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Université Paris-Descartes

Joint work with F. Merlevède
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1. Introduction

Let (Xi )i∈Z be a stationary sequence of integrable real-valued random
variables, with common marginal distribution µ.
Let µn be the empirical measure of {X1, . . . ,Xn}, that is

µn =
1

n

n∑
k=1

δXk
.

The Wasserstein distance of order 1 between µn and µ is

W1(µn, µ) = inf
π∈M(µn,µ)

∫
|x − y |π(dx , dy) , (1)

where M(µn, µ) is the set of probability measures on R2 with marginal
distributions µn and µ.
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The quantity W1(µn, µ) appears very frequently in statistics, and can be
understood from many points of view :

The well known dual representation of W1 implies that

W1(µn, µ) = sup
f ∈Λ1

∣∣∣∣∣1n
n∑

k=1

(f (Xk)− µ(f ))

∣∣∣∣∣ , (2)

where Λ1 is the set of functions f such that |f (x)− f (y)| ≤ |x − y |.
In the one dimensional setting the minimization problem (1) can be
explicitely solved, and leads to the expression

W1(µn, µ) =

∫ 1

0
|F−1

n (t)− F−1(t)|dt , (3)

where Fn and F are the distribution functions of µn and µ, and F−1
n

and F−1 are their usual generalized inverses.

Starting from (3), it follows immediately that

W1(µn, µ) =

∫
R
|Fn(t)− F (t)|dt . (4)
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Assume now that the sequence (Xi )i∈Z is ergodic. Since µ has a finite first
moment, it is well known that

lim
n→∞

W1(µn, µ) = 0 a.s. and lim
n→∞

E(W1(µn, µ)) = 0 .

However, without additional assumptions on µ the rate of convergence can
be arbitrarily slow.

In the i.i.d. case, del Barrio et al. (1999) proved that, if∫ ∞
0

√
H(t)dt <∞ where H(t) = P(|X1| > t) , (5)

then
√
nW1(µn, µ) converges in distribution to the random variable∫

|G (t)| dt, where G is a Gaussian random variable in L1(dt).

In fact (5) is necessary and sufficient for the stochastic boundedness of√
nW1(µn, µ).
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2. α-dependent sequences

Definition

For the stationary sequence X = (Xi )i∈Z, let

α1,X(n) = sup
x∈R
‖E (1Xn≤x |F0)− F (x)‖1 , (6)

where F is the distribution function of µ and F0 = σ(Xi , i ≤ 0). Let also

α2,X(n) = sup
x ,y∈R

sup
n≤i≤j

∥∥E ((1Xi≤x − F (x))
(
1Xj≤y − F (y)

) ∣∣F0

)
− E

(
(1Xi≤x − F (x))

(
1Xj≤y − F (y)

)) ∥∥
1
. (7)

These coefficients are weaker than the α-mixing coefficients of Rosenblatt
(1956).
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3. Moments of order 1 and 2

For any t ≥ 0, let

Sα,n(t) =
n∑

k=0

min {α1,X(k),H(t)} . (8)

The following upper bounds hold :

E(W1(µn, µ)) ≤ 4

∫ ∞
0

√
min

{(
H(t)

)2
,
Sα,n(t)

n

}
dt , (9)

and

‖W1(µn, µ)‖2 ≤
2
√

2√
n

∫ ∞
0

√
Sα,n(t) dt . (10)

For i.i.d. sequences (9) is the same (up to the numerical constant) as in
Bobkov and Ledoux (2014).
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4. Central limit theorem

Assume that the sequence is ergodic, and that

∫ ∞
0

√√√√ ∞∑
k=0

min {α1,X(k),H(t)} dt <∞ . (11)

Then
√
nW1(µn, µ) converges in distribution to the random variable∫

|G (t)| dt, where G is a Gaussian random variable in L1(dt) whose
covariance function may be described as follows :

for any f , g in L∞(µ),

Cov

(∫
f (t)G (t)dt,

∫
g(t)G (t)dt

)
=
∑
k∈Z

E
(∫∫

f (t)g(s)(1X0≤t − F (t))(1Xk≤s − F (s)) dtds

)
. (12)
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5. Moments of order p ∈ (1, 2)

For p ∈ (1, 2), the following inequality holds

‖W1(µn, µ)‖pp ≤
Cp

np−1

n∑
k=0

1

(k + 1)2−p

∫ α1,X(k)

0
Qp(u)du . (13)

where Q is the generalized inverse of H.
In the i.i.d. case, Inequality (13) becomes

‖W1(µn, µ)‖pp ≤
Cp

np−1
‖X0‖pp . (14)

This last inequality seems to be new.

(14) is the same as the moment bound of order p for partial sums of i.i.d.
random variables (cf. von Bahr and Esseen (1965)).
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6. Moments of order p > 2

For p > 2, the following inequality holds :

‖W1(µn, µ)‖pp ≤ Cp

(
spα,n

np/2
+

1

np−1

n∑
k=0

(k + 1)p−2

∫ α2,X(k)

0
Qp(u)du

)
.

(15)
where

sα,n =

∫ ∞
0

√
Sα,n(t)dt with Sα,n defined in (8).

In the i.i.d. case, Inequality (15) becomes

‖W1(µn, µ)‖pp ≤ Cp

(
1

np/2

(∫ ∞
0

√
H(t)dt

)p

+
1

np−1
‖X0‖pp

)
.

This last inequality seems to be new.

