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Figure: Sample autocovariance function of 2048 squared log-returns X 2
t of the IBM stock

(2005 - 2013)

X 2
t might be considered as stationary long-range dependent.
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Motivation

“Long-memory” features can also be as well explained by non-stationarity [Mikosch
and Stărică (2004) or Chen et al. (2010)].
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Figure: Sample autocovariance function

Left panel: FARIMA(3,d,0)-fit to the squared IBM-returns
Right panel: Fit of X 2

t,T = σ̂2(t/T )Z 2
t

- Zt i.i.d.
- σ piecewise constant
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Motivation

Several authors point out the importance to discriminate between stationary
long-range dependence and non-stationarity [see Stărică and Granger (2005),
Perron and Qu (2010), Chen et al. (2010)].

Künsch (1986) discriminates between LRD and SRD with changing trend

Berkes et al. (2006), Baek and Pipiras (2012) and Yau and Davis (2012) test
for

H0 : one change point in mean in a short-range dependent process
H1 : stationarity and long range dependence
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Goal

Develop a test for the null hypothesis

H0 : no long-range dependence

H0 : long-range dependence

in a framework which is flexible enough to deal with different types of
non-stationarity.
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Locally stationary long-memory processes

Model:

({Xt,T}t=1,...,T )T∈N locally stationary process [Dahlhaus (1997)]

MA(∞) representation:

Xt,T ≈ µ(t/T ) +
∞∑
l=0

ψl(t/T )Zt−l , t = 1, . . . ,T

µ is twice continuously differentiable
{Zt}t∈Z i.i.d. N (0, 1) (for simplicity)

5 / 27



Motivation Locally stationary long-memory processes Testing for long-range dependence Finite sample properties Constrained versus unconstrained inference

Time-varying spectral density

Time varying spectral density

f (u, λ) =
1

2π

∣∣∣ ∞∑
l=0

ψl(u) exp(−iλl)
∣∣∣2

Assumption: AR(∞)-representation

f (u, λ) =
1

2π
|1− e iλ|−2d0(u)

∣∣∣1 +
∞∑
l=1

al,0(u) exp(−iλl)
∣∣∣−2

where d0 : [0, 1]→ [0, 1/2) is the (continuous) time-vayring long-memory
parameter.
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Hypotheses

H0 : d0(u) = 0 ∀u ∈ [0, 1] (non-stationarity and no

long-range dependence)

vs. H1 : d0(u) > 0 for some u ∈ [0, 1] (non-stationarity and

long-range dependence)

Note: This is equivalent to

H0 : F =

∫ 1

0

d0(u)du = 0 vs. H1 : F =

∫ 1

0

d0(u)du > 0,
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“Sieve” estimation

Approximate the spectral density with a sieve of semi-parametric models

Choose a sequence k = k(T ) ∈ N, which diverges “slowly” to infinity as the
sample size T grows (for example k = log(T )).

Decompose the sample into M blocks of length N and denote by uj the
midpoint of the j th block.

On each block we fit a time-varying FARIMA(k ,d ,0) model with spectral
density

fθk (uj )(λ) = |1− e iλ|−2d(uj )
1

2π

∣∣∣1 +
k∑

l=1

al(uj)e
−iλl

∣∣∣−2

and parameter θk(uj) = (d(uj), a1(uj), . . . , ak(uj)).
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Sieve procedure

Estimate θk(uj) by a localized Whittle-estimator, that is

θ̂N,k(uj) = arg min
θk∈Θuj ,k

Lµ̂N,k(θk , uj)

where

Lµ̂N,k(θk , uj) =
1

4π

∫ π

−π

(
log(fθk (λ)) +

I µ̂N (uj , λ)

fθk (λ)

)
dλ

is the local Whittle likelihood and

I µ̂N (uj , λ) =
1

2πN

∣∣∣ N−1∑
p=0

[
XujT−N/2+1+p,T − µ̂((ujT − N/2 + 1 + p)/T )

]
e−ipλ

∣∣∣2.
the mean-corrected local periodogram.

Resulting estimator

θ̂N,k(uj) = (d̂N(uj), âN,1(uj), . . . , âN,k(uj)).
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Estimator

Estimate d0(uj) by the first component d̂N(uj) of θ̂N,k(uj).

Esimate F =
∫ 1

0
d0(u)du by the mean

F̂T =
1

M

M∑
j=1

d̂N(uj).
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Some technical assumptions

For each u ∈ [0, 1] the parameter

θ̃0,k(u) = arg min
θk∈Θu,k

1

4π

∫ π

−π

(
log(fθk (λ)) +

f (u, λ)

fθk (λ)

)
dλ

exists and is uniquely determined.

