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A non-standard look at limit theorems for maxima
of weakly dependent stationary sequences

e Let X4, Xs,. .., be ani.i.d. sequence of random
variables with marginal distribution function F and let

Mp = max X;.
1<j<n
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A non-standard look at limit theorems for maxima
of weakly dependent stationary sequences

e Let X4, Xs,. .., be ani.i.d. sequence of random

variables with marginal distribution function F and let
Mp = max X;.
1<j<n

e Following Tippett, Fischer, Gnedenko, Gumbel, de
Haan,... people used to look for conditions on F
guaranteeing existence of sequences a, and b, such
that

P(Mn < anx+bn) - K(X),X € R1,

where K is non-degenerate.
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A non-standard look at limit theorems for maxima
of weakly dependent stationary sequences

e Let X4, Xs,. .., be ani.i.d. sequence of random

variables with marginal distribution function F and let
Mp = max X;.
1<j<n

e Following Tippett, Fischer, Gnedenko, Gumbel, de
Haan,... people used to look for conditions on F
guaranteeing existence of sequences a, and b, such
that

P(Mn < anx+bn) - K(X),X € R1,

where K is non-degenerate.

¢ This parallels the theory for sums, leads to the notion
of max-stable distributions, domains of attraction etc.
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A non-standard look at limit theorems for maxima
of weakly dependent stationary sequences

e Let X4, Xs,. .., be ani.i.d. sequence of random

variables with marginal distribution function F and let
Mp = max X;.
1<j<n

e Following Tippett, Fischer, Gnedenko, Gumbel, de
Haan,... people used to look for conditions on F
guaranteeing existence of sequences a, and b, such
that

P(Mn < anx+bn) - K(X),X € R1,

where K is non-degenerate.
¢ This parallels the theory for sums, leads to the notion
of max-stable distributions, domains of attraction etc.
e We claim that the asymptotics of 1 — F(v,) along
a single sequence v, — F,— determines everything.
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variables with marginal distribution function F and let n
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e Following Tippett, Fischer, Gnedenko, Gumbel, de
Haan,... people used to look for conditions on F
guaranteeing existence of sequences a, and b, such
that

Maxima of i.i.d.

P(Mn < anx+bn) - K(X),X€R1,

where K is non-degenerate.

¢ This parallels the theory for sums, leads to the notion
of max-stable distributions, domains of attraction etc.

e We claim that the asymptotics of 1 — F(v,) along
a single sequence v, — F,— determines everything.

e Here F, = sup{x; F(x) < 1}.
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O’Brien’s regularity

e Itis an observation made long time ago by O’Brien
(1974), that for a given distribution function G one
can find a sequence {v, = vy(v)} such that

G"(vn) — v €(0,1),

if, and only if, G satisfies the relations

G(G—)=1 and lm =G0 _y

x—G.— 1— G(x)
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O’Brien’s regularity

e Itis an observation made long time ago by O’Brien
(1974), that for a given distribution function G one
can find a sequence {v, = vy(v)} such that

G"(vn) — v €(0,1),

if, and only if, G satisfies the relations

G(G—)=1 and lm =G0 _y

x—G.— 1— G(x)

e We will say that G is regular (in the sense of O’'Brien)

if the above conditions hold.
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introduced by Resnick (1971) and usually considered
in the context of domains of attraction of extreme
value distributions.
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Tail equivalence Statistics
Adam Jakubowski

x3Ic o3

e The tail equivalence is another very old notion,
introduced by Resnick (1971) and usually considered
in the context of domains of attraction of extreme
value distributions.

o We will modify it slightly, by saying that the tails of
two distribution functions G and H with right ends G.
and H, are strictly tail-equivalent if
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_ 1—H(x) B
G, =H, and 1—76()() 1, as x — G.—.



Statistics

A characterization of strict tail-equivalence

Adam Jakubowski
sn

T a

=]

cu

Hm

aKxk

s AN
T

Y

K

a

Maxima of i.i.d.

