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MC setting

> (Xn)n>0 homogeneous MC with state space (S,S) and
transition P.

» Assumption (UE) there exists a unique invariant probability
v (VP = v) such that for all m > 0:

‘Pm¢(x) - V(¢)‘ < R|¢|oop™ for all x € S

with 0 < p<land R >0.

» Actually a very strong assumption: uniform geometric
ergodicity v.s. geometric ergodicity



Objective

> Let ¢ with v(¢) =0 and £,(¢) ;= n71 30, o(X)).
> Objective: control of V,(¢) := E, [Ex(0)?].
» In the IID case,
V() = 7|6l 72,)-
» In the general Markov case, we have an additional covariance
term
=2 Y B [0(X)e(X)] = 2072 Y B [6(X) P 6(X;)]

i<j i<j

=2n? Z V(P =)

i<j



Covariance control in the Markov case

» We have by (UE)

(6P 9)| < |@lool Bl iaye’ ™

» It follows that

2072 B, [¢ X)) S n M looldlpppyn > P

i<j i#j

S 7o loolBlia )

» Finally

Vi(0) := Eu [€a(0)] < 07 (18172 + |8]ool8] 1))

> Nonparametrically-wise, we are happy.



The Markov case on a binary tree

v

Binary tree

To= | Gm, Gm={0,1}".

m=0

v

Notation T = {J;,_oGm and |u| =mif u€ T and u € Gp,.
IT | =2m — 1 < 2™ and |G,y| = 2™,

Let (X,)uer be a Markov chain indexed by T under (UE).
With ¢ such that v(¢) = 0, how does

v

v

v

Va(9) = B, [(ITa 1 Y 6(X))°]

ueT,

behave?



First variance estimate

» Decompose the sum along generations. Set

= Z #(Xy) so that Z d(Xu) = Z Yin(®).
m=0

ueGnm ueT,

» We have (triangle inequality)

n

Va(6) = T4 2, [( ZY ] <ITal2( Y0 B [Yim(9)?] %)

m=0

> Next step: control of E,, [Ym(¢)?].



Control of E, [ Y(¢)?]

> By [Ym(¢)?] =1+ I, with | = |Gm|v(¢?) and

=% E[o(X)e(X)]

u#v,u,veGn

= Y B[R Fun B[S Fun ]
u#v,u,veGy

> EV['p|“|—\U/\V|¢(Xu/\v)73|V|—|u/\V|¢(XuAV)}

u#v,u,veGn

» u A v = most recent common ancestor of u and v.



Control of E, [ Y(¢)?] (cont.)

» Re-index the sum on u # v, |u| = |v| = m as a functional of
Xunv:

{(u,v) Gy = J{u,v) €Ghunv=m—1}
(=1

» {(u,v) €G2 unv=m—1} <22G,, .

» We obtain
// - Z El/ [IP|U|7\UAV|¢(XUAV)P|u|7|UAv|¢(Xu/\v)]
u#v,u,veGny
=Y 2E,[ > (P'o)(Xw)]
/=1 weG,_¢

$2my 2P (PRe)).

/=1



Too quick estimates

» Now, we have (P*¢)? < |4|% p?" and
152> (20%) 1% < 2|02 (provided p < *2)
/=1

» Putting together | 4 I/ plus taking Vo we obtain

2 m /
E, [Ym(0)2]"? S 272 1012, + |0
50 (Xm_02™2 /)% S ITal(6[22, + [0[%) and finally

V() S ITal (16172 + [01%)

» Nonparametrically-wise, we are NOT happy...



Reversible (L2) vs nonreversible (L>) theory

» Where do we lose? We have (P%¢)? < |¢|2 p? because of
(UE).

» If we had a reversible process, we could hope for
£ \2 2
(P°0)” < [l 2p

» Solution: we can sacrifice some of the geometric ergodicity if
we have some regularization of P: for £ > 1

P loc < |Poloo

and for a nice state space (hereafter S = R)

\P¢(x)r—\/s¢(y) xdyr—|/q> Plx.y)dy]

sup P(x, Y)\¢|L1 (Leb)
XGS,yesuppd)



Toward a compromise between the action of P and (UE)

» Under this additional regularity property on P

P o(x)| < 16l i1(Lep) A Dlocp”

» Trade-off in the control of the covariance term [/ of

Ey [ Ym(9)?]:

/<2m22’f|¢rmeb Fom S (IR

{=0*+1
5 2m I?*f (ZZ ‘¢|L1(Leb) + (2p )€*|¢|§o)

and optimise in £*...

» Nonparametrically-wise, we are happy again: if
#(x) = h=1y(h~!x), we obtain the refinement of the bad
constant |¢|2 into a constant that behaves like D] 1 (Leb) Pl oo



BMC

Definition
A bifurcating Markov chain is a family (X, )yer of random
variables with value in (S, &) such that X, is F|u-measurable for

every u € T and

E[ ] &u(Xu Xuo. Xu1)|Fm] = [ Peu(Xu)

ueGnm ueGm

for every m > 0 and (gu)ueac,,, Where
Pg(x) = Jsxs8(x,y,2)P(x, dy dz)



Essential object: the mean transition

» The tagged-branch chain (Ymm)m>0: Yo = Xp and for m > 1,
Ym = X@elmema

(ém)m>1 1ID Bernoulli with parameter 1/2, independent of
(Xu)ueT-
» Transition (mean transition)

Q= (Po+P1)/2,

obtained from the marginals Po(x, dy) = |,

and Pi(x, dz) = [, s Plx, dy d). :

cs P(x, dy dz)



Digest

» Guyon (2007) proves that if (Yn)m>o is ergodic with invariant
measure v, then

SPLORY RIS

holds almost-surely as n — oo.

» We also have
1
T > g(Xu, Xuo, Xu1) — /SPg(x)u(dx)
n UETn

almost-surely as n — oo.

» These results are appended with central limit theorems.



Toward statistical inference

> D C S that will be later needed for statistical purposes.
> Mean transition Q = (P + P1).



Assumptions

» Assumption (D) The family {Q(x, dy),x € S} is dominated:
Q(x,dy) = Q(x,y)n(dy) for every x € S,
for some Q : 8% — [0, 00) such that

Qp= sup Q(x,y) < oc.
xe8S,yeD

» Assumption (UE) Q admits a unique invariant probability
measure v and there exist R > 0 and 0 < p < 1/2 such that

|9"g(x) —v(g)| < Rlgles ™, x€S8, m=>0,



Variance definitions

» For g : S9 — R, define ¥11(g) = |g|3 and for n > 2,

o 2 . 2n0 2 AL
Tin(e) = lgl2+ _min (g2 +[glx2™). (1)

» Define also ¥51(g) = |Pg?|1 and for n > 2,

T20(g) = [Pg” i 22t 2278, (2
20(8) = P&’y + _min (|Pgli2" +[Pgli2).  (2)



One-step deviations

Theorem
Under (D) and (UE), for every n > 1:
(i) For any § > 0 such that § > 4R|g|oo|Gn| ™1, we have

_|Gn’52 )
k1X1,n(8) + k2|80’

Py 2 &%) —vle) 2 8) < exp

ueGy,

(i) For any § > 0 such that § > 4R(1 —2p)7}|g|oo|Th| ™, we have

P X e00) - vle) 2 5) < o AT,

ueT, K3X1,n(g) + Kalglood




Two-steps deviations

Theorem
Under (D) and (UE), for every n > 2:
(i) For any § > 0 such that § > 4R|Pg|e|Gn| L, we have

—|Gn|52 \
Klz2,n(g) + K2|g|oo(s’

1
P<|Gn| u%(;n g(Xu, Xuo, Xu1)—v(Pg) > 6) < exp (

(i) For any 6 > 0 such that § > 4(nR|Pgloo + |g|oc)|Th 1|71, we
have

1
IED(|7Tr171| ue%:_lg(xu,Xuo,xul) ~v(Pg) = 6)

—n—1|'IF,,,1|52 )

<ex (
P20 1(8) + f2lglod




Statistical inference

» From now on (S,8) = (R,B(R)) and D C S compact
interval

» Assumption (S) The family {P(x,dy dz),x € S} is
dominated w.r.t. the Lebesgue measure:

P(x,dy dz) = P(x,y,z)dy dz for every x € S
for some P : S3 — [0, 00) such that

|Plp=sup [|P(x,y,2z)| < oc.
(x,y,z)eD3



Statistical inference (cont.)