Compared to the usual Rosenthal bound for sums of i.i.d. random
variables, the variance term is replaced by the integral involving H.
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7. Application to GPM maps

Figure: The graph of a GPM map, with d = 4

The map θ is uniformly expanding, except at 0, where there is a neutral
fixed point, with θ(x) = x + cx1+γ(1 + o(1)) when x → 0, for γ ∈ (0, 1).
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Figure: Time series of 500 iterations of a GPM map with γ = 0.5 (left) and
γ = 0.9 (right).
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The associated Markov Chain

There exists an unique θ-invariant absolutely continuous probability
measure ν.

Define then the Perron-Frobenius operator K with respect to ν : for
any f , g in L2(ν)

ν(f ◦ θ · g) = ν(f · K (g)) ,

which means that E(g |θ) = K (g)(θ) , so K is a transition kernel.

Define then the Markov chain (Xi ) with invariant measure ν and
kernel K : on ([0, 1], ν) the n-tuple (θ, θ2, . . . , θn) is distributed as
(Xn,Xn−1, . . . ,X1).

From a previous work with S. Gouëzel and F. Merlevède (2010) :
there exist C > 0 and D > 0 such that,

D

n(1−γ)/γ
≤ α2,X(n) ≤ C

n(1−γ)/γ
.
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Central limit theorem

We shall illustrate each result by controlling, on the probability space
([0, 1], ν), the quantity W1(µ̃n, µ), where

µ̃n =
1

n

n∑
k=1

δg◦θk ,

θ is a GPM map, g is a non increasing function from (0, 1) to R, and µ is
the distribution of g .

For the CLT : assume that γ ∈ (0, 1/2). If g is positive and non increasing
on (0, 1), with

g(x) ≤ C

x (1−2γ)/2| ln(x)|b
near 0, for some C > 0 and b > 1,

then
√
nW1(µ̃n, µ) converges in distribution to

∫
|G (t)|dt.

Rem. The usual CLT for
∑n

k=1(g ◦ θk − ν(g)) requires b > 1/2.
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Moments of order p ∈ (1, 2)

Let p ∈ (1, 2), and let g be positive and non increasing on (0, 1), with

g(x) ≤ C

xb
near 0, for some C > 0 and b ∈ [0, (1− γ)/p).

For γ ∈ (0, 1/p], the following upper bounds hold.

‖W1(µ̃n, µ))‖p �


n(1−p)/p if b < (1− pγ)/p

(n(1−p) ln(n))1/p if b = (1− pγ)/p

n(pb+γ−1)/pγ if b > (1− pγ)/p.

Moreover, if b = (1− pγ)/p,

P (W1(µn, µ) ≥ x)� 1

np−1xp
.

For γ ∈ (1/p, 1), ‖W1(µ̃n, µ))‖p � n(pb+γ−1)/pγ .
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Moments of order p > 2

Let p > 2, and let g be positive and non increasing on (0, 1), with

g(x) ≤ C

xb
near 0, for some C > 0 and b ∈ [0, (1− γ)/p).

For γ ∈ (0, 1/2), the following upper bounds hold.

‖W1(µ̃n, µ))‖p �

{
n−1/2 if b ≤ (2− γ(p + 2))/2p

n(pb+γ−1)/pγ if b > (2− γ(p + 2))/2p.

For γ ∈ [1/2, 1),
‖W1(µ̃n, µ))‖p � n(pb+γ−1)/pγ .

Rem. In the bounded case (b = 0) all these bounds are optimal, see
Gouëzel and Melbourne (2014) and a recent work with H. Dehling and M.
Taqqu (2015).
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8. About the proof of the CLT

Let Yk(t) = 1Xk≤t − F (t), and Sn(t) =
∑n

k=1 Yk(t). We want to prove
that

√
nSn converges in L1(dt) to a Gaussian random variable G .

We follow Gordin’s approach (1971). Let Ei (·) be the conditional
expectation with respect to Fi = σ(Xj , j ≤ i). Assume that

∞∑
k=1

∫
‖E0(Yk(t))‖1 dt <∞ . (16)

Let

Di (t) =
∞∑
k=i

(
Ei (Yk(t))− Ei−1(Yk(t))

)
and Mn(t) =

n∑
k=1

Dk(t) .

Then

lim
n→∞

∫ ∥∥∥∥Sn(t)√
n
− Mn(t)√

n

∥∥∥∥
1

dt = 0 . (17)
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It remains to prove the CLT in L1(dt) for the martingale Mn. By de
Acosta et al. (1978), it is enough to prove that∫

‖D0(t)‖2 dt <∞ . (18)

Assume moreover that

C (t) = lim inf
n→∞

1√
n
E(|Sn(t)|) <∞ and

∫
C (t) dt <∞ . (19)

From (16), we also have that

lim inf
n→∞

‖Mn(t)‖1√
n

= lim inf
n→∞

‖Sn(t)‖1√
n

. (20)

From (20) and (19), it follows that,

C (t) = lim inf
n→∞

‖Mn(t)‖1√
n

<∞ .
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Applying Theorem 1 in Esseen and Janson (1985), we deduce that,

‖D0(t)‖2 =

√
π

2
C (t) . (21)

From (21), we see that (19) implies (18), and the CLT for Mn follows.

It remains to check (16) and (19). The condition (16) follows easily from
(11). Now,

C (t) ≤ L(t) =

√√√√Var(Y0(t)) + 2
∞∑
k=1

|Cov(Y0(t),Yk(t))| ,

and

L(t) ≤

√√√√ ∞∑
k=0

2 min{α1,X(k),B(t)} ,

where B(t) = F (t)(1− F (t)). This proves that (11) implies (19), and the
proof is complete.
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- S. Gouëzel, I. Melbourne (2014), Moment bounds and concentration inequalities

for slowly mixing dynamical systems. EJP.
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