Maxima of
stationary
sequences

The examples
The tools

Random vectors



A characterization of strict tail-equivalence Statistics

Adam Jakubowski

X3Ic o3

Observation

Let G be a regular distribution function and H be any
distribution function. The following are equivalent:
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A characterization of strict tail-equivalence

Observation

Let G be a regular distribution function and H be any
distribution function. The following are equivalent:

e There exists a sequence v, — G.— and a number
v € (0,1) such that

G"(vp) — v, H"(vp) — 7.
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A characterization of strict tail-equivalence

Observation

Let G be a regular distribution function and H be any
distribution function. The following are equivalent:

e There exists a sequence v, — G.— and a number
v € (0,1) such that

G"(vp) — v, H"(vp) — 7.

sup |G"(x) — H"(x)| — 0, as n — oc.
XER!
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A characterization of strict tail-equivalence

Observation

Let G be a regular distribution function and H be any
distribution function. The following are equivalent:

e There exists a sequence v, — G.— and a number
v € (0,1) such that

G"(vp) — v, H"(vp) — 7.

sup |G"(x) — H"(x)| — 0, as n — oc.
XER!

e His regular and strictly tail-equivalent to G.
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Phantom distribution functions

e The notion of a phantom distribution function was
introduced by O’Brien (1987).
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e The notion of a phantom distribution function was

introduced by O’Brien (1987). X
e Let {X;} be a stationary sequence with partial -
. akK
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and the marginal distribution function
F(x) =P(X; < x).

e A stationary sequence {X,} is said to admit a Shalael
phantom distribution function G if seduences

sup |P(M, < u) — G"(u)| — 0, as n — oc.
ueR



Phantom distribution functions

e The notion of a phantom distribution function was
introduced by O’Brien (1987).

e Let {X;} be a stationary sequence with partial
maxima

Mp = max X;
1sj<n

and the marginal distribution function
F(x) =P(X; < x).

e A stationary sequence {X,} is said to admit a
phantom distribution function G if

sup |P(M, < u) — G"(u)| — 0, as n — oc.
ueR

e ltis obvious that G is not uniquely determined.
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Phantom distribution functions

The notion of a phantom distribution function was
introduced by O’Brien (1987).

Let {X;} be a stationary sequence with partial
maxima

Mp = max X;
1<j<n

and the marginal distribution function

F(x) =P(X; < x).

A stationary sequence { X} is said to admit a
phantom distribution function G if

sup |P(M, < u) — G"(u)| — 0, as n — oc.
ueR

It is obvious that G is not uniquely determined.
If H is another phantom distribution function, then

sup |G"(x) — H"(x)| — 0, as n — o.
XeR!

and G and H are strictly tail-equivalent.
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The extremal index

 Suppose that {X;} admits a phantom distribution
function G of the form G(x) = F?(x), for some
6 € (0,1],i.e.

sup [P(Mp < u) — (F)"(u)| — 0, as n — oc.

ueRr
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The extremal index

 Suppose that {X;} admits a phantom distribution
function G of the form G(x) = F?(x), for some
6 € (0,1],i.e.

sup [P(Mp < u) — (F)"(u)| — 0, as n — oc.
ueRr

e Then we say that { X} has the extremal index ¢ (in
the sense of Leadbetter (1983)).

¢ In many cases the extremal index is the reciprocal of
the mean size of clusters of big values occurring in
the sequence {X;}.
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The extremal index Statistics
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 Suppose that {X;} admits a phantom distribution
function G of the form G(x) = F?(x), for some

6 € (0,1],i.e.
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the mean size of clusters of big values occurring in
the sequence {X;}.
e The extremal index attracted a lot of attention over
years.



The extremal index Statistics
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 Suppose that {X;} admits a phantom distribution
function G of the form G(x) = F?(x), for some

6 € (0,1],i.e.
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sup [P(Mp < u) — (F)"(u)| — 0, as n — oc. @
ueR

e Then we say that { X} has the extremal index ¢ (in
the sense of Leadbetter (1983)). Maxima of

stationary
sequences

¢ In many cases the extremal index is the reciprocal of
the mean size of clusters of big values occurring in
the sequence {X;}.

e The extremal index attracted a lot of attention over
years.

e But there are models, in which the extremal index is
uninformative, while the phantom distribution function
brings some light.
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The extremal index zero

e Following Leadbetter (1983) we say that {Xj} has the
extremal index 6 = 0 if

P(Mn < Un(T)) — 1
whenever {un(7)} is such that

n(1 — F(up(r)) — 7 € (0, +00).
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The extremal index zero

e Following Leadbetter (1983) we say that {Xj} has the
extremal index 6 = 0 if

P(My < up(7)) — 1
whenever {un(7)} is such that
n(1 — F(up(r)) — 7 € (0, +00).

e Intuitively this means that the partial maxima M,
increase much slower comparing with the
independent case and that information on F alone
cannot determine the limit behavior of laws of M.
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Example due to Asmussen (1998)
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Example due to Asmussen (1998)

o Let
X1 = (X+2)", j=1.2...

