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Context

> Let (2, F, 1) be a probability space and let T: Q — Q be a bijective
bi-measurable measure-preserving function.

> Let £: Q — R. The sequence (f o Tf)j>0 is a strictly stationary
; i j+1
sequence, that is, the sequences (f o Tj)j20 and (f oT/ )j20 have
the same distribution.

» We define Sy(f) := ZJ'.V:? f o T/. In probability theory, an
important problem is the understanding of the asymptotic behaviour
of the sequence (Sn(f))ys;-
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Partial sum process
Let f: Q — R. The random function SP!(f,-) is defined by

Sk(f) if t=k/n0< k<

SPI(f,t) =
» (F:0) {Iinear interpolation  if t € (k/n,(k +1)/n).

Figure : The function u — SP'(f,u) for n=8
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The invariance principle

We investigate the weak convergence of the sequence SP!(f,-) in some
functional spaces.

> Let C[0,1] denote the space of continuous functions on the unit
interval endowed with the uniform norm. The random function
t = SPI(f,t) belongs to this space.

> Donsker (1952) showed that if (f o TJ')J_>0 is independent, centered

and E [f?] = 02, then for each F: C[0,1] — R continuous and
bounded,

im E [F (n*1/25§1 (f, ))} —E[F (eW)],

n—+oo

where W a standard Brownian motion. When this convergence
holds, we say that f satisfies the invariance principle in C[0,1] or f
satisfies the functional central limit theorem (FCLT) in C[O, 1].
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Holder spaces
In view of statistical applications, one may try to prove the convergence

E [F (SR\(f,-)/vn)] = E[F(W)] (CF)

for the largest possible class of functionals F.
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In view of statistical applications, one may try to prove the convergence
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Space Definition Separable
H.[0,1] lIx[l,, == sup,. ZEZHEL 4+ [x(0)] < 400 No
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50 |t — s

The paths of a standard Brownian motion belong to H,[0, 1] for each
a€(0,1/2).

Thus we may try to prove the convergence (CF) for functionals which are
continuous on Hélder spaces (approach followed by Lamperti).

It has potential statistical applications like change point detection.



The i.i.d. case
Let @ € (0,1/2) and p(a) := (1/2 — )7t € (2, +0).

Lamperti (1962) showed that if (f o T/);> is i.i.d., centered and for each t,

a < PO {|f| > t} < o, then the sequence (n~1/2SP!(f)),>1 is not
tight in H,[0, 1].
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Theorem ( )

Let o € (0,1/2) and let (f o Tj)j>0 be an i.i.d. centered sequence with
unit variance. Then the following conditions are equivalent:

L limy oo tPOp {|f| > t} = 0;

2. the sequence (n~*/2SP\(f)),>1 converges to a standard Brownian
motion in the space H2[0,1].

Question

What about strictly stationary non-independent sequences?



General strategy

The finite dimensional distributions characterize probability measures
on H?.

The convergence of the finite dimensional distributions will always
hold under our assumptions.

Therefore, the main difficulty is to establish tightness of the
sequence (n*1/25,§’1(f))n>1 in HS.

Quantities like

M{ sup |51(f)—5f(f)|>t}

1<i<jcn =)

are not easy to handle compared with p {|S,(f)| > t}.



An equivalent norm

Define for j > 1, x: [0,1] = R and t € [2*1', 1-— 2’f],

x (t+270) +x (t—27)
5 )

M(tx) = x(£) -
The sequential norm is defined by

= 0 1 2/ A((2k +1)27/
et = s { O (1) sup2” g (k-+ 1270 |

and is equivalent to [|-||, (Ciesielski, 1960).
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A tightness criterion

Following Suquet (1999), we obtain that a sequence of processes (£n(*)),>;
such that £,(0) = 0 for each n is tight in H¢ if and only if for each
positive ¢,

lim limsupu {sup2j” max [ A((2k +1)277,&,)| > E} =

J—=+00 pstoo j>J 0<k<2i—1



A tightness criterion

Following Suquet (1999), we obtain that a sequence of processes (£n(*)),>;
such that £,(0) = 0 for each n is tight in H¢ if and only if for each
positive ¢,

lim limsuppu {sup2j” max ’)\j((Zk—&- 1)2_j,§,,)‘ > E} =

J—=+00 p—s+too j>J 0<k<2i—1

When &,(t) := n~Y/2SPI(f, t), we have the following sufficient condition
for tightness in HS: for each positive ¢,

J—=+00 ps4oo 4 1<i<n2—J

log, n
lim limsup Z 2jp{ max |S;(f)| > 5,,1/22@]} = 0.
j=J
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Definition of martingales

Definition

Let M be a sub-c-algebra of F such that TM C M (in this way,
(T~"M);xo is a filtration). We say that (mo Tj)j>0 is a martingale
differences sequence if the function m is M-measurable, integrable and
E[m| TM]=0.

