Memory parameter	Wavelet-based estimator	First properties	Asymptotical behavior	Numerical experiments	Bibliography
000	00000	00	00000000000	0000000	000000

Large scale reduction principle Joint works with F. Roueff, M.S. Taqqu and C. Tudor

Large scale reduction principle Joint works with F. Roueff, M.S

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography •00 00000 00000000000 00000000000 0000000000 0000000000

Memory parameter of a time series

- X = {X_t}_{t∈Z} : centered stationary time series with unit variance and spectral density f.
- d_X memory parameter of X (Hurvich et al. 1995) if

$$f(\lambda) \underset{\lambda=0}{\sim} |\lambda|^{-2d_X}$$

- X : long memory process if 0 < d_X < 1/2, short memory process if d_X = 0, negative memory process if d_X < 0.
- Extension to the case where Δ^KX stationary for K ≥ 1 considering the generalized spectral density of X

$$f(\lambda) = |1 - e^{-i\lambda}|^{-2\kappa} f_{\Delta^{\kappa}X}(\lambda) \;.$$

- FARIMA model : Δ^dX_ℓ = ξ_ℓ with Δ^d fractional differentiation operator of order d ∈ (-1/2, 1/2) and (ξ_t) iid N(0, 1). Stationary time series with memory parameter d_X = d.
- $\{B_H(k)\}_{k\in\mathbb{Z}}$ discretized version of usual FBM $\{B_H(t)\}_{t\in\mathbb{R}}$ with Hurst index $H \in (0, 1)$. Memory parameter $d_{B_H} = H + 1/2$.

- Estimation of the memory parameter of a non linear time series of the form G(X), X Gaussian time series.
- Statistical properties and asymptotical behavior of the estimator.
- Application to hypothesis testing.

- Compactly supported MRA defined from φ, ψ ∈ L²(ℝ) compactly supported.
- ψ : function admitting *M* vanishing moments.
- Wavelet coefficients of $F \in L^2(\mathbb{R})$

$$W_{j,k}^{(F)} = \int_{\mathbb{R}} F(t)\psi_{j,k}(t) \mathrm{d}t, \ ext{with} \ \psi_{j,k}(t) = 2^{-j/2}\psi(2^{-j}t-k) \ .$$

Wavelet expansion of F in L²(ℝ) : F = ∑_{(j,k)∈ℤ²} W^(F)_{j,k}ψ_{j,k}.
Case X time series? x(t) = ∑_ℓ X_ℓφ(t − ℓ) and

$$W_{j,k}^{(X)} = \int_{\mathbb{R}} \mathbf{x}(t) \psi_{j,k}(t) dt = \sum_{\ell} h_{j,2^{j}k-\ell} X_{\ell} = (h_{j,\cdot} \star X)_{2^{j},k}$$

with $h_j(m) = \int_{\mathbb{R}} \phi(t+m) \psi_{j,0}(t) dt$.

- FBM case $\{B_H(t)\}$ with Hurst index *H*, variance of wavelet coefficients related to $d_{B_H} = H + 1/2$.
- *H*-self-similarity

$$\mathbb{E}[|W_{j,k}^{B_{H}}|^{2}] = C2^{2j(H+1/2)} = C2^{2jd_{X}}$$

• Gaussian or linear time series X

$$\mathbb{E}[|W^X_{j,k}|^2] \sim \mathcal{C}(f^*(0),d) 2^{2jd_X}$$
 as $j o \infty$.

・ 回 と ・ ヨ と ・ ヨ と

- X_1, \ldots, X_N sample of the time series X with memory parameter d_X .
- Empirical variance of the wavelet coefficients at scale *j*

$$\hat{\sigma}_{N,j} = \frac{1}{n} \sum_{k=0}^{n-1} \left(W_{j,k}^{(X)} \right)^2 \,,$$

with $n \sim N2^{-j}$ number of coefficients available at scale *j*.

• Expected result $\hat{\sigma}_{N,j} \sim \mathbb{E}[|W_{j,k}^X|^2] \sim C(f^*(0), \psi) 2^{2jd_X}$ as $N, j \to \infty$

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography A wavelet based estimator

The estimator of Abry–Veicht (1998)

Wavelet estimator

$$\hat{d}_{N,j}(X) = \sum_{i=0}^{p} w_i \log \hat{\sigma}_{N,j+i}^2$$

with w_0, \ldots, w_p s.t. $\sum_{i=0}^{p} w_i = 0$ and $\sum_{i=0}^{p} iw_i = 1/(2 \log 2)$.

Gaussian/linear case :
 *^ˆ*_{N,j} and *^ˆ*_{N,j} both satisfying a CLT
 (Moulines–Roueff–Taqqu (2007), Roueff–Taqqu (2009)). This
 means that under mild assumptions

$$(N2^{-j})^{1/2}(\hat{d}_{N,j}(X) - d_X)$$

admits a Gaussian limit U_1 which can be given explicitly.

- Non linear case? Estimation of the memory parameter using Fourier-based estimator (Dalla et al, 2006).
- Asymptotic behavior of the Abry–Veicht estimator known in the Rosenblatt case (Bardet–Tudor, 2010) using stochastic calculus.
- Extension to the general non linear case using the Abry–Veicht estimator.

- X Gaussian centered stationary time series with memory parameter d_X , Y = G(X) with G non linear function.
- Memory parameter of Y?
- Depends on d_X and on the Hermite expansion of G

$$G=\sum_q c_q H_q \; ,$$

where $\sum_{q} c_q^2/q! < +\infty$, H_q *q*-th Hermite polynomial.

- