Detecting long-range dependence in non-stationary time series

Holger Dette, Ruhr-Universität Bochum Philip Preuß, Ruhr-Universität Bochum Kemal Sen, Ruhr-Universität Bochum

February 15, 2016

・ロト ・回ト ・ヨト ・ヨト

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ の ()

Outline

Motivation

- 2 Locally stationary long-memory processes
- Testing for long-range dependence
- 4 Finite sample properties
- 5 Constrained versus unconstrained inference

Motivation

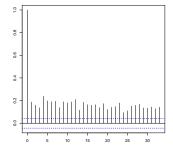


Figure: Sample autocovariance function of 2048 squared log-returns X_t^2 of the IBM stock (2005 - 2013)

 X_t^2 might be considered as stationary long-range dependent.

Motivation

"Long-memory" features can also be as well explained by non-stationarity [Mikosch and Stărică (2004) or Chen et al. (2010)].

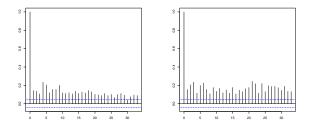


Figure: Sample autocovariance function

- Left panel: FARIMA(3,d,0)-fit to the squared IBM-returns
- Right panel: Fit of $X_{t,T}^2 = \hat{\sigma}^2(t/T)Z_t^2$
 - *Z_t* i.i.d.
 - σ piecewise constant

Motivation

Several authors point out the importance to discriminate between stationary long-range dependence and non-stationarity [see Stărică and Granger (2005), Perron and Qu (2010), Chen et al. (2010)].

- Künsch (1986) discriminates between LRD and SRD with changing trend
- Berkes et al. (2006), Baek and Pipiras (2012) and Yau and Davis (2012) test for
 - H_0 : one change point in mean in a short-range dependent process
 - H_1 : stationarity and long range dependence

Develop a test for the null hypothesis

 H_0 : no long-range dependence

 H_0 : long-range dependence

イロン イヨン イヨン イヨン 二日

4/27

in a framework which is flexible enough to deal with different types of non-stationarity.

Locally stationary long-memory processes

Model:

- $({X_{t,T}}_{t=1,...,T})_{T\in\mathbb{N}}$ locally stationary process [Dahlhaus (1997)]
- $MA(\infty)$ representation:

$$X_{t,T} pprox \mu(t/T) + \sum_{l=0}^{\infty} \psi_l(t/T) Z_{t-l}, \quad t = 1, \dots, T$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ □

- μ is twice continuously differentiable
- $\{Z_t\}_{t\in\mathbb{Z}}$ i.i.d. $\mathcal{N}(0,1)$ (for simplicity)

Time-varying spectral density

Time varying spectral density

$$f(u,\lambda) = \frac{1}{2\pi} \Big| \sum_{l=0}^{\infty} \psi_l(u) \exp(-i\lambda l) \Big|^2$$

Assumption: $AR(\infty)$ -representation

$$f(u,\lambda) = \frac{1}{2\pi} |1 - e^{i\lambda}|^{-2d_0(u)} \Big| 1 + \sum_{l=1}^{\infty} a_{l,0}(u) \exp(-i\lambda l) \Big|^{-2}$$

where $d_0 : [0, 1] \rightarrow [0, 1/2)$ is the (continuous) time-vayring long-memory parameter.

Hypotheses

 $\begin{array}{ll} \mathsf{H}_0: d_0(u) = 0 & \forall u \in [0,1] & (\text{non-stationarity and no} \\ & & \text{long-range dependence}) \\ \text{vs.} & \mathsf{H}_1: d_0(u) > 0 & \text{for some } u \in [0,1] & (\text{non-stationarity and} \\ & & \text{long-range dependence}) \end{array}$

Hypotheses

$$\begin{array}{ll} \mathsf{H}_0: d_0(u) = 0 & \forall u \in [0,1] & (\text{non-stationarity and no} \\ & & \text{long-range dependence}) \\ \text{vs.} & \mathsf{H}_1: d_0(u) > 0 & \text{for some } u \in [0,1] & (\text{non-stationarity and} \\ & & \text{long-range dependence}) \end{array}$$

Note: This is equivalent to

$$H_0: F = \int_0^1 d_0(u) du = 0$$
 vs. $H_1: F = \int_0^1 d_0(u) du > 0$,

"Sieve" estimation

Approximate the spectral density with a sieve of semi-parametric models

- Choose a sequence k = k(T) ∈ N, which diverges "slowly" to infinity as the sample size T grows (for example k = log(T)).
- Decompose the sample into *M* blocks of length *N* and denote by *u_j* the midpoint of the *jth* block.
- On each block we fit a time-varying FARIMA(k,d,0) model with spectral density

$$f_{ heta_k(u_j)}(\lambda) = |1 - e^{i\lambda}|^{-2d(u_j)} rac{1}{2\pi} \Big| 1 + \sum_{l=1}^k a_l(u_l) e^{-i\lambda l} \Big|^{-2}$$

and parameter $\theta_k(u_j) = (d(u_j), a_1(u_j), \dots, a_k(u_j)).$

Sieve procedure

• Estimate $\theta_k(u_j)$ by a localized Whittle-estimator, that is

$$\hat{ heta}_{N,k}(u_j) = rg\min_{ heta_k\in\Theta_{u_j,k}} \mathcal{L}_{N,k}^{\hat{\mu}}(heta_k,u_j)$$

where

$$\mathcal{L}_{N,k}^{\hat{\mu}}(heta_k,u_j) = rac{1}{4\pi}\int_{-\pi}^{\pi}\Big(\log(f_{ heta_k}(\lambda)) + rac{l_N^{\hat{\mu}}(u_j,\lambda)}{f_{ heta_k}(\lambda)}\Big)d\lambda$$

is the local Whittle likelihood and

$$I_{N}^{\hat{\mu}}(u_{j},\lambda) = \frac{1}{2\pi N} \Big| \sum_{\rho=0}^{N-1} \Big[X_{u_{j}T-N/2+1+\rho,T} - \hat{\mu}((u_{j}T-N/2+1+\rho)/T) \Big] e^{-i\rho\lambda} \Big|^{2}.$$

the mean-corrected local periodogram.

Resulting estimator

$$\hat{\theta}_{N,k}(u_j) = (\hat{d}_N(u_j), \hat{a}_{N,1}(u_j), \dots, \hat{a}_{N,k}(u_j)).$$

9 / 27

Estimator

- Estimate $d_0(u_j)$ by the first component $\hat{d}_N(u_j)$ of $\hat{\theta}_{N,k}(u_j)$.
- Esimate $F = \int_0^1 d_0(u) du$ by the mean

$$\hat{F}_{T} = \frac{1}{M} \sum_{j=1}^{M} \hat{d}_{N}(u_{j}).$$

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

10 / 27

Some technical assumptions

• For each $u \in [0,1]$ the parameter

$$ilde{ heta}_{0,k}(u) = rg\min_{ heta_k\in\Theta_{u,k}} rac{1}{4\pi} \int_{-\pi}^{\pi} \Big(\log(f_{ heta_k}(\lambda)) + rac{f(u,\lambda)}{f_{ heta_k}(\lambda)}\Big) d\lambda$$

◆□ > ◆□ > ◆臣 > ◆臣 > ● ○ ● ● ●

exists and is uniquely determined.

Some technical assumptions

• For each $u \in [0,1]$ the parameter

$$ilde{ heta}_{0,k}(u) = rg\min_{ heta_k\in\Theta_{u,k}} rac{1}{4\pi} \int_{-\pi}^{\pi} \Big(\log(f_{ heta_k}(\lambda)) + rac{f(u,\lambda)}{f_{ heta_k}(\lambda)}\Big) d\lambda$$

exists and is uniquely determined.

• Assumption regarding the approximation error by parametric models:

$$\sup_{u\in[0,1]}\int_{-\pi}^{\pi}|f(u,\lambda)-f_{\theta_{0,k}(u)}(\lambda)|d\lambda = O(N^{-1+\epsilon})$$

where $\theta_{0,k}(u) = (d_0(u), a_{1,0}(u), ..., a_{k,0}(u))$ is the FARIMA(k, d, 0)-parameter • (satisfied for geometrically decaying AR coefficients $a_{l,0}(u) \longrightarrow k = \log T$)

Local window estimator

The mean-function $\mu(u)$ is estimated by

$$\hat{\mu}_L(u) = \frac{1}{L} \sum_{p=0}^{L-1} X_{\lfloor uT \rfloor - L/2 + 1 + p, T}.$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Local window estimator

The mean-function $\mu(u)$ is estimated by

$$\hat{\mu}_L(u) = \frac{1}{L} \sum_{\rho=0}^{L-1} X_{\lfloor uT \rfloor - L/2 + 1 + \rho, T}.$$

Note:

$$L^{1/2-D-lpha} \max_{t=1,...,T} |\mu(t/T) - \hat{\mu}(t/T)| = o_p(1)$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

for every $\alpha > 0$ where $D = \sup_{u \in [0,1]} d_0(u) < 1/2$.

Asymptotic properties of \hat{F}_T under H_0

Theorem

If F = 0 and the conditions

$$\begin{split} & N^{1+4\epsilon}/L^{1-\delta} \to 0, \ L^{5/2-\delta}/T^2 \to 0, \\ & k^6 \sqrt{T}/N^{1-\epsilon} \to 0, \ k^4 \log^2(T)/N^{\epsilon/2} \to 0, \ k^2 N^2/T^{\frac{3}{2}} \to 0 \end{split}$$

are satisfied as M, N, T $\rightarrow \infty$ for 0 $<\epsilon,\delta<1/6,$ then

$$\sqrt{T}\hat{F}_T/\sqrt{W_T} \stackrel{D}{\to} \mathcal{N}(0,1)$$

where

$$W_{T} = \left[\int_{0}^{1} \Gamma_{k}^{-1}(\theta_{0,k}(u)) du \right]_{1,1}$$

$$\Gamma_{k}(\theta_{0,k}(u)) = \frac{1}{4\pi} \int_{-\pi}^{\pi} f_{\theta_{0,k}(u)}^{2}(\lambda) \nabla f_{\theta_{0,k}(u)}^{-1}(\lambda) \nabla f_{\theta_{0,k}(u)}^{-1}(\lambda)^{T} d\lambda.$$

Asymptotic properties of \hat{F}_T under H_1

Theorem

If F > 0 and the conditions $N^{\epsilon} k^5 / L^{1/2 - D - \delta} \to 0$, $L^{5/2 - D - \delta} / T^2 \to 0$,

$$k^{6}/N^{1-2\epsilon} \to 0, \quad k^{4}\log^{2}(T)/N^{\epsilon/2} \to 0, k^{4}/N^{1-2D-2\epsilon} \to 0, \quad k^{2}N^{5/2}/T^{2} \to 0$$

14 / 27

are satisfied as M, N, T $\rightarrow \infty$ for 0 $< \delta < \epsilon < \min\{1/2-D, 1/6\},$ then

$$\hat{F}_T \xrightarrow{P} F > 0.$$

Test for long-memory

• Estimate the asymptotic variance consistently by

$$\hat{W}_{T} = \left[\frac{1}{M}\sum_{j=1}^{M} \Gamma_{k}^{-1}(\hat{\theta}_{N,k}(u_{j}))\right]_{11}$$

 Consistent asymptotic level α-test: Reject the null hypothesis (of no long-range dependence), whenever

$$\sqrt{T}\hat{F}_T/\sqrt{\hat{W}_T} \geq u_{1-\alpha},$$

(ロ) (回) (E) (E) (E) (O)

where $u_{1-\alpha}$ denotes the $(1-\alpha)$ -quantile of the standard normal distribution.

Finite sample properties

Choice of regularization parameters:

- Choose $L = N^{1.05}$.
- Choose k with the AIC criterion, that is

$$\hat{k} = \arg\min_{k} \frac{1}{T} \sum_{j=1}^{T/2} \left(\log(h_{\hat{\theta}_{k,s}}(\lambda_j)) + \frac{I^{\hat{\mu}}(\lambda_j)}{h_{\hat{\theta}_{k,s}}(\lambda_j)} \right) + \frac{k+1}{T},$$

where

-
$$\lambda_j = 2\pi j/T$$
 $(j = 1, ..., T)$,
- $h_{\hat{\theta}_{k,s}}(\lambda)$ estimated spectral density of a FARIMA $(k, d, 0)$ -process and
- $I^{\hat{\mu}_L}(\lambda) = \frac{1}{2\pi N} \left| \sum_{t=1}^{T} \left[X_{t,T} - \hat{\mu}_L(t/T) \right] e^{-it\lambda} \right|^2$ mean-corrected periodogram

Note: We use the same k in all blocks

• time-vayring AR(1)-error process

$$X_{t,T} = \mu_i(t/T) + Y_{t,T} \quad t = 1, \dots, T$$

$$Y_{t,T} = 0.6 \frac{t}{T} Y_{t-1,T} + Z_{t,T}, \quad t = 1, \dots, T,$$

with

(smooth mean)
$$\mu_1(t/T) = 1.2 \frac{t}{T}$$
,
(change in mean) $\mu_2(t/T) = \begin{cases} 0.65 & \text{for } t = 1, \dots, T/2 \\ 1.3 & \text{for } t = T/2 + 1, \dots T. \end{cases}$

• time-vayring AR(1)-error process

$$\begin{aligned} X_{t,T} &= \mu_i(t/T) + Y_{t,T} \quad t = 1, \dots, T \\ Y_{t,T} &= 0.6 \frac{t}{T} Y_{t-1,T} + Z_{t,T}, \quad t = 1, \dots, T, \end{aligned}$$

with

(smooth mean)
$$\mu_1(t/T) = 1.2 \frac{t}{T}$$
,
(change in mean) $\mu_2(t/T) = \begin{cases} 0.65 & \text{for } t = 1, \dots, T/2 \\ 1.3 & \text{for } t = T/2 + 1, \dots T. \end{cases}$

• time-vayring MA(1)-process

$$X_{t,T} = Z_{t,T} + 0.55 \sin\left(\pi \frac{t}{T}\right) Z_{t-1,T}, \quad t = 1, \dots, T$$

where $\{Z_{t,T}\}_{t=1,...,T}$ is Gaussian white noise with variance 1.

17 / 27

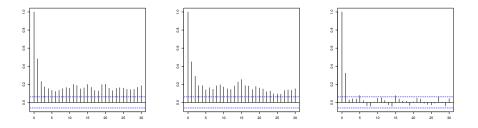


Figure: Autocovariance functions (T=1024): Left panel: tvAR(1)-error process with smooth mean function. Middle panel: tvAR(1)-error process with a change in mean. Right panel: tvMA(1)-process.

			smooth mean		change	in mean	tvMA(1)-process		
Т	N	М	5%	10%	5%	10%	5%	10%	
256	64	4	0.090	0.128	0.094	0.145	0.085	0.122	
256	32	8	0.151	0.228	0.165	0.255	0.182	0.261	
512	128	4	0.061	0.095	0.070	0.114	0.069	0.099	
512	64	8	0.089	0.130	0.089	0.126	0.081	0.107	
1024	256	4	0.046	0.072	0.077	0.119	0.069	0.106	
1024	128	8	0.059	0.087	0.061	0.088	0.064	0.093	

Table: Simulated level of the new test.

Alternative procedures designed for testing

- H_0 : Short-range dependence and change in mean
- H₁ : Stationarity and long-range dependence

Three tests:

- Berkes et al. (2006) estimate a change point and consider two CUSUM statistics in the samples before and after the change point.
- Baek and Pipiras (2012) remove the mean effect and reject for large values of the local Whittle estimate of the long-range dependence parameter.
- Yau and Davis (2012) use a parametric likelihood ratio test assuming two (not necessarily equal) ARMA(p, q) models before and after a change in the mean function.

