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Motivation

Motivation

Figure: Sample autocovariance function of 2048 squared log-returns X? of the IBM stock
(2005 - 2013)

X2 might be considered as stationary long-range dependent.



Motivation

Motivation

“Long-memory” features can also be as well explained by non-stationarity [Mikosch
and St3ric3 (2004) or Chen et al. (2010)].
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Figure: Sample autocovariance function

o Left panel: FARIMA(3,d,0)-fit to the squared IBM-returns
o Right panel: Fit of X2, = 82(t/T)Z?
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Motivation

Motivation

Several authors point out the importance to discriminate between stationary
long-range dependence and non-stationarity [see Stdricd and Granger (2005),
Perron and Qu (2010), Chen et al. (2010)].

@ Kiinsch (1986) discriminates between LRD and SRD with changing trend

o Berkes et al. (2006), Baek and Pipiras (2012) and Yau and Davis (2012) test
for

e Hp : one change point in mean in a short-range dependent process
e Hi : stationarity and long range dependence



Motivation

Goal

Develop a test for the null hypothesis

Hp : no long-range dependence

Hp : long-range dependence

in a framework which is flexible enough to deal with different types of
non-stationarity.



Locally stationary long-memory processes

Locally stationary long-memory processes

Model:

o ({X¢7}e=1,.,7)Ten locally stationary process [Dahlhaus (1997)]
@ MA(co) representation:

oo
Xer ~p(t/T)+> Uit/ T)Zeey,  t=1,...,T
1=0

e L is twice continuously differentiable
o {Z:}iez iid. N(0,1) (for simplicity)



Locally stationary long-memory processes

Time-varying spectral density

Time varying spectral density
‘2

1 | ,
Fu,\) = 2”‘2/_0: i(u) exp(—i\l)
Assumption: AR(oo)-representation

> -2
1+ a0(u) exp(—iMl)

=1

1 .
f(u,0) = [1—e720

where dy : [0,1] — [0,1/2) is the (continuous) time-vayring long-memory
parameter.
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Locally stationary long-memory processes

Hypotheses

Ho : do(u) =0 VYue[0,1] (non-stationarity and no
long-range dependence)
vs. Hi : do(u) >0 for some u € [0,1] (non-stationarity and

long-range dependence)



Locally stationary long-memory processes

Hypotheses

Ho : do(u) =0 VYue[0,1] (non-stationarity and no
long-range dependence)
vs. Hi : do(u) >0 for some u € [0,1] (non-stationarity and

long-range dependence)

Note: This is equivalent to

1 1
Ho : F :/ do(u)du=0 vs. Hi:F :/ do(u)du > 0,
0 0



Locally stationary long-memory processes

“Sieve” estimation

Approximate the spectral density with a sieve of semi-parametric models

o Choose a sequence k = k(T) € N, which diverges “slowly” to infinity as the
sample size T grows (for example k = log(T)).

@ Decompose the sample into M blocks of length N and denote by u; the
midpoint of the jt block.

@ On each block we fit a time-varying FARIMA(k,d,0) model with spectral
density

k
ix—2d(u) L —in| 72
Py () = [1— |72 J>§\1+Za,(uj)e A’(
=1

and parameter 6y (u;) = (d(yj), a1(u;), . . ., ar(uj)).



Locally stationary long-memory processes

Sieve procedure

@ Estimate 6, (u;) by a localized Whittle-estimator, that is

Oni(uj) = argokrg(j)?kﬁlltl,k(ekvuj)

where
L (O ) = %/j (log(fek(/\))+ f(”&;\))d,\

is the local Whittle likelihood and

u ~ —ipX 2
Iy (uj, A 27rN’ Z [ yT—Ny2114p,7 — (4T = N/2+1+ P)/T)} e

the mean-corrected local periodogram.

@ Resulting estimator

Ona(u) = (du(w),dna(w).- -, ans()).
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Locally stationary long-memory processes

Estimator

A

o Estimate dy(u;) by the first component dy(u;) of O (u;).
e Esimate F = fol do(u)du by the mean



Locally stationary long-memory processes

Some technical assumptions

@ For each u € [0, 1] the parameter

= .1 " fu, A
os(w) =g, min [ (log(fy, (1) + %)

exists and is uniquely determined.
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Locally stationary long-memory processes

Some technical assumptions

@ For each u € [0, 1] the parameter

" f(u,\)

. . 1
for(w) =arg,min o | (log(fo, () + 7 5

exists and is uniquely determined.

