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MC setting

I (Xn)n≥0 homogeneous MC with state space (S,S) and
transition P.

I Assumption (UE) there exists a unique invariant probability
ν (νP = ν) such that for all m ≥ 0:∣∣Pmφ(x)− ν(φ)

∣∣ ≤ R|φ|∞ρm for all x ∈ S

with 0 < ρ < 1 and R > 0.

I Actually a very strong assumption: uniform geometric
ergodicity v.s. geometric ergodicity



Objective

I Let φ with ν(φ) = 0 and En(φ) := n−1
∑n

i=1 φ(Xi ).

I Objective: control of Vn(φ) := Eν
[
En(φ)2

]
.

I In the IID case,
Vn(φ) = n−1|φ|2L2(ν).

I In the general Markov case, we have an additional covariance
term

2n−2
∑
i<j

Eν
[
φ(Xi )φ(Xj)

]
= 2n−2

∑
i<j

Eν
[
φ(Xi )P j−iφ(Xi )

]
= 2n−2

∑
i<j

ν(φP j−iφ)



Covariance control in the Markov case

I We have by (UE)

|ν(φP j−iφ)| . |φ|∞|φ|L1(ν)ρ
j−i .

I It follows that

2n−2
∑
i<j

Eν
[
φ(Xi )φ(Xj)

]
. n−1|φ|∞|φ|L1(ν)n−1

∑
i 6=j

ρj−i

. n−1|φ|∞|φ|L1(ν)

I Finally

Vn(φ) := Eν
[
En(φ)2

]
. n−1

(
|φ|2L2(ν) + |φ|∞|φ|L1(ν)

)
I Nonparametrically-wise, we are happy.



The Markov case on a binary tree

I Binary tree

Tn =
n⋃

m=0

Gm, Gm = {0, 1}m.

I Notation T =
⋃∞

m=0 Gm and |u| = m if u ∈ T and u ∈ Gm.

I |Tm| = 2m+1 − 1 . 2m and |Gm| = 2m.

I Let (Xu)u∈T be a Markov chain indexed by T under (UE).

I With φ such that ν(φ) = 0, how does

Vn(φ) = Eν
[(
|Tn|−1

∑
u∈Tn

φ(Xu)
)2
]

behave?



First variance estimate

I Decompose the sum along generations. Set

Ym(φ) =
∑
u∈Gm

φ(Xu) so that
∑
u∈Tn

φ(Xu) =
n∑

m=0

Ym(φ).

I We have (triangle inequality)

Vn(φ) = |Tn|−2Eν
[( n∑

m=0

Ym(φ)
)2] ≤ |Tn|−2

( n∑
m=0

Eν
[
Ym(φ)2

]1/2)2

I Next step: control of Eν
[
Ym(φ)2

]
.



Control of Eν
[
Ym(φ)2

]

I Eν
[
Ym(φ)2

]
= I + II , with I = |Gm|ν(φ2) and

II =
∑

u 6=v ,u,v∈Gm

Eν
[
φ(Xu)φ(Xv )

]
=

∑
u 6=v ,u,v∈Gm

Eν
[
Eν [φ(Xu)|F|u∧v |]Eν [φ(Xv )|F|u∧v |]

]
=

∑
u 6=v ,u,v∈Gm

Eν
[
P |u|−|u∧v |φ(Xu∧v )P |v |−|u∧v |φ(Xu∧v )

]
I u ∧ v = most recent common ancestor of u and v .



Control of Eν
[
Ym(φ)2

]
(cont.)

I Re-index the sum on u 6= v , |u| = |v | = m as a functional of
Xu∧v :

{(u, v) ∈ G2
m} =

m⋃
`=1

{(u, v) ∈ G2
m, u ∧ v = m − `}

I |{(u, v) ∈ G2
m, u ∧ v = m − `}| . 22`|Gm−`|.

I We obtain

II =
∑

u 6=v ,u,v∈Gm

Eν
[
P |u|−|u∧v |φ(Xu∧v )P |u|−|u∧v |φ(Xu∧v )

]
=

m∑
`=1

22`−1Eν
[ ∑
w∈Gm−`

(
P`φ

)
(Xw )2

]
. 2m

m∑
`=1

2`νPm−`((P`φ)2
)
.