All competing procedures are designed to detect stationary long-range dependent alternatives. Simulate a stationary FARIMA(1,d,1)-process

$$(1+0.25B)(1-B)^{0.1}X_T = (1-0.3B)Z_{t,T}, \quad t=1,\ldots,T.$$

			new test		Baek/Pipiras		Berkes et. al		Yau/Davis	
T	N	М	5%	10%	5%	10%	5%	10%	5%	10%
256	64	4	0.094	0.136	0.087	0.149	0.045	0.093	0.178	0.210
256	32	8	0.138	0.216						
512	128	4	0.146	0.196	0.119	0.177	0.022	0.055	0.140	0.176
512	64	8	0.138	0.214						
1024	256	4	0.328	0.406	0.127	0.197	0.018	0.079	0.152	0.206
1024	128	8	0.152	0.218						

Table: Rejection frequencies of the new test and three competing procedures.

But the new test is consistent against more general non-stationary alternatives.

We simulated data from a time-varying FARIMA(1, d, 0)-process

$$(1+0.2\frac{t}{T}B)(1-B)^{d(t/T)}X_{t,T}=Z_{t,T}, \quad t=1,\ldots,T$$

with long-memory function d(t/T) = 0.1 + 0.3t/T.

			new test		Baek/Pipiras		Berkes et. al		Yau/Davis	
Т	N	М	5%	10%	5%	10%	5%	10%	5%	10%
256	64	4	0.288	0.354	0.248	0.330	0.037	0.080	0.250	0.306
256	32	8	0.290	0.436						
512	128	4	0.530	0.590	0.356	0.468	0.006	0.041	0.182	0.226
512	64	8	0.348	0.458						
1024	256	4	0.746	0.770	0.562	0.656	0.026	0.102	0.204	0.267
1024	128	8	0.412	0.512						

Table: Rejection frequencies of the new test and three competing procedures.

We simulated data from a time-varying FARIMA(0, d, 1)-process

$$(1-B)^{d(t/T)}X_{t,T} = (1-0.35\frac{t}{T}B)Z_{t,T}, \quad t = 1, \dots, T$$

with long-memory function d(t/T) = 0.1 + 0.3t/T.

			new test		Baek/Pipiras		Berkes et. al		Yau/Davis	
T	Ν	М	5%	10%	5%	10%	5%	10%	5%	10%
256	64	4	0.260	0.330	0.230	0.322	0.039	0.088	0.296	0.366
256	32	8	0.276	0.394						
512	128	4	0.528	0.590	0.342	0.456	0.010	0.036	0.268	0.322
512	64	8	0.314	0.414						
1024	256	4	0.774	0.796	0.546	0.656	0.024	0.086	0.228	0.292
1024	128	8	0.414	0.492						

Table: Rejection frequencies of the new test and three competing procedures.

Data example

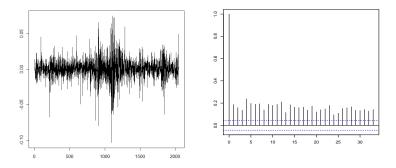


Figure: Log-returns of the IBM stock (2005 - 2013) and sample autocovariance function of the squared log-returns.

Data example

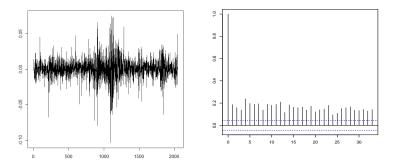


Figure: Log-returns of the IBM stock (2005 - 2013) and sample autocovariance function of the squared log-returns.

P-value of new test: 0.971

Constrained versus unconstrained inference

 Note: we consider a constrained testing problem (under the null hypothesis the function d₀: [0, 1] → [0, 1/2) is boundary point of the parameter space):

$$\begin{aligned} &\mathsf{H}_0: d_0(u) = 0 \quad \forall u \in [0,1] \\ &\mathsf{vs.} \qquad \mathsf{H}_1: d_0(u) > 0 \quad \text{for some } u \in [0,1] \end{aligned}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の <

Constrained versus unconstrained inference

 Note: we consider a constrained testing problem (under the null hypothesis the function d₀: [0, 1] → [0, 1/2) is boundary point of the parameter space):

$$\begin{aligned} &\mathsf{H}_0: d_0(u) = 0 \quad \forall u \in [0,1] \\ \mathsf{vs.} \qquad &\mathsf{H}_1: d_0(u) > 0 \quad \text{for some } u \in [0,1] \end{aligned}$$

• In general tests for these type of hypotheses are not asymptotically normal distributed [see Chernoff (1954)]!