@ Assumption regarding the approximation error by parametric models:

sup/ ‘f(u7)\)—)’90k(u)()\)|d)\ = O(N~*9)
uel0,1] J —= ’

where 0 x(u) = (do(u), a1,0(v), ..., ak,0(u)) is the FARIMA(k, d, 0)-parameter
o (satisfied for geometrically decaying AR coefficients a;o(u) — k = log T)

11/27



Locally stationary long-memory processes

Local window estimator

The mean-function p(u) is estimated by

[y

L
fir(u) = 7 ZXLuTj—L/2+1+p,T'
p=0



Locally stationary long-memory processes

Local window estimator

The mean-function p(u) is estimated by

[y

L
fir(u) = 7 ZXLuTj—L/2+1+p,T'
p=0

Note:

[1/2=D=a oy \u(t/T) = p(t/T)| =

t=1,..,T

for every a > 0 where D = sup,,¢[g 1) do(u) < 1/2.

op(1)



Testing for long-range dependence

Asymptotic properties of Fr under Hy

Theorem
If F =0 and the conditions

N1+46/L1—6 N 07 L5/2—5/T2 N 07
KOV T /NY¢ = 0, k*log?(T)/N/? =0, k*N?/T3? =0

are satisfied as M, N, T — oo for 0 < €,0 < 1/6, then

VTFr/V/Wr 5 N(0.1)

where

Wt

[/01 F;1(90,k(u))du]

1 /" _ -
Mk(Ook(u)) = in 77T@i,k(u)()\)eroj(u)()\)Vfgoj(u)()\)Td)\.

1,1




Testing for long-range dependence

Asymptotic properties of Fr under H,

Theorem

If F > 0 and the conditions N€k°/L'/2=D=0 o [5/2-D=6/T2 _,

KO/N=2¢ -0, k*log?(T)/N/? 0,
k4/N1—2D—26 N O7 k2N5/2/T2 -0

are satisfied as M, N, T — oo for 0 < 6 < e < min{1/2 — D,1/6}, then

ﬁTﬂ)F>O.
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Testing for long-range dependence

Test for long-memory

o Estimate the asymptotic variance consistently by
1M
7 e
WT:|: Z;rk 9NkU_,):|1
=

o Consistent asymptotic level a-test: Reject the null hypothesis
(of no long-range dependence), whenever

ﬁﬁT/ Wr > 1,

where u;_,, denotes the (1 — a)-quantile of the standard normal distribution.
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Finite sample properties

Finite sample properties

Choice of regularization parameters:

o Choose L = N1-05,
@ Choose k with the AIC criterion, that is

T/2 i
. B I7(\) k+1
k =arg min T Jz:; (|0g(h9k,5(/\1)) + hy, s()‘f)> - T’

where
B AJ:27TJ/7— (./:1777—)1
()\) estimated spectral density of a FARIMA(k, d, 0)-process and

- I“L()\ | S [Xer — u(t/T)]e ,m‘2 mean-corrected periodogram.

Note: We use the same k in all blocks
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Finite sample properties

Approximation of the nominal level

@ time-vayring AR(1)-error process

Xer = pi(t/T)+Yer t=1,...,T
Yor = 06-Yeur+Zor t=1...T,
with
(smooth mean) w(t/T) = 1.2%7

_ B 065 fort=1,...,T/2
(change in mean) pa(t/T) = { 1.3 fort=T/2+1,...T.
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Finite sample properties

Approximation of the nominal level

@ time-vayring AR(1)-error process

Xt,T = /Jzi(t/T)'f‘Yt,T t=1,...,T
t
Yt,T - 0'67Yt—1,T+Zt,Ta t= 1,..., T,
with
t
(smooth mean) pi(t/T) = 1.277
. _ 065 fort=1,...,T/2
(change in mean) pa(t/T) = { 13 fort=T/2+1,...T.

o time-vayring MA(1)-process
t
Xe.T = Z.7 + 0.55sin (wﬂzt,u, t=1,....T

where {Z; 1}¢=1,.. 7 is Gaussian white noise with variance 1.

.....
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Finite sample properties

Approximation of the nominal level

Figure: Autocovariance functions (T=1024): Left panel: tvAR(1)-error process with
smooth mean function. Middle panel: tvAR(1)-error process with a change in mean.
Right panel: tvMA(1)-process.



Finite sample properties

Approximation of the nominal level

smooth mean change in mean tvMA(1)-process

T N M 5% 10% 5% 10% 5% 10%
256 64 4 0.090 0.128 | 0.094 0.145 0.085 0.122
256 32 8 0.151  0.228 | 0.165 0.255 0.182 0.261
512 128 4 0.061  0.095 | 0.070 0.114 0.069 0.099
512 64 8 0.089  0.130 | 0.089 0.126 0.081 0.107
1024 256 4 0.046  0.072 | 0.077 0.119 0.069 0.106
1024 128 8 0.059  0.087 | 0.061 0.088 0.064 0.093

Table: Simulated level of the new test.
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Finite sample properties

Power of the test

Alternative procedures designed for testing
@ Hp : Short-range dependence and change in mean

@ Hj : Stationarity and long-range dependence

Three tests:

@ Berkes et al. (2006) estimate a change point and consider two CUSUM
statistics in the samples before and after the change point.

@ Baek and Pipiras (2012) remove the mean effect and reject for large values of
the local Whittle estimate of the long-range dependence parameter.

@ Yau and Davis (2012) use a parametric likelihood ratio test assuming two (not
necessarily equal) ARMA(p, g) models before and after a change in the mean
function.