» For some n > 1, we observe (X,)ueT,
» Under (D), (S), with n(dy) = dy, we have
» P(x,dydz) =P(x,y,z)dy dz
> Q(x, dy) = Q(x,y)dy
» v(dx) = v(x)dx
» Goal: estimate nonparametrically x ~ v(x), (x,y) ~ Q(x, y)
and (x,y,z) ~ P(x,y,z) for x,y,z € D.



Nonparametric estimation of v(x)

» For a o-regular wavelet basis, we approximate the
representation

V(X) = Zykwi(x)v U\ = <V7 1/}}\>

AEA

Un(x) = Z Ut (),
IA<J

with

ﬁ)x,n = 7&,17 <|T1n| Lg’]; ¢}\(Xu))

> Txn(x) = x1 4>, threshold operator (with T ,,(x) = x for
the low frequency part.

» U, is specified by the maximal resolution level J and the
threshold 7.



Theorem
Under (D) and (UE) with n(dx) = dx, specify v, with

[T
J = log, |og|"],Tn| and 1 = cy/log |Tp|/|Ts|

for some ¢ > 0. For every m € (0,00], s € (1/m,0] and p > 1, for
large enough n and c, the following estimate holds

(E[H/V\n — VHIZP(D)Dl/P < (Io‘g"]I!;]I‘in\)al(s,/mr)7

with a1(s, p,7) = min {25‘11, %} up to a constant that

depends on s, p, . |V]lgs _(p), P,
continuous in its arguments




» The estimator U, is smooth-adaptive in the following sense:
for every sp >0, 0 < pg < 1/2, Ry > 0 and Qg > 0, define
the sets A(so) = {(s,7),s > sp,50 > 1/7} and

Q(po, Ro, Qo) = {Q such that p < pg, R < Ry, |Q|p, < Qo}s

where Q is taken among mean transitions for which (UE)
holds. Then, for every C > 0, there exists

c* = c*(D, p, 0, po, Ro, Qo, C) such that v, specified with ¢*
satisfies

|Tn| pai(s,p,m) R ,
sup  sup sup( ) E[||D, — v|| <
n (sm)eA(s) o og Tl 170 = ¥1iEp(p)

where the supremum is taken among (v, Q) such that vQ = v
with @ € 9Q(po, Ro, Qo) and HV”B%,OO(D) <C.



Nonparametric estimation of the mean transition Q(x, y)

> First estimate
fo(x,y) = v(x)Q(x,y)
of the distribution of (X,-, X,,) (when L(X;) = v) by

~

fGy) = Aatd(xy),
IN<J
with 1
B =T (7 2 Y0220,
M ueTs
(T, =T\ Go.)
» Estimate Q(x, y) via

~

Orfory) = ) @

for some w > 0.
» Thus @,, is specified by J, n and w.



Theorem R
Under (D) and (UE) with n(dx) = dx, specify Q, with

|Th|
og |T,|

J =3 logz ; and 1 = cy/(log |Ta[)?/|T5|

for some ¢ > 0 and w > 0. For every w € [1,00], s € (2/m, 0] and
p > 1, for large enough n and ¢ and small enough w, the following
estimate holds

~ 1/p log | T, 2 aa(s,p,m)
(B119 - Qlen)) " 5 (PELAE)™7

. . 2+1/p-1 .
with a(s, p, ) = min {2512, S/silg/ﬂ/ﬁ}, provided
m(v) = infyep v(x) > w > 0 and up to a constant that depends
ons,p,,|Qllss __(p2), m(v) and that is continuous in its

arguments.