Too quick estimates

I Now, we have (P`φ)2 . |φ|2∞ρ2` and

II . 2m
m∑
`=1

(2ρ2)`|φ|2∞ . 2m|φ|2∞ (provided ρ <
√

2
2 )

I Putting together I + II plus taking
√

, we obtain

Eν
[
Ym(φ)2

]1/2
. 2m/2

√
|φ|2

L2(ν)
+ |φ|2∞,

so
(∑n

m=0 2m/2√ )2
. |Tn|(|φ|2L2(ν) + |φ|2∞) and finally

Vn(φ) . |Tn|−1(|φ|2L2(ν) + |φ|2∞)

I Nonparametrically-wise, we are NOT happy...



Reversible (L2) vs nonreversible (L∞) theory

I Where do we lose? We have (P`φ)2 . |φ|2∞ρ2` because of
(UE).

I If we had a reversible process, we could hope for

(P`φ)2 . |φ|2L2ρ
2`.

I Solution: we can sacrifice some of the geometric ergodicity if
we have some regularization of P: for ` ≥ 1

|P`φ|∞ ≤ |Pφ|∞

and for a nice state space (hereafter S = R)

|Pφ(x)| = |
∫
S
φ(y)P(x , dy)| !

= |
∫
R
φ(y)P(x , y)dy |

≤ sup
x∈S,y∈suppφ

P(x , y)|φ|L1(Leb)



Toward a compromise between the action of P and (UE)

I Under this additional regularity property on P

|P`φ(x)| . |φ|L1(Leb) ∧ |φ|∞ρ`.

I Trade-off in the control of the covariance term II of
Eν
[
Ym(φ)2

]
:

II . 2m
`?∑
`=1

2`|φ|2L1(Leb) + 2m
m∑

`=`?+1

(2ρ2)2|φ|2∞

. 2m inf
`?

(
2`
? |φ|2L1(Leb) + (2ρ2)`

? |φ|2∞
)

and optimise in `?...

I Nonparametrically-wise, we are happy again: if
φ(x) = h−1ψ(h−1x), we obtain the refinement of the bad
constant |φ|2∞ into a constant that behaves like |φ|L1(Leb)|φ|∞.



BMC

Definition
A bifurcating Markov chain is a family (Xu)u∈T of random
variables with value in (S,S) such that Xu is F|u|-measurable for
every u ∈ T and

E
[ ∏
u∈Gm

gu(Xu,Xu0,Xu1)
∣∣Fm

]
=
∏

u∈Gm

Pgu(Xu)

for every m ≥ 0 and (gu)u∈Gm , where
Pg(x) =

∫
S×S g(x , y , z)P(x , dy dz)



Essential object: the mean transition

I The tagged-branch chain (Ym)m≥0: Y0 = X∅ and for m ≥ 1,

Ym = X∅ε1···εm ,

(εm)m≥1 IID Bernoulli with parameter 1/2, independent of
(Xu)u∈T.

I Transition (mean transition)

Q = (P0 + P1) /2,

obtained from the marginals P0(x , dy) =
∫
z∈S P(x , dy dz)

and P1(x , dz) =
∫
y∈S P(x , dy dz).



Digest

I Guyon (2007) proves that if (Ym)m≥0 is ergodic with invariant
measure ν, then

1

|Gn|
∑
u∈Gn

g(Xu)→
∫
S

g(x)ν(dx)

holds almost-surely as n→∞.

I We also have

1

|Tn|
∑
u∈Tn

g(Xu,Xu0,Xu1)→
∫
S
Pg(x)ν(dx)

almost-surely as n→∞.

I These results are appended with central limit theorems.



Toward statistical inference

I D ⊆ S that will be later needed for statistical purposes.

I Mean transition Q = 1
2 (P0 + P1).



Assumptions

I Assumption (D) The family {Q(x , dy), x ∈ S} is dominated:

Q(x , dy) = Q(x , y)n(dy) for every x ∈ S,

for some Q : S2 → [0,∞) such that

|Q|D = sup
x∈S,y∈D

Q(x , y) <∞.