Assumption regarding the approximation error by parametric models:

sup
u∈[0,1]

∫ π

−π

∣∣f (u, λ)− fθ0,k (u)(λ)
∣∣dλ = O(N−1+ε)

where θ0,k(u) = (d0(u), a1,0(u), ..., ak,0(u)) is the FARIMA(k, d , 0)-parameter

(satisfied for geometrically decaying AR coefficients al,0(u) −→ k = logT )
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Local window estimator

The mean-function µ(u) is estimated by

µ̂L(u) =
1

L

L−1∑
p=0

XbuTc−L/2+1+p,T .

Note:

L1/2−D−α max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣ = op(1)

for every α > 0 where D = supu∈[0,1] d0(u) < 1/2.
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Asymptotic properties of F̂T under H0

Theorem

If F = 0 and the conditions

N1+4ε/L1−δ → 0, L5/2−δ/T 2 → 0,

k6
√
T/N1−ε → 0, k4 log2(T )/Nε/2 → 0, k2N2/T

3
2 → 0

are satisfied as M,N,T →∞ for 0 < ε, δ < 1/6, then

√
TF̂T/

√
WT

D→ N (0, 1)

where

WT =
[ ∫ 1

0

Γ−1
k (θ0,k(u))du

]
1,1

Γk(θ0,k(u)) =
1

4π

∫ π

−π
f 2
θ0,k (u)(λ)∇f −1

θ0,k (u)(λ)∇f −1
θ0,k (u)(λ)T dλ.
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Asymptotic properties of F̂T under H1

Theorem

If F > 0 and the conditions Nεk5/L1/2−D−δ → 0, L5/2−D−δ/T 2 → 0,

k6/N1−2ε → 0, k4 log2(T )/Nε/2 → 0,

k4/N1−2D−2ε → 0, k2N5/2/T 2 → 0

are satisfied as M,N,T →∞ for 0 < δ < ε < min{1/2− D, 1/6}, then

F̂T
P→ F > 0.
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Test for long-memory

Estimate the asymptotic variance consistently by

ŴT =
[ 1

M

M∑
j=1

Γ−1
k (θ̂N,k(uj))

]
11

Consistent asymptotic level α-test: Reject the null hypothesis
(of no long-range dependence), whenever

√
TF̂T/

√
ŴT ≥ u1−α,

where u1−α denotes the (1− α)-quantile of the standard normal distribution.

15 / 27



Motivation Locally stationary long-memory processes Testing for long-range dependence Finite sample properties Constrained versus unconstrained inference

Finite sample properties

Choice of regularization parameters:

Choose L = N1.05.

Choose k with the AIC criterion, that is

k̂ = arg min
k

1

T

T/2∑
j=1

(
log(hθ̂k,s (λj)) +

I µ̂(λj)

hθ̂k,s (λj)

)
+

k + 1

T
,

where

- λj = 2πj/T (j = 1, . . . ,T ),
- hθ̂k,s (λ) estimated spectral density of a FARIMA(k, d , 0)-process and

- I µ̂L(λ) = 1
2πN

∣∣∑T
t=1

[
Xt,T − µ̂L(t/T )

]
e−itλ

∣∣2 mean-corrected periodogram.

Note: We use the same k in all blocks
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Approximation of the nominal level

time-vayring AR(1)-error process

Xt,T = µi (t/T ) + Yt,T t = 1, . . . ,T

Yt,T = 0.6
t

T
Yt−1,T + Zt,T , t = 1, . . . ,T ,

with

(smooth mean) µ1(t/T ) = 1.2
t

T
,

(change in mean) µ2(t/T ) =

{
0.65 for t = 1, . . . ,T/2
1.3 for t = T/2 + 1, . . .T .

time-vayring MA(1)-process

Xt,T = Zt,T + 0.55 sin
(
π
t

T

)
Zt−1,T , t = 1, . . . ,T

where {Zt,T}t=1,...,T is Gaussian white noise with variance 1.
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Approximation of the nominal level
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Figure: Autocovariance functions (T=1024): Left panel: tvAR(1)-error process with
smooth mean function. Middle panel: tvAR(1)-error process with a change in mean.
Right panel: tvMA(1)-process.

18 / 27



Motivation Locally stationary long-memory processes Testing for long-range dependence Finite sample properties Constrained versus unconstrained inference

Approximation of the nominal level

smooth mean change in mean tvMA(1)-process
T N M 5% 10% 5% 10% 5% 10%

256 64 4 0.090 0.128 0.094 0.145 0.085 0.122
256 32 8 0.151 0.228 0.165 0.255 0.182 0.261
512 128 4 0.061 0.095 0.070 0.114 0.069 0.099
512 64 8 0.089 0.130 0.089 0.126 0.081 0.107

1024 256 4 0.046 0.072 0.077 0.119 0.069 0.106
1024 128 8 0.059 0.087 0.061 0.088 0.064 0.093

Table: Simulated level of the new test.
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Power of the test

Alternative procedures designed for testing

H0 : Short-range dependence and change in mean

H1 : Stationarity and long-range dependence

Three tests:

Berkes et al. (2006) estimate a change point and consider two CUSUM
statistics in the samples before and after the change point.

