = µkm +

Q∑
q=1

Ztqbqm + Etm, ∀t ∈ Imk

where Zt i.i.d. ∼ NQ(0, I), Et i.i.d. ∼ NM (0, σ2I), ({Zt}, {Et}) indep, Ψ = σ2I.

Matrix form. The model can be written as

Y = Tµ + ZB′ + E

where T corresponds to the breakpoint positions and µ contains the segment means.

Parameters to estimate. φ = (T,µ,B, σ2).
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Joint segmentation of correlated multiple series Factor model

Factor model

Graphical model.

The dependency is modeled thought Z.

Conditional likelihood: because Ψ is di-
agonal, logL(Y|Z) is additive w.r.t. the
segments.

−2
∑
t

logL(Yt|Zt;φ) = N log (2π) + n log (|Ψ|) +

n∑
t=1

‖Yt − µt − ZtB
′‖2Ψ−1

and

n∑
t=1

‖Yt − µt − ZtB
′‖2Ψ−1 =

M∑
m=1

Km∑
k=1

tmk∑
t=tm

k−1
+1

(Ytm − µkm −
∑
q

Ztqbqm)2/ψm
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Joint segmentation of correlated multiple series Factor model
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Joint segmentation of correlated multiple series Inference

EM algorithm

E-M strategy. In presence of latent variable Z, it consists in maximizing the conditional
expectation of the complete-data likelihood cond. to Y,

E[logL(Y,Z;φ)|Y] = E[logL(Y|Z;φ)|Y] + E[logL(Z)|Y]

E-step: Calculate the conditional distribution p(Z|Y;φh) e.g. the moments

Z
(h)
t = Eφh(Zt|Y) and Vφh(Zt|Y).

M-step: Update the parameter value as φh+1 = arg maxφ Eφh [logL(Y,Z;φ)|Y].
Each step focus on one parameter:

Estimation of σ2

Estimation of B

Estimation of segmentation parameters Tµ.{
T(h+1),µ(h+1)

}
= arg min

T,µ

n∑
t=1

‖Yt −Tµt − Z
(h)
t B(h+1))‖2

→ (2 stages) DP
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Joint segmentation of correlated multiple series Model selection

Model selection: a heuristic

Q: dimension of the latent vectors {Zt}.
K =

∑
mKm: total number of segment.

Factor model. For a fixed given K:

BICK(Q) = −2 logL(Y; T̂µK , Σ̂) + [1 +Q(2M −Q+ 1)/2] logn.

Segmentation. [Zhang & Siegmund, 2007] proposed a modified BIC (mBIC) for one
series. We use an extension similar to [Picard et al., 2011b]: for a given Q,

mBICQ(K) = f(K, Σ̂Q, {nmk }).

Heuristic.

Q̂K = arg max
Q

BICK(Q), K̂ = arg max
K

mBICQ̂K (K), Q̂ = Q̂K̂ .
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Joint segmentation of correlated multiple series Simulation

Simulation study

Parameters: M = 10, n = 100, Q = Q? = M − 1, increasing σ2.

Selection of K (when Q = Q̂)
FPR TPR

K̂ −K for K = K∗ and K = K̂ for K = K∗ and K = K̂

The more difficult is the detection (large σ2), the more under-estimated is the
number of segments

This leads to a better precision of the breakpoints (small FPR) (compared to the
results with the true value of K).
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Joint segmentation of correlated multiple series Simulation

Simulation study

Accounting for dependency (using K̂)

Whatever the difficulty of the detection
problem, accounting for the dependency in-
creases the performance of the segmentation
(smaller FPR and larger TPR).

FPR for Q = 0 (segmentation only) and Q = Q̂

TPR for Q = 0 (segmentation only) and Q = Q̂
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Joint segmentation of correlated multiple series Simulation

Simulation study

Selection of Q

(Q̂, K̂) (Q∗, K̂)

σ 0.2 0.5 1 0.2 0.5 1

mean of Q 3.37 2.74 2.39 9

RMSE(Σ) 0.005 0.032 0.119 0.0048 0.032 0.124

FPR 0.016 0.110 0.288 0.039 0.175 0.413

TPR 0.93 0.69 0.34 0.93 0.597 0.262

The number of factors is strongly underestimated. This underestimation

does not alter much the estimation of Σ

increases the power of procedure in terms of breakpoint positioning

Q̂ decreases slightly with the increasing of σ2 leading to a decreasing precision of
the estimation of Σ
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Joint segmentation of correlated multiple series Simulation

Summary, comments and future works

Summary. We consider separatly two types of dependence (within-series and
between-series) in a segmentation model and propose two different strategies to infer
the parameter such that DP can be applied.

Segmentation of multiple series.

(Practical) identifiability. Although the model is theoretical identifiable,
simultaneous breakpoints in a large fraction of series can be confounded with the
’random effect’ Zt (see [Picard et al., 2011b]).

(Practical) Exploration of the (K,Q) space. The 2 BIC criteria cannot be
combined into a single one, as they do not rely on the same contrast (likelihood vs
within/between sum of squares).
→ Time consuming exploration over a grid for (K,Q).

(Theoretical) The proposed strategy is only heuristic. No criterion with theoretical
guaranty exists at this time for such a dependency structure.
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Joint segmentation of correlated multiple series Simulation

Summary, comments and future works

Time-dependence Gaussian process.

Other estimators of ρ can be derived. It suffices that it has the good asymptotic
property.

For AR(1): Package R AR1seg.

S. Chakar recently considered to model the dependence with an AR(p) and
proposed the same decorrelation-type strategy.

Global model. Consider a joint segmentation model with these two dependencies.
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Joint segmentation of correlated multiple series Simulation
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