Finite sample properties

Power of the test

All competing procedures are designed to detect stationary long-range dependent
alternatives. Simulate a stationary FARIMA(1,d,1)-process

(1+0.258)(1 - B)*' X7 =(1-03B)Z.7, t=1,...,T.

new test Baek /Pipiras Berkes et. al Yau/Davis

T N M 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.094  0.136 0.087  0.149 0.045  0.093 0.178  0.210
256 32 8 0.138  0.216
512 128 4 0.146  0.196 0.119  0.177 0.022  0.055 0.140 0.176
512 64 8 0.138 0.214
1024 256 4 0.328  0.406 0.127  0.197 0.018  0.079 0.152  0.206
1024 128 8 0.152  0.218

Table: Rejection frequencies of the new test and three competing procedures.

N
o
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Finite sample properties

Power of the test

But the new test is consistent against more general non-stationary alternatives.

We simulated data from a time-varying FARIMA(L, d, 0)-process
t
1+ 0.273)(1 - B NX, r =27, t=1,...,T

with long-memory function d(t/T) = 0.1+ 0.3t/T.

new test Baek/Pipiras Berkes et. al Yau/Davis

T N M 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.288  0.354 0.248  0.330 0.037  0.080 0.250  0.306
256 32 8 | 0.290 0.436
512 128 4 0.530  0.590 0.356  0.468 0.006 0.041 0.182  0.226
512 64 8 0.348  0.458
1024 256 4 0.746  0.770 0.562  0.656 0.026  0.102 0.204  0.267
1024 128 8 0.412  0.512

Table: Rejection frequencies of the new test and three competing procedures.




Finite sample properties

Power of the test

We simulated data from a time-varying FARIMA(O, d, 1)-process
_BY/Nx. ——(1_035L _
(1 B) Xt,T_ (1 0.357_B)Zt,7'7 t—17...,T

with long-memory function d(t/T) =0.1+0.3t/T.

new test Baek/Pipiras Berkes et. al Yau/Davis

T N M 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.260 0.330 | 0.230 0.322 | 0.039 0.088 | 0.296  0.366
256 32 8 0.276  0.394
512 128 4 0.528 0590 | 0.342 0.456 | 0.010 0.036 | 0.268  0.322
512 64 8 0.314  0.414
1024 256 4 0.774 0796 | 0.546 0.656 | 0.024 0.086 | 0.228  0.292
1024 128 8 0.414  0.492

Table: Rejection frequencies of the new test and three competing procedures.
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Finite sample properties

example
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Figure: Log-returns of the IBM stock (2005 - 2013) and sample autocovariance function of
the squared log-returns.
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Finite sample properties

example
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Figure: Log-returns of the IBM stock (2005 - 2013) and sample autocovariance function of
the squared log-returns.

P-value of new test: 0.971
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Constrained versus unconstrained inferenc

Constrained versus unconstrained inference

o Note: we consider a constrained testing problem (under the null hypothesis
the function dy : [0,1] — [0,1/2) is boundary point of the parameter space):

Ho : d()(u) =0 VYue [0, 1]
vs. Hi : do(u) > 0 for some u € [0,1]
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Constrained versus unconstrained inference

o Note: we consider a constrained testing problem (under the null hypothesis
the function dy : [0,1] — [0,1/2) is boundary point of the parameter space):

Ho : d()(u) =0 VYue [0, 1]
vs. Hi : do(u) > 0 for some u € [0,1]

@ In general tests for these type of hypotheses are not asymptotically normal
distributed [see Chernoff (1954)]!



Constrained versus unconstrained inferenc

Constrained versus unconstrained inference

o Note: we consider a constrained testing problem (under the null hypothesis
the function dy : [0,1] — [0,1/2) is boundary point of the parameter space):

Ho : d()(u) =0 VYue [0, 1]
vs. Hi : do(u) > 0 for some u € [0,1]

@ In general tests for these type of hypotheses are not asymptotically normal
distributed [see Chernoff (1954)]!

o However:
(1) We do not use the information do(u) > 0 in the construction of the test statistic
(2) We form averages of do(ui) >0 (i=1,..., M)

o The resulting test statistic is asymptotically normal distributed



Constrained versus unconstrained inferenc

Constrained versus unconstrained inference - final example

o Let Xy1,..., X, iid. , E[X?] =1; u=E[X]>0;
Ho: =0 vs. Hy:p>0
@ Unconstrained test: rejects Hy for large values of
Vi X,

using quantiles of the normal distribution.

o Constrained test: rejects Hy for large values of

max{y/n X,,0}

using quantiles of the distribution max{Z,0}, where Z ~ N (0,1).
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Constrained versus unconstrained inferenc

Constrained versus unconstrained inference - final example

Let Xi,..., X, i.id. , E[X?] =1; p =E[X] > 0;

Ho: =0 vs. Hy:p>0
@ Unconstrained test: rejects Hy for large values of
Vi X,

using quantiles of the normal distribution.

o Constrained test: rejects Hy for large values of

max{y/n X,,0}
using quantiles of the distribution max{Z,0}, where Z ~ N (0,1).

@ In the present context: unconstrained inference is more powerful than
constrained inference (due to averaging)
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Constrained versus unconstrained inferenc
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