where Z;, Z,, ... are i.i.d. with a distribution function
H and mean —m < 0 and X is independent of {Z;}
and distributed according to the unique stationary
distribution F.
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Example due to Asmussen (1998) Statistics
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o Let
X =(X+2)", j=12,..,

where Z;, Z,, ... are i.i.d. with a distribution function
H and mean —m < 0 and X is independent of {Z;}
and distributed according to the unique stationary
distribution F.

e Suppose that H is subexponential, i.e. strictly

tail-equivalent to a distribution function B(x)
concentrated on (0, o) and such that The examples
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Example due to Asmussen (1998)

o Let
X1 = (X+2)", j=1.2...

where Z;, Z,, ... are i.i.d. with a distribution function
H and mean —m < 0 and X is independent of {Z;}
and distributed according to the unique stationary
distribution F.

e Suppose that H is subexponential, i.e. strictly
tail-equivalent to a distribution function B(x)
concentrated on (0, o) and such that

1 — B*?(x)

=B — 2, as X — o0.

e Then {X;} has the extremal index zero.
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Example due to Asmussen (1998)

o Let
X1 = (X+2)", j=1.2...

where Z;, Z,, ... are i.i.d. with a distribution function
H and mean —m < 0 and X is independent of {Z;}
and distributed according to the unique stationary
distribution F.

e Suppose that H is subexponential, i.e. strictly
tail-equivalent to a distribution function B(x)
concentrated on (0, o) and such that

1 — B*?(x)

=B — 2, as X — o0.

e Then {X;} has the extremal index zero.

e We can show that it admits a continuous phantom
distribution function.
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Example due to Roberts et al. (2006)

e Let {Z} is ani.i.d. sequence with the marginal
distribution function H given by the proposal density
h, which is symmetric about 0.
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Example due to Roberts et al. (2006)

e Let {Z} is ani.i.d. sequence with the marginal
distribution function H given by the proposal density
h, which is symmetric about 0.

e Let {U;} be ani.i.d. sequence distributed uniformly
on [0, 1], independent of {Z}}.
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Example due to Roberts et al. (2006) Statistics

Adam Jakubowski

e Let {Z} is ani.i.d. sequence with the marginal

distribution function H given by the proposal density f, 2
h, which is symmetric about 0. N §

e Let {U;} be ani.i.d. sequence distributed uniformly ? @
on [0, 1], independent of {Z;}. E

e Let f(x) be the target probability density.
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Example due to Roberts et al. (2006)

e Let {Z} is ani.i.d. sequence with the marginal
distribution function H given by the proposal density
h, which is symmetric about 0.

e Let {U;} be ani.i.d. sequence distributed uniformly
on [0, 1], independent of {Z}}.

e Let f(x) be the target probability density.

e We consider the random walk Metropolis algorithm
given by the recursive equation

Xivt = X+ Za{Upr <9 (X X+ Z41) ),
where ¢(x, y) is defined as

min {f(y)/f(x),1} if f(x) >0,

0
viy) = {1 if 7(x) = 0.
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Example due to Roberts et al. (2006)

e Let {Z} is ani.i.d. sequence with the marginal
distribution function H given by the proposal density
h, which is symmetric about 0.

e Let {U;} be ani.i.d. sequence distributed uniformly
on [0, 1], independent of {Z}}.

e Let f(x) be the target probability density.

e We consider the random walk Metropolis algorithm
given by the recursive equation

Xivt = X+ Za{Upr <9 (X X+ Z41) ),
where ¢(x, y) is defined as

min {f(y)/f(x),1} if f(x) >0,
=0.

vixy) = {1 if £(x)

e G.O. Roberts, J.S. Rosenthal, J. Segers and B.

Sousa (2006, Extremes) showed the following result.
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Example due to Roberts et al. (2006)
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Example due to Roberts et al. (2006)
Theorem

Let F be the target distribution function (given by the
target density f).
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Example due to Roberts et al. (2006)
Theorem
Let F be the target distribution function (given by the

target density f). Assume that the right end of F is infinity
and there exists m > 0 such that

lim M

x=o0o 1 — F(X) =1
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Example due to Roberts et al. (2006)
Theorem
Let F be the target distribution function (given by the

target density f). Assume that the right end of F is infinity
and there exists m > 0 such that

lim M

x=o0o 1 — F(X) =1

Then for every real sequence {un} such that
sup, n(1 — F(un)) < +o0, we have

n—oo
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Example due to Roberts et al. (2006)
Theorem
Let F be the target distribution function (given by the

target density f). Assume that the right end of F is infinity
and there exists m > 0 such that

lim M

x=o0o 1 — F(X) =1

Then for every real sequence {un} such that
sup, n(1 — F(un)) < +o0, we have

n—oo

In particular, the extremal index does exist and is equal
to zero.
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Example due to Roberts et al. (2006)
Theorem
Let F be the target distribution function (given by the

target density f). Assume that the right end of F is infinity
and there exists m > 0 such that

lim M

x—co 1 — F(x) =1

Then for every real sequence {un} such that
sup, n(1 — F(un)) < +o0, we have

n—oo

In particular, the extremal index does exist and is equal
to zero.