In this way, the sequence (S,(m)),, is a martingale with respect to the
filtration (T~ M);>o.

The invariance principle in C[0,1] and the law of the iterated logarithms
hold for square integrable martingale differences sequences.

If (mo Tf)j>0 is a martingale differences sequence such that m € IL°,

then the sequence (E|S,(m)|? /nP/?),>1 is bounded.



Moment inequalities do not suffice

Theorem (., 2016)

Let v € (0,1/2), p() := (1/2 — «)~t. There exists a strictly stationary
sequence (f o T/);>q such that

e the finite dimensional distributions of (SP'(f)/+/n)n>1 converge to
those of a standard Brownian motion,

o the sequence (E|S,(£)|P") /nP(®)/2) - is bounded and

e the process (SP\(f)/\/n)n>1 is not tight in H,[0,1].
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The tail condition does not suffice

Let o € (0,1/2), p(c) := (1/2 — o)L

Theorem (G., 2016)

Let (2, F, u, T) be a dynamical system with positive entropy. There
exists a function m: Q — R and a o-algebra M for which TM C M
such that

o the sequence (mo T');>o is a martingale difference sequence with
respect to the filtration (T ~'M);>o;

e the convergence lim;_, o tP(*)u {|m| > t} = 0 takes place;

e the sequence (n~'/2SP'(m)),>1 is not tight in H3[0,1].
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Sufficient condition for martingales

Let M a sub-o-algebra of F such that TM C M. Let a € (0,1/2),
p(a) = (1/2 —a)™L.

Theorem (G., 2016)

Let (mo T/, T_f./\/t)j>0 be a strictly stationary martingale difference

sequence. Assume that tP(*)y {|m| > t} — 0 and
E[m? | TM] € LP(*)/2. Then

n~Y/2SPY(m) — n - W in distribution in H° 0, 1], (HIP)
where 1 is independent of the Brownian motion W and
n=lim n Y2 (E[S,(m)? | 7])">.

n——+oo
Ll

In particular, (HIP) takes place if m belongs to LP(*).
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How to check the tightness criterion? (1)

We use a deviation inequality.

Theorem (Nagaev, 2003)

Let g > 0 and let (S,, F,) be a martingale. Then

1
,u{ max Sy > t} < C(q)/ Q (tu) v 'du,
0

1<k<n

where

i 1/2
. 2
Qu) == {12;2(” | Xe| > U} + p (ZE (X | fk1]> >u



How to check the tightness criterion? (2)

If (mo T7),_, is a martingale differences sequence with respect to
(Tf'../\/l),';o, then

n{ T e Isim) > ¢} < clapn [ Cu{lml >t/ o

n 1<i<n

e 2 2,07 . g1
—|—C(q)/0 pA{E [m* | TM] > v*t?} min {u,u? '} du.
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To sum up

Let a € (0,1/2), p(a) := (1/2 — a)7L.

Dependence
of Does f satisfy the
(foT)izo0 Integrability HIP?
For each t, 0 < ¢ <
Independent tPOp{|f] >t} < o No (Lamperti, 1962)
Yes (Rackauskas,
Independent tPOp {|f| >t} =0 Suquet, 2003)
Martingale (G.,
differences PO {|f| >t} =0 2016)
Martingale tP )y {|f| >t} — 0 and
differences E [f2 | TM] € LP(®)/2 Yes (G., 2016)




Martingale approximation
Theorem ( )

Let M be a sub-o-algebra of F such that TM C M.

Let f be a centered M-measurable random variable, o € (0,1/2) and
p(a) := (1/2 — a)~L. Assume that f satisfies one of the following
conditions

» Hannan type condition:

SB[ | TM] -E[f| THM] < +00

i>0

Hp(a)
» Maxwell and Woodroofe type condition:
1
> =7 IEISH(F) | Ml < +oc.
n>1

Then
n~Y2SPY(F) = 5 - W in distribution in H.[0, 1],

where 1 is independent of the Brownian motion W'



|deas of proofs (1)

We do not use deviation inequalities.
For Hannan's condition: we use the inequality

pl i o i+1
Hfs [FIT'M]—E[f| THM])

«

< C)E[F I TM] =B | THM]l

and the fact that for each R, Z:?:O]E [f| T"M] —E [f | T M] admits
a martingale-coboundary decomposition in LP(®).



|deas of proofs (2)

For Maxwell and Woodroofe condition: an approximating martingale has
been constructed for the invariance principle in C[0, 1] (Peligrad, Utev,
2005). This approximating martingale also works for the topology of H,,.
The verification rests on the inequality

SE (R < Cla)[lh—E[h| TM]||

e[ Fasve

log, n—1

J=0
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