» This rate is moreover (nearly) optimal: define
gp =sm— (p—m). We have

10 o [ et o
inf sup EU|Q,,—QH’ZP(D2)] > log | Tp|\ @2(s:pm)

o~ ~Y <
On Q ( T, ) if e5<0

where the infimum is taken among all estimators of Q based
on (Xy)uet, and the supremum is taken among all Q such
that [|Q||s _(p2y < C and m(v) > C' for some C, C’ > 0.

» The calibration of the threshold w needed to define Qn
requires an a priori bound on m(v).

» The (log|T,|)?> comes from the slow term in the deviations
inequality and from the wavelet thresholding procedure.



Nonparametric estimation of the transition P(x, y, z)
» First estimate the density
f’p(X,)/,Z) = V(X)P(vavz)
of the distribution of (Xy, Xu0, Xu1) (when L(Xp) =) by

/ﬁ,(X,y,Z) = Z /f;,n¢§(xay7z)’

[Al<J

with
f)\7n = 7;\,7]<|Tn 1| Z ¢)\ Xu,XuOyXul))

» Next estimate the density P by

S _ /f\;”l(vaa Z)
Pn(Xayvz) - max{ﬁn(x),w}
for some threshold = > 0.

» Thus the estimator 73,, is specified by J, n and w.



Theorem R
Under (D), (UE), (S). Specify P, with

T
log |T,|

J= %Iogz and 1 = c4/(log|Tn|)2/|T,|

for some ¢ >0 and w > 0. For every m € [1,00], s € (3/m, 0] and
p > 1, for large enough n and ¢ and small enough w, the following
estimate holds

~ 1/p log [T ,|)2\ @3(s:p.m)
(B11P: = Pllo)) 5 ()70 o)

- - 3+1/p—1 :
with as3(s, p, ) = min {2513, 52/5/3+/1p72/;r}, provided
m(v) > w > 0 and up to a constant that depends on
s,p,, | Pllgs _(p3) and m(v) and that is continuous in its

arguments.



» This rate is moreover (nearly) optimal: define e3 = 5 — 257
We have
R 1 |T,|~e3(s:p.m) if &3>0
i —P|IP > P,
o (BIPPlps)) 2 <|Og’ﬂlﬂ;n>a3(spw) if e3<0.
n

where the infimum is taken among all estimators of P based
on (Xy)uet, and the supremum is taken among all P such
that [|P||ss _(ps) < C and m(v) = C’ for some C, C’ > 0.



Application: cell division by growth

v

To each node (or cell) u € T, we associate as trait
Xy, € S C (0,00) the size at birth of the cell u.

v

Each cell grows exponentially with a common rate 7 > 0.

v

A cell of size x splits into two newborn cells of size x/2 each
(thus X0 = Xu1 here), with a size-dependent splitting rate
B(x) for some B : S — [0, c0).

Two newborn cells start a new life independently of each
other.

v



> If , denotes the lifetime of the cell u, we thus have
P(Cu € [t t+ db)|Cu > t, Xy = x) = B(xexp(rt))dt

and
X, = %Xu_ exp(7¢,-)
that entirely determine the evolution of the population.

» Goal: estimate x ~» B(x) for x € D where D C S is a given
compact interval.



» The process (X, )uer is a bifurcating Markov chain with state
space S and T-transition

Ps(x,dy dz) = ]P’(Xuo €dy, X € dz|X,- = x).
» it is not difficult to check that
Pg(x, dy dz) = Qp(x, dy) ® 6,(dz)

and

B(2y) Y B(2s)
=2 o (- 1 .
Qs(x, dy) = eXP< /)(/2 - ds) {y>x/2ydy




v

x ~» B(x) is continuous implies (D) with Q = Qg and
n(dx) = dx.
Let S = (0,C]. Pick r€ Sand L >0 and let

supS B "B
e(r,L) = {B,/ B0 gy = oo, / B gy < L}.
X 0 X
We comply with (UE) for Q@ = Qg with 0 < p < 1/2if
r>supS/2and 0 < L < 7log?2.
We know by Proposition 2 in Doumic et al. (2015) that

7x vg(x/2)

B(x) = 7W7

where vg denotes the unique invariant probability of the
transition Q@ = Qg.



» For a given compact interval D C S, define

~ TX Un(x/2)
Bn(x) = = , (7)
2 (ﬁ > _ueT, 1{></2§Xu<x}) V@

where U, is the wavelet thresholding estimator specified by a
maximal resolution level J and a threshold n and @w > 0



Theorem
Specify B, with

I ‘ /
J— l|0 ’ n and = |0 ’]T T
2 g2| g!Tn! n c g| n‘/| n|

for some ¢ > 0. For every B € C(r, L), for every m € (0, 0],
s € (1/m,0] and p > 1, for large enough n and ¢ and small enough
w, the following estimate holds

(EL1Bs ~ Bllfumy) )" < ('oi:qujr'nbal(s,p,ﬂ)’

provided that inf D < r/2, with

a1(s, p, ™) = min {2s+1, %} up to a constant that

depends on s, p, T, ||Bl|gs __(p), r and L and that is continuous in
its arguments.




» This rate is moreover (nearly) optimal: define

g1 =sm — 3(p— ). We have

-« (S,pﬂ'l’) i
inf sup <E[||§,,—BHIZP(D)]>1/P > |<rﬂig|¢g |'1Il'n|>a1(s,p,7r) I:: N Z 2
, B ’Tn| | g1 x>V,

where the infimum is taken among all estimators of B based
on (Xu)uer, and the supremum is taken among all
B € C(r, L) such that ||Blgs _(p) < C.

» We improve on the results of Doumic et al. in two directions:
smoothness adaptation + minimax results

» Quite stringent restriction that S is bounded



» We consider a perturbation of the baseline splitting rate
B(x) = x/(5 — x) over the range x € S = (0, 5) of the form

B(x) = B(x) + ¢ T(2(x - 1))

with (c,j) = (3,1) or (¢,j) = (9,4), and where
T(x) = (1 +x)_1<x<0} + (L — x)1jo<x<1} is a tent shaped
function.

> the trial splitting rate with parameter (¢, j) = (9,4) is more
localized around 7/2 and higher than the one associated with
parameter (c,j) = (3,1).

» For a given B, we simulate M = 100 Monte Carlo trees up to
the generation n = 15 with 7 = 2.



Numerical illustration

0.8

0.6-

0.4+

0.2

Sample Autocorrelation

-0.2¢ i

Figure : Sample autocorrelation of ordered (Xyo, u € Gp—1) for n = 15.
Note: due to the binary tree structure the lags are {4,6,6,...}. As
expected, we observe a fast decorrelation.



We implement the estimator B, defined by (7) using the
Matlab wavelet toolbox.

We use compactly supported Daubechies wavelets of order 8.
J:= %Iog2(|T,,|/ log |Tp|) and we threshold the coefficients
Vy,n Which are too small by hard thresholding.

We choose the threshold proportional to \/log |T,|/|T,| (and
we calibrate the constant to 10 or 15 for respectively the two

trial splitting rates, mainly by visual inspection).

We evaluate B, on a regular grid of D = [1.5,4.8] with mesh
Ax = (|T,|)~/2. For each sample we compute the empirical
error

B{) - B
ei:M7 =1,...,M,
1Bl| ax
where || - ||ax denotes the discrete L2-norm over the numerical

sampling and sum up the results through the mean-empirical
error e = M1 Z,Ail €;, together with the empirical standard

deviation (M1 Zil\il(ef - 5)2)1/2'
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Figure : Large spike: reconstruction of the trial splitting rate B specified
by (¢,j) = (3,1) over D = [1.5,4.8] based on one sample (X,,u € T,)
for n =15 (i.e. 3|T,| =32 767).
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Figure : High spike: reconstruction of the trial splitting rate B specified
by (¢,j) = (9,4) over D = [1.5,4.8] based on one sample (X,,u € T,)
for n =15 (i.e. 3|T,| =32 767).
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