e Thus heavy tails imply 6 = 0.
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Example due to Roberts et al. (2006)
Theorem
Let F be the target distribution function (given by the

target density f). Assume that the right end of F is infinity
and there exists m > 0 such that

lim M

x—co 1 — F(x) =1

Then for every real sequence {un} such that
sup, n(1 — F(un)) < +o0, we have

n—oo

In particular, the extremal index does exist and is equal
to zero.

e Thus heavy tails imply 6 = 0.
e We can show that still a continuous phantom
distribution function exists.
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The tools

Theorem

If {X;} is a stationary a-mixing sequence with continuous
marginals, then it admits a continuous phantom
distribution function.

e The above theorem is a direct consequence of a
more general result.
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Existence of phantom distribution functions Statistics
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Theorem
Let {X;} be stationary. The following are equivalent:
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Existence of phantom distribution functions Statistics
Adam Jakubowski
Theorem
Let {X;} be stationary. The following are equivalent:

 The sequence {X;} admits a continuous phantom
distribution function.
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Existence of phantom distribution functions Statistics
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Theorem
Let {X;} be stationary. The following are equivalent:
 The sequence {X;} admits a continuous phantom
distribution function.

e There exists a sequence {v,} and v € (0, 1) such
that
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Existence of phantom distribution functions Statistics
Adam Jakubowski
Theorem
Let {X;} be stationary. The following are equivalent:
 The sequence {X;} admits a continuous phantom
distribution function.

e There exists a sequence {v,} and v € (0, 1) such
that

x3Ic o3
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P(Mn < Vn) — v,

and the following Condition B, (v,) holds: as n — oo
The tools
p.q€

Condition B, (V) does not mean “asymptotic
independence of maxima"!
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Yet another example

Theorem

There exists a stationary sequence {X;} which admits
a continuous phantom distribution function and is
non-ergodic (in fact: exchangeable).

Statistics

Adam Jakubowski

X3Ic o3

@

pXRX<Aunorno-dun

The tools



Yet another example

Theorem

There exists a stationary sequence {X;} which admits
a continuous phantom distribution function and is
non-ergodic (in fact: exchangeable).

e The above sequence can be chosen in such a way,
that it has the extremal index 6 = 0.
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What about random vectors?
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What about random vectors? SIS
Adam Jakubowski

e Is there any corresponding theory for maxima od
random vectors with values in R9?
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What about random vectors? SIS
Adam Jakubowski

e Is there any corresponding theory for maxima od
random vectors with values in R9?

e Consider d = 2.
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What about random vectors?

e Is there any corresponding theory for maxima od
random vectors with values in R9?
e Consider d = 2.

e The definition is immediate: G is a phantom
distribution function for a stationary sequence of
random vectors

1 2 1 2 1 2
(. x(2), 06762, (7. 7).
with partial maxima

M, = (M,(,1),M,(,2)) = ( max X.(”, max Xj(z)),

1<j<n 1 71<j<n

sup
u:(U1 7U2)€]R2

P(M, <u) - G”(u)’ — 0, as n — oo.
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What about random vectors? Statistics
Adam Jakubowski

e Is there any corresponding theory for maxima od
random vectors with values in R9?

e Consider d = 2.

e The definition is immediate: G is a phantom
distribution function for a stationary sequence of
random vectors

1 2 1 2 1 2
X, X2, (X5, X2, (X0, X2). ...
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with partial maxima

M, = (M, M) = ( max XV, max x),

1<j<n / 1<j<n Random vectors

sup
u:(U1 7U2)€]R2

P(M, <u) - G”(u)’ — 0, as n — oo.

- . —2
e In fact, it is more convenient to take sup over R™!



Go like R. Perfekt (1997), but our way
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Go like R. Perfekt (1997), but our way

e Find v,(,i), i =1,2, such that

P(M} < Vi) — py € (0,1), P(MZ < ViP)) — pp € (0,1).
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Go like R. Perfekt (1997), but our way

e Find v,(,i), i=1,2, such that

P(M} < Vi) = py € (0,1),

e Assume B, (V, m)for {Xm

B (Vi) for {Xx®

( )

P

XS), ...} and similarly

3.

P(M2 < vi?) — pp € (0,1).
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Go like R. Perfekt (1997), but our way Statistics

Adam Jakubowski

sn
T a
=]
ind v, i = 1,2, such that £
e Find v;’,i=1,2 such tha 2 K
1 (1) 2 (2) : @
P(Mn < Vp )_)/)1 6(071)7'D(I\/In< Vi )_>102€(071) g
e Assume B, (V, (1)) for {X(”,XS), ...} and similarly
B (Vi) for {x® X2 . 1.
e Thenfori=1,2
, 1s,
P(M(I) < V[(r;)s,]) — Pj /s Random vectors

if s € [0, +o00].
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Go like R. Perfekt (1997), but our way Statistics

Adam Jakubowski

e Fors ¢ [0, +o0]? we define
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Vo(S) = (V[(ns)1]’ V[(nS)Z])' g u
a kK
s
: @‘

Random vectors



Go like R. Perfekt (1997), but our way
e Fors ¢ [0, +o0]? we define

e Consider

va(s) = (V) v@ .

[ns1]’ “[nsz]

L={se[l,+)?; 8 As =1}.

Statistics

Adam Jakubowski

x3Ic o3

@

pXRX<Aunorno-dun

Random vectors



Go like R. Perfekt (1997), but our way Statistics

Adam Jakubowski

e Fors ¢ [0, +o0]? we define

sn
1 2 T =
Vo(S) = (V[(ns)1]’ V[(nS)Z])' % u
e Consider g“ @
Y
L={se[l,+00)%; s1As =1} X

e Assume that for some p: £ — (0,1)
P(M, < vy(s)) — p(s), se€L.

Random vectors



Go like R. Perfekt (1997), but our way
e Fors ¢ [0, +o0]? we define

@
Vn(8) = (Vins,): Vinss))-

e Consider

L={se[l,+)?; 8 As =1}.

e Assume that for some p: £ — (0,1)
P(M, < vy(s)) — p(s), se€L.

e Assume that B,,(vx(s)) holds for every s € L.
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Go like R. Perfekt (1997), but our way
e Fors € [0, +oc]? we define
Vn(s) = (V[(r:s)d’ V[(r?s)g])'
e Consider
L={se[l,+0)?; sy A5 =1}
e Assume that for some p: £ — (0,1)
P(M, < vu(s)) — p(s), se€L.

e Assume that B,,(vx(s)) holds for every s € L.

Theorem
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Go like R. Perfekt (1997), but our way
e Fors ¢ [0, +o0]? we define

@
Vn(8) = (Vins,): Vinss))-

e Consider
L={se[l,+0)?; sy A5 =1}
e Assume that for some p: £ — (0, 1)
P(M, < vu(s)) — p(s), se€L.
e Assume that B,,(vx(s)) holds for every s € L.

Theorem

o Condition B, (vn(s)) holds for every s € [0, +o<].

Statistics

Adam Jakubowski

x3Ic o3

@

pX<Aunoprno-un

Random vectors



Go like R. Perfekt (1997), but our way
e Fors ¢ [0, +o0]? we define

@
Vn(8) = (Vins,): Vinss))-

e Consider
L={se[l,+0)?; sy A5 =1}
e Assume that for some p: £ — (0, 1)
P(M, < vu(s)) — p(s), se€L.
e Assume that B,,(vx(s)) holds for every s € L.

Theorem

o Condition B, (vn(s)) holds for every s € [0, +o<].

o There exists H : [0, +-oc]? — [0, 1] such that

P(M, < va(s)) — H(s), s € [0,+oc]?.

Statistics

Adam Jakubowski

x3Ic o3

@

pXRX<Aunorno-dun

Random vectors



Statistics

The form of H(s)
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The form of H(s) Statistics
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H(s) defined on [0, +00)? is the cumulative distribution
function of a two-dimensional extremal value distribution.

Random vectors




The form of H(s)

Theorem

H(s) defined on [0, +00)? is the cumulative distribution

function of a two-dimensional extremal value distribution.

Moreover, if H(Y) and H(® are the marginal cumulative
distribution functions, then

HO((~log pi)s) = Ga1(s), i = 1,2,

where Gy 1(s) is the CDF of the standard Frechet
extreme value distribution.
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Phantom distribution function for random vectors
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Phantom distribution function for random vectors SISt

Adam Jakubowski

3
T
7N
Theorem Y @
G(x) = H(n(x)),
where

ni(x) = sup{n € N; v,(,i) <X}, =12

is a phantom distribution function for Xy, Xo, . . ..

o’ Random vectors