I Assumption (UE) Q admits a unique invariant probability
measure ν and there exist R > 0 and 0 < ρ < 1/2 such that∣∣Qmg(x)− ν(g)

∣∣ ≤ R|g |∞ ρm, x ∈ S, m ≥ 0,



Variance definitions

I For g : Sd → R, define Σ1,1(g) = |g |22 and for n ≥ 2,

Σ1,n(g) = |g |22 + min
1≤`≤n−1

(
|g |212` + |g |2∞2−`

)
. (1)

I Define also Σ2,1(g) = |Pg 2|1 and for n ≥ 2,

Σ2,n(g) = |Pg 2|1 + min
1≤`≤n−1

(
|Pg |212` + |Pg |2∞2−`

)
. (2)



One-step deviations

Theorem
Under (D) and (UE), for every n ≥ 1:
(i) For any δ > 0 such that δ ≥ 4R|g |∞|Gn|−1, we have

P
( 1

|Gn|
∑
u∈Gn

g(Xu)− ν(g) ≥ δ
)
≤ exp

( −|Gn|δ2

κ1Σ1,n(g) + κ2|g |∞δ

)
.

(ii) For any δ > 0 such that δ ≥ 4R(1− 2ρ)−1|g |∞|Tn|−1, we have

P
( 1

|Tn|
∑
u∈Tn

g(Xu)− ν(g) ≥ δ
)
≤ exp

( −|Tn|δ2

κ3Σ1,n(g) + κ4|g |∞δ

)
.



Two-steps deviations

Theorem
Under (D) and (UE), for every n ≥ 2:
(i) For any δ > 0 such that δ ≥ 4R|Pg |∞|Gn|−1, we have

P
( 1

|Gn|
∑
u∈Gn

g(Xu,Xu0,Xu1)−ν(Pg) ≥ δ
)
≤ exp

( −|Gn|δ2

κ1Σ2,n(g) + κ2|g |∞δ

)
.

(ii) For any δ > 0 such that δ ≥ 4(nR|Pg |∞ + |g |∞)|Tn−1|−1, we
have

P
( 1

|Tn−1|
∑

u∈Tn−1

g(Xu,Xu0,Xu1)− ν(Pg) ≥ δ
)

≤ exp
( −n−1|Tn−1|δ2

κ1Σ2,n−1(g) + κ2|g |∞δ

)
.



Statistical inference

I From now on (S,S) =
(
R,B(R)

)
and D ⊂ S compact

interval

I Assumption (S) The family {P(x , dy dz), x ∈ S} is
dominated w.r.t. the Lebesgue measure:

P(x , dy dz) = P(x , y , z)dy dz for every x ∈ S

for some P : S3 → [0,∞) such that

|P|D = sup
(x ,y ,z)∈D3

|P(x , y , z)| <∞.



Statistical inference (cont.)

I For some n ≥ 1, we observe (Xu)u∈Tn

I Under (D), (S), with n(dy) = dy , we have
I P(x , dy dz) = P(x , y , z)dy dz
I Q(x , dy) = Q(x , y)dy
I ν(dx) = ν(x)dx

I Goal: estimate nonparametrically x  ν(x), (x , y) Q(x , y)
and (x , y , z) P(x , y , z) for x , y , z ∈ D.



Nonparametric estimation of ν(x)

I For a σ-regular wavelet basis, we approximate the
representation

ν(x) =
∑
λ∈Λ

νλψ
1
λ(x), νλ = 〈ν, ψ1

λ〉

by

ν̂n(x) =
∑
|λ|≤J

ν̂λ,nψ
1
λ(x),

with

ν̂λ,n = Tλ,η
( 1

|Tn|
∑
u∈Tn

ψ1
λ(Xu)

)
.

I Tλ,η(x) = x1|x |≥η threshold operator (with Tλ,η(x) = x for
the low frequency part.

I ν̂n is specified by the maximal resolution level J and the
threshold η.



Theorem
Under (D) and (UE) with n(dx) = dx, specify ν̂n with

J = log2
|Tn|

log |Tn|
and η = c

√
log |Tn|/|Tn|

for some c > 0. For every π ∈ (0,∞], s ∈ (1/π, σ] and p ≥ 1, for
large enough n and c, the following estimate holds(

E
[
‖ν̂n − ν‖pLp(D)

])1/p
.
( log |Tn|
|Tn|

)α1(s,p,π)
,

with α1(s, p, π) = min
{

s
2s+1 ,

s+1/p−1/π
2s+1−2/π

}
, up to a constant that

depends on s, p, π, ‖ν‖Bsπ,∞(D), ρ, R and |Q|D and that is
continuous in its arguments.



I The estimator ν̂n is smooth-adaptive in the following sense:
for every s0 > 0, 0 < ρ0 < 1/2, R0 > 0 and Q0 > 0, define
the sets A(s0) = {(s, π), s ≥ s0, s0 ≥ 1/π} and

Q(ρ0,R0,Q0) = {Q such that ρ ≤ ρ0,R ≤ R0, |Q|D,≤ Q0},

where Q is taken among mean transitions for which (UE)
holds. Then, for every C > 0, there exists
c? = c?(D, p, s0, ρ0,R0,Q0,C ) such that ν̂n specified with c?

satisfies

sup
n

sup
(s,π)∈A(s0)

sup
ν,Q

( |Tn|
log |Tn|

)pα1(s,p,π)
E
[
‖ν̂n − ν‖pLp(D)

]
<∞

where the supremum is taken among (ν,Q) such that νQ = ν
with Q ∈ Q(ρ0,R0,Q0) and ‖ν‖Bsπ,∞(D) ≤ C .



Nonparametric estimation of the mean transition Q(x , y)

I First estimate
fQ(x , y) = ν(x)Q(x , y)

of the distribution of (Xu− ,Xu) (when L(X∅) = ν) by

f̂n(x , y) =
∑
|λ|≤J

f̂λ,nψ
2
λ(x , y),

with

f̂λ,n = Tλ,η
( 1

|T?n|
∑
u∈T?n

ψ2
λ(Xu− ,Xu)

)
,

(T?n = Tn \G0.)

I Estimate Q(x , y) via

Q̂n(x , y) =
f̂n(x , y)

max{ν̂n(x), $}
(3)

for some $ > 0.

I Thus Q̂n is specified by J, η and $.



Theorem
Under (D) and (UE) with n(dx) = dx, specify Q̂n with

J = 1
2 log2

|Tn|
log |Tn|

and η = c
√

(log |Tn|)2/|Tn|

for some c > 0 and $ > 0. For every π ∈ [1,∞], s ∈ (2/π, σ] and
p ≥ 1, for large enough n and c and small enough $, the following
estimate holds(

E
[
‖Q̂n −Q‖pLp(D2)

])1/p
.
((log |Tn|)2

|Tn|

)α2(s,p,π)
, (4)

with α2(s, p, π) = min
{

s
2s+2 ,

s/2+1/p−1/π
s+1−2/π

}
, provided

m(ν) = infx∈D ν(x) ≥ $ > 0 and up to a constant that depends
on s, p, π, ‖Q‖Bsπ,∞(D2), m(ν) and that is continuous in its
arguments.



I This rate is moreover (nearly) optimal: define
ε2 = sπ − (p − π). We have

inf
Q̂n

sup
Q

(
E
[
‖Q̂n−Q‖pLp(D2)

])1/p
&

 |Tn|−α2(s,p,π) if ε2 > 0( log |Tn|
|Tn|

)α2(s,p,π)
if ε2 ≤ 0,

where the infimum is taken among all estimators of Q based
on (Xu)u∈Tn and the supremum is taken among all Q such
that ‖Q‖Bsπ,∞(D2) ≤ C and m(ν) ≥ C ′ for some C ,C ′ > 0.

I The calibration of the threshold $ needed to define Q̂n

requires an a priori bound on m(ν).

I The (log |Tn|)2 comes from the slow term in the deviations
inequality and from the wavelet thresholding procedure.