Baek and Pipiras (2012) remove the mean effect and reject for large values of
the local Whittle estimate of the long-range dependence parameter.

Yau and Davis (2012) use a parametric likelihood ratio test assuming two (not
necessarily equal) ARMA(p, q) models before and after a change in the mean
function.
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Power of the test

All competing procedures are designed to detect stationary long-range dependent
alternatives. Simulate a stationary FARIMA(1,d ,1)-process

(1 + 0.25B)(1− B)0.1XT = (1− 0.3B)Zt,T , t = 1, . . . ,T .

new test Baek/Pipiras Berkes et. al Yau/Davis
T N M 5% 10% 5% 10% 5% 10% 5% 10%

256 64 4 0.094 0.136 0.087 0.149 0.045 0.093 0.178 0.210
256 32 8 0.138 0.216
512 128 4 0.146 0.196 0.119 0.177 0.022 0.055 0.140 0.176
512 64 8 0.138 0.214

1024 256 4 0.328 0.406 0.127 0.197 0.018 0.079 0.152 0.206
1024 128 8 0.152 0.218

Table: Rejection frequencies of the new test and three competing procedures.
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Power of the test

But the new test is consistent against more general non-stationary alternatives.

We simulated data from a time-varying FARIMA(1, d , 0)-process

(1 + 0.2
t

T
B)(1− B)d(t/T )Xt,T = Zt,T , t = 1, . . . ,T

with long-memory function d(t/T ) = 0.1 + 0.3t/T .

new test Baek/Pipiras Berkes et. al Yau/Davis
T N M 5% 10% 5% 10% 5% 10% 5% 10%

256 64 4 0.288 0.354 0.248 0.330 0.037 0.080 0.250 0.306
256 32 8 0.290 0.436
512 128 4 0.530 0.590 0.356 0.468 0.006 0.041 0.182 0.226
512 64 8 0.348 0.458

1024 256 4 0.746 0.770 0.562 0.656 0.026 0.102 0.204 0.267
1024 128 8 0.412 0.512

Table: Rejection frequencies of the new test and three competing procedures.
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Power of the test

We simulated data from a time-varying FARIMA(0, d , 1)-process

(1− B)d(t/T )Xt,T = (1− 0.35
t

T
B)Zt,T , t = 1, . . . ,T

with long-memory function d(t/T ) = 0.1 + 0.3t/T .

new test Baek/Pipiras Berkes et. al Yau/Davis
T N M 5% 10% 5% 10% 5% 10% 5% 10%

256 64 4 0.260 0.330 0.230 0.322 0.039 0.088 0.296 0.366
256 32 8 0.276 0.394
512 128 4 0.528 0.590 0.342 0.456 0.010 0.036 0.268 0.322
512 64 8 0.314 0.414

1024 256 4 0.774 0.796 0.546 0.656 0.024 0.086 0.228 0.292
1024 128 8 0.414 0.492

Table: Rejection frequencies of the new test and three competing procedures.
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Data example
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Figure: Log-returns of the IBM stock (2005 - 2013) and sample autocovariance function of
the squared log-returns.

P-value of new test: 0.971
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Constrained versus unconstrained inference

Note: we consider a constrained testing problem (under the null hypothesis
the function d0 : [0, 1]→ [0, 1/2) is boundary point of the parameter space):

H0 : d0(u) = 0 ∀u ∈ [0, 1]

vs. H1 : d0(u) > 0 for some u ∈ [0, 1]

In general tests for these type of hypotheses are not asymptotically normal
distributed [see Chernoff (1954)]!

However:

(1) We do not use the information d0(u) ≥ 0 in the construction of the test statistic
(2) We form averages of d0(ui ) ≥ 0 (i = 1, . . . ,M)

The resulting test statistic is asymptotically normal distributed
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Constrained versus unconstrained inference - final example

Let X1, . . . ,Xn i.i.d. , E[X 2
i ] = 1; µ = E[Xi ] ≥ 0;

H0 : µ = 0 vs. H1 : µ > 0

Unconstrained test: rejects H0 for large values of

√
n X n

using quantiles of the normal distribution.

Constrained test: rejects H0 for large values of

max{
√
n X n, 0}

using quantiles of the distribution max{Z , 0}, where Z ∼ N (0, 1).

In the present context: unconstrained inference is more powerful than
constrained inference (due to averaging)
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