Constrained versus unconstrained inference

 Note: we consider a constrained testing problem (under the null hypothesis the function d₀: [0, 1] → [0, 1/2) is boundary point of the parameter space):

$$\begin{aligned} &\mathsf{H}_0: d_0(u) = 0 \quad \forall u \in [0,1] \\ &\mathsf{vs.} \qquad \mathsf{H}_1: d_0(u) > 0 \quad \text{for some } u \in [0,1] \end{aligned}$$

- In general tests for these type of hypotheses are not asymptotically normal distributed [see Chernoff (1954)]!
- However:
 - (1) We do not use the information $d_0(u) \ge 0$ in the construction of the test statistic
 - (2) We form averages of $d_0(u_i) \ge 0$ (i = 1, ..., M)
- The resulting test statistic is asymptotically normal distributed

Constrained versus unconstrained inference - final example

• Let
$$X_1,\ldots,X_n$$
 i.i.d. , $\mathbb{E}[X_i^2]=1;\ \mu=\mathbb{E}[X_i]\geq 0;$

 $\mathsf{H}_{\mathsf{0}}: \mu = \mathsf{0} \qquad \mathsf{vs.} \quad \mathsf{H}_{\mathsf{1}}: \mu > \mathsf{0}$

• Unconstrained test: rejects H₀ for large values of

 $\sqrt{n} \overline{X}_n$

using quantiles of the normal distribution.

• Constrained test: rejects H₀ for large values of

 $\max\{\sqrt{n}\ \overline{X}_n,0\}$

(ロ) (部) (E) (E) (E) (000)

26 / 27

using quantiles of the distribution max{Z, 0}, where $Z \sim \mathcal{N}(0, 1)$.

Constrained versus unconstrained inference - final example

• Let
$$X_1,\ldots,X_n$$
 i.i.d. , $\mathbb{E}[X_i^2]=1;\ \mu=\mathbb{E}[X_i]\geq 0;$

 $\mathsf{H}_{\mathsf{0}}: \mu = \mathsf{0} \qquad \mathsf{vs.} \quad \mathsf{H}_{\mathsf{1}}: \mu > \mathsf{0}$

• Unconstrained test: rejects H₀ for large values of

 $\sqrt{n} \overline{X}_n$

using quantiles of the normal distribution.

• Constrained test: rejects H₀ for large values of

$$\max\{\sqrt{n} \ \overline{X}_n, 0\}$$

using quantiles of the distribution max{Z, 0}, where $Z \sim \mathcal{N}(0, 1)$.

• In the present context: unconstrained inference is more powerful than constrained inference (due to averaging)

References

- Baek and Pipiras (2012): Statistical tests for a single change in mean against long-range dependence, Journal of Time Series Analysis, 33, 131-151.
- Berkes, Horváth, Kokoszka, Shao (2006): On discriminating between long-range dependence and changes in mean, The Annals of Statistics, 34, 1140-1165.
- Chen, Härdle, Pigorsch (2010): Localized realized volatility modeling, Journal of the American Statistical Association, 105, 1376-1393.
- Chernoff, H. (1954). On the distribution of the likelihood ratio. Annals of Mathematical Statistics, 25, 573
 - 578.
- Dahlhaus (1997): Fitting time series models to nonstationary processes, The Annals of Statistics, 25, 1-37.
- Künsch (1986): Discrimination between monotonic trends and long-range dependence, J. Appl. Prob., 23, 1025-1030.
- Mikosch and Stărică (2004): Non-stationarities in financial time series, the long-range dependence, and the IGARCH effects, The Review of Economics and Statistics, 86, 378-390.
- Perron and Qu (2010): Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices, Journal of Business and Economic Statistics, 23, 275-290.
- Preuss, Sen, Dette (2014-2016): Detecting long-range dependence in non-stationary time series, arXiv..
- Stărică and Granger (2005): Nonstationarities in stock returns, The Review of Economics and Statistics, 87, 503-522.
- Yau and Davis (2012): Likelihood inference for discriminating between long-memory and change-point models, Journal of Time Series Analysis, 33, 649-664.