Nonparametric estimation of the transition P(x , y , z)
I First estimate the density

fP(x , y , z) = ν(x)P(x , y , z)

of the distribution of (Xu,Xu0,Xu1) (when L(X∅) = ν) by

f̂n(x , y , z) =
∑
|λ|≤J

f̂λ,nψ
3
λ(x , y , z),

with

f̂λ,n = Tλ,η
( 1

|Tn−1|
∑

u∈Tn−1

ψ3
λ(Xu,Xu0,Xu1)

)
,

I Next estimate the density P by

P̂n(x , y , z) =
f̂n(x , y , z)

max{ν̂n(x), $}
(5)

for some threshold $ > 0.
I Thus the estimator P̂n is specified by J, η and $.



Theorem
Under (D), (UE), (S). Specify P̂n with

J = 1
3 log2

|Tn|
log |Tn|

and η = c
√

(log |Tn|)2/|Tn|

for some c > 0 and $ > 0. For every π ∈ [1,∞], s ∈ (3/π, σ] and
p ≥ 1, for large enough n and c and small enough $, the following
estimate holds(

E
[
‖P̂n − P‖pLp(D3)

])1/p
.
((log |Tn|)2

|Tn|

)α3(s,p,π)
, (6)

with α3(s, p, π) = min
{

s
2s+3 ,

s/3+1/p−1/π
2s/3+1−2/π

}
, provided

m(ν) ≥ $ > 0 and up to a constant that depends on
s, p, π, ‖P‖Bsπ,∞(D3) and m(ν) and that is continuous in its
arguments.



I This rate is moreover (nearly) optimal: define ε3 = sπ
3 −

p−π
2 .

We have

inf
P̂n

sup
P

(
E
[
‖P̂n−P‖pLp(D3)

])1/p
&

 |Tn|−α3(s,p,π) if ε3 > 0( log |Tn|
|Tn|

)α3(s,p,π)
if ε3 ≤ 0,

where the infimum is taken among all estimators of P based
on (Xu)u∈Tn and the supremum is taken among all P such
that ‖P‖Bsπ,∞(D3) ≤ C and m(ν) ≥ C ′ for some C ,C ′ > 0.



Application: cell division by growth

I To each node (or cell) u ∈ T, we associate as trait
Xu ∈ S ⊂ (0,∞) the size at birth of the cell u.

I Each cell grows exponentially with a common rate τ > 0.

I A cell of size x splits into two newborn cells of size x/2 each
(thus Xu0 = Xu1 here), with a size-dependent splitting rate
B(x) for some B : S → [0,∞).

I Two newborn cells start a new life independently of each
other.



I If ζu denotes the lifetime of the cell u, we thus have

P
(
ζu ∈ [t, t + dt)

∣∣ζu ≥ t,Xu = x
)

= B
(
x exp(τ t)

)
dt

and
Xu = 1

2 Xu− exp(τζu−)

that entirely determine the evolution of the population.

I Goal: estimate x  B(x) for x ∈ D where D ⊂ S is a given
compact interval.



I The process (Xu)u∈T is a bifurcating Markov chain with state
space S and T-transition

PB(x , dy dz) = P
(
Xu0 ∈ dy ,Xu1 ∈ dz |Xu− = x

)
.

I it is not difficult to check that

PB(x , dy dz) = QB(x , dy)⊗ δy (dz)

and

QB(x , dy) =
B(2y)

τy
exp

(
−
∫ y

x/2

B(2s)

τs
ds
)
1{y≥x/2}dy .



I x  B(x) is continuous implies (D) with Q = QB and
n(dx) = dx .

I Let S = (0,C ]. Pick r ∈ S and L > 0 and let

C(r , L) =
{

B,

∫ supS B(x)

x
dx =∞,

∫ r

0

B(x)

x
dx ≤ L

}
.

I We comply with (UE) for Q = QB with 0 < ρ < 1/2 if
r > supS/2 and 0 < L < τ log 2.

I We know by Proposition 2 in Doumic et al. (2015) that

B(x) =
τx

2

νB(x/2)∫ x
x/2 νB(z)dz

,

where νB denotes the unique invariant probability of the
transition Q = QB .



I For a given compact interval D ⊂ S, define

B̂n(x) =
τx

2

ν̂n(x/2)(
1
|Tn|
∑

u∈Tn
1{x/2≤Xu<x}

)
∨$

, (7)

where ν̂n is the wavelet thresholding estimator specified by a
maximal resolution level J and a threshold η and $ > 0



Theorem
Specify B̂n with

J = 1
2 log2

|Tn|
log |Tn|

and η = c
√

log |Tn|/|Tn|

for some c > 0. For every B ∈ C(r , L), for every π ∈ (0,∞],
s ∈ (1/π, σ] and p ≥ 1, for large enough n and c and small enough
$, the following estimate holds(

E
[
‖B̂n − B‖pLp(D)

])1/p
.
( log |Tn|
|Tn|

)α1(s,p,π)
,

provided that inf D ≤ r/2, with

α1(s, p, π) = min
{

2s
2s+1 ,

s+1/p−1/π
2s+1−2/π

}
, up to a constant that

depends on s, p, π, ‖B‖Bsπ,∞(D), r and L and that is continuous in
its arguments.



I This rate is moreover (nearly) optimal: define
ε1 = sπ − 1

2 (p − π). We have

inf
B̂n

sup
B

(
E
[
‖B̂n−B‖pLp(D)

])1/p
&

 |Tn|−α1(s,p,π) if ε1 > 0( log |Tn|
|Tn|

)α1(s,p,π)
if ε1 ≤ 0,

where the infimum is taken among all estimators of B based
on (Xu)u∈Tn and the supremum is taken among all
B ∈ C(r , L) such that ‖B‖Bsπ,∞(D) ≤ C .

I We improve on the results of Doumic et al. in two directions:
smoothness adaptation + minimax results

I Quite stringent restriction that S is bounded



I We consider a perturbation of the baseline splitting rate
B̃(x) = x/(5− x) over the range x ∈ S = (0, 5) of the form

B(x) = B̃(x) + cT
(
2j(x − 7

2 )
)

with (c, j) = (3, 1) or (c, j) = (9, 4), and where
T (x) = (1 + x)1{−1≤x<0} + (1− x)1{0≤x≤1} is a tent shaped
function.

I the trial splitting rate with parameter (c, j) = (9, 4) is more
localized around 7/2 and higher than the one associated with
parameter (c, j) = (3, 1).

I For a given B, we simulate M = 100 Monte Carlo trees up to
the generation n = 15 with τ = 2.



Numerical illustration

Figure : Sample autocorrelation of ordered (Xu0, u ∈ Gn−1) for n = 15.
Note: due to the binary tree structure the lags are {4, 6, 6, . . .}. As
expected, we observe a fast decorrelation.



I We implement the estimator B̂n defined by (7) using the
Matlab wavelet toolbox.

I We use compactly supported Daubechies wavelets of order 8.
J := 1

2 log2(|Tn|/ log |Tn|) and we threshold the coefficients
ν̂λ,n which are too small by hard thresholding.

I We choose the threshold proportional to
√

log |Tn|/|Tn| (and
we calibrate the constant to 10 or 15 for respectively the two
trial splitting rates, mainly by visual inspection).

I We evaluate B̂n on a regular grid of D = [1.5, 4.8] with mesh
∆x = (|Tn|)−1/2. For each sample we compute the empirical
error

ei =
‖B̂(i)

n − B‖∆x

‖B‖∆x
, i = 1, . . . ,M,

where ‖ · ‖∆x denotes the discrete L2-norm over the numerical
sampling and sum up the results through the mean-empirical
error ē = M−1

∑M
i=1 ei , together with the empirical standard

deviation
(
M−1

∑M
i=1(ei − ē)2

)1/2
.



Figure : Large spike: reconstruction of the trial splitting rate B specified
by (c, j) = (3, 1) over D = [1.5, 4.8] based on one sample (Xu, u ∈ Tn)
for n = 15 (i.e. 1

2 |Tn| = 32 767).



Figure : High spike: reconstruction of the trial splitting rate B specified
by (c, j) = (9, 4) over D = [1.5, 4.8] based on one sample (Xu, u ∈ Tn)
for n = 15 (i.e. 1

2 |Tn| = 32 767).



THANK YOU FOR YOUR ATTENTION!


