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A non-standard look at limit theorems for maxima
of weakly dependent stationary sequences

• Let X1,X2, . . . , be an i.i.d. sequence of random
variables with marginal distribution function F and let

Mn = max
1¬j¬n

Xj .

• Following Tippett, Fischer, Gnedenko, Gumbel, de
Haan,. . . people used to look for conditions on F
guaranteeing existence of sequences an and bn such
that

P
(
Mn ¬ anx + bn)→ K (x), x ∈ R1,

where K is non-degenerate.
• This parallels the theory for sums, leads to the notion

of max-stable distributions, domains of attraction etc.
• We claim that the asymptotics of 1− F (vn) along

a single sequence vn → F∗− determines everything.
• Here F∗ = sup{x ; F (x) < 1}.
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O’Brien’s regularity

• It is an observation made long time ago by O’Brien
(1974), that for a given distribution function G one
can find a sequence {vn = vn(γ)} such that

Gn(vn)→ γ ∈ (0,1),

if, and only if, G satisfies the relations

G(G∗−) = 1 and lim
x→G∗−

1−G(x−)
1−G(x)

= 1.

• We will say that G is regular (in the sense of O’Brien)
if the above conditions hold.
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Tail equivalence

• The tail equivalence is another very old notion,
introduced by Resnick (1971) and usually considered
in the context of domains of attraction of extreme
value distributions.

• We will modify it slightly, by saying that the tails of
two distribution functions G and H with right ends G∗
and H∗ are strictly tail-equivalent if

G∗ = H∗ and
1− H(x)
1−G(x)

→ 1, as x → G∗−.
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A characterization of strict tail-equivalence

Observation

Let G be a regular distribution function and H be any
distribution function. The following are equivalent:

• There exists a sequence vn → G∗− and a number
γ ∈ (0,1) such that

Gn(vn)→ γ, Hn(vn)→ γ.

•
sup
x∈R1

∣∣Gn(x)− Hn(x)
∣∣→ 0, as n→∞.

• H is regular and strictly tail-equivalent to G.
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Phantom distribution functions

• The notion of a phantom distribution function was
introduced by O’Brien (1987).

• Let {Xj} be a stationary sequence with partial
maxima

Mn = max
1¬j¬n

Xj

and the marginal distribution function
F (x) = P(X1 ¬ x).

• A stationary sequence {Xn} is said to admit a
phantom distribution function G if

sup
u∈R

∣∣P(Mn ¬ u)−Gn(u)
∣∣→ 0, as n→∞.

• It is obvious that G is not uniquely determined.
• If H is another phantom distribution function, then

sup
x∈R1

∣∣Gn(x)− Hn(x)
∣∣→ 0, as n→∞.

and G and H are strictly tail-equivalent.
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The extremal index

• Suppose that {Xj} admits a phantom distribution
function G of the form G(x) = F θ(x), for some
θ ∈ (0,1], i.e.

sup
u∈R

∣∣P(Mn ¬ u)−
(
F θ)n(u)∣∣→ 0, as n→∞.

• Then we say that {Xj} has the extremal index θ (in
the sense of Leadbetter (1983)).

• In many cases the extremal index is the reciprocal of
the mean size of clusters of big values occurring in
the sequence {Xj}.

• The extremal index attracted a lot of attention over
years.

• But there are models, in which the extremal index is
uninformative, while the phantom distribution function
brings some light.
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The extremal index zero

• Following Leadbetter (1983) we say that {Xj} has the
extremal index θ = 0 if

P
(
Mn ¬ un(τ)

)
→ 1

whenever {un(τ)} is such that

n(1− F (un(τ))→ τ ∈ (0,+∞).

• Intuitively this means that the partial maxima Mn
increase much slower comparing with the
independent case and that information on F alone
cannot determine the limit behavior of laws of Mn.
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Example due to Asmussen (1998)

• Let
Xj+1 =

(
Xj + Zj

)+
, j = 1,2, . . . ,

where Z1,Z2, . . . are i.i.d. with a distribution function
H and mean −m < 0 and X0 is independent of {Zj}
and distributed according to the unique stationary
distribution F .

• Suppose that H is subexponential, i.e. strictly
tail-equivalent to a distribution function B(x)
concentrated on (0,∞) and such that

1− B∗2(x)
1− B(x)

→ 2, as x →∞.

• Then {Xj} has the extremal index zero.
• We can show that it admits a continuous phantom

distribution function.
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Example due to Roberts et al. (2006)

• Let {Zj} is an i.i.d. sequence with the marginal
distribution function H given by the proposal density
h, which is symmetric about 0.

• Let {Uj} be an i.i.d. sequence distributed uniformly
on [0,1], independent of {Zj}.

• Let f (x) be the target probability density.
• We consider the random walk Metropolis algorithm

given by the recursive equation

Xj+1 = Xj + Zj+11
{
Uj+1 ¬ ψ

(
Xj ,Xj + Zj+1

)}
,

where ψ(x , y) is defined as

ψ(x , y) =

{
min

{
f (y)/f (x),1

}
if f (x) > 0,

1 if f (x) = 0.

• G.O. Roberts, J.S. Rosenthal, J. Segers and B.
Sousa (2006, Extremes) showed the following result.
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Example due to Roberts et al. (2006)

Theorem

Let F be the target distribution function (given by the
target density f ).

Assume that the right end of F is infinity
and there exists m > 0 such that

lim
x→∞

1− F (x + m)

1− F (x)
= 1.

Then for every real sequence {un} such that
supn n

(
1− F (un)

)
< +∞, we have

lim
n→∞

P
(
Mn ¬ un

)
= 1.

In particular, the extremal index does exist and is equal
to zero.

• Thus heavy tails imply θ = 0.
• We can show that still a continuous phantom

distribution function exists.
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The tools

Theorem

If {Xj} is a stationary α-mixing sequence with continuous
marginals, then it admits a continuous phantom
distribution function.

• The above theorem is a direct consequence of a
more general result.
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Existence of phantom distribution functions

Theorem

Let {Xj} be stationary. The following are equivalent:

• The sequence {Xj} admits a continuous phantom
distribution function.

• There exists a sequence {vn} and γ ∈ (0,1) such
that

P(Mn ¬ vn)→ γ,

and the following Condition B∞(vn) holds: as n→∞

sup
p,q∈N

∣∣P(Mp+q ¬ vn
)
− P

(
Mp ¬ vn

)
P
(
Mq ¬ vn

)∣∣→ 0.

Condition B∞(vn) does not mean “asymptotic
independence of maxima"!
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Yet another example

Theorem

There exists a stationary sequence {Xj} which admits
a continuous phantom distribution function and is
non-ergodic (in fact: exchangeable).

• The above sequence can be chosen in such a way,
that it has the extremal index θ = 0.
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What about random vectors?

• Is there any corresponding theory for maxima od
random vectors with values in Rd?

• Consider d = 2.
• The definition is immediate: G is a phantom

distribution function for a stationary sequence of
random vectors(

X (1)
1 ,X (2)

1
)
,
(
X (1)

2 ,X (2)
2
)
,
(
X (1)

3 ,X (2)
3
)
, . . .

with partial maxima

Mn =
(
M(1)

n ,M(2)
n
)
=
(

max
1¬j¬n

X (1)
j , max

1¬j¬n
X (2)

j
)
,

if

sup
u=(u1,u2)∈R2

∣∣∣P(Mn ¬ u
)
−Gn(u)

∣∣∣→ 0, as n→∞.

• In fact, it is more convenient to take sup over R2!
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Go like R. Perfekt (1997), but our way

• Find v (i)
n , i = 1,2, such that

P
(
M1

n ¬ v (1)
n
)
→ ρ1 ∈ (0,1),P

(
M2

n ¬ v (2)
n
)
→ ρ2 ∈ (0,1).

• Assume B∞(v (1)
n ) for {X (1)

1 ,X (1)
2 , . . .} and similarly

B∞(v (2)
n ) for {X (2)

1 ,X (2)
2 , . . .}.

• Then for i = 1,2

P
(
M(i)

n ¬ v (i)
[nsi ]

)
→ ρ

1/si
i

if si ∈ [0,+∞].
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2 , . . .} and similarly
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Go like R. Perfekt (1997), but our way

• For s ∈ [0,+∞]2 we define

vn(s) =
(
v (1)
[ns1]

, v (2)
[ns2]

)
.

• Consider

L = {s ∈ [1,+∞)2 ; s1 ∧ s2 = 1}.

• Assume that for some ρ : L → (0,1)

P
(
Mn ¬ vn(s)

)
→ ρ(s), s ∈ L.

• Assume that B∞(vn(s)) holds for every s ∈ L.

Theorem

• Condition B∞(vn(s)) holds for every s ∈ [0,+∞].
• There exists H : [0,+∞]2 → [0,1] such that

P
(
Mn ¬ vn(s)

)
→ H(s), s ∈ [0,+∞]2.
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The form of H(s)

Theorem

H(s) defined on [0,+∞)2 is the cumulative distribution
function of a two-dimensional extremal value distribution.

Moreover, if H(1) and H(2) are the marginal cumulative
distribution functions, then

H(i)((− log ρi)s) = G2,1(s), i = 1,2,

where G2,1(s) is the CDF of the standard Fréchet
extreme value distribution.



Statistics

Adam Jakubowski

Maxima of i.i.d.

Maxima of
stationary
sequences

The examples

The tools

Random vectors

19

The form of H(s)

Theorem

H(s) defined on [0,+∞)2 is the cumulative distribution
function of a two-dimensional extremal value distribution.

Moreover, if H(1) and H(2) are the marginal cumulative
distribution functions, then

H(i)((− log ρi)s) = G2,1(s), i = 1,2,

where G2,1(s) is the CDF of the standard Fréchet
extreme value distribution.



Statistics

Adam Jakubowski

Maxima of i.i.d.

Maxima of
stationary
sequences

The examples

The tools

Random vectors

19

The form of H(s)

Theorem

H(s) defined on [0,+∞)2 is the cumulative distribution
function of a two-dimensional extremal value distribution.

Moreover, if H(1) and H(2) are the marginal cumulative
distribution functions, then

H(i)((− log ρi)s) = G2,1(s), i = 1,2,

where G2,1(s) is the CDF of the standard Fréchet
extreme value distribution.



Statistics

Adam Jakubowski

Maxima of i.i.d.

Maxima of
stationary
sequences

The examples

The tools

Random vectors

20

Phantom distribution function for random vectors

Theorem

G(x) = H(n(x)),

where

ni(x) = sup{n ∈ N ; v (i)
n ¬ xi}, i = 1,2,

is a phantom distribution function for X1,X2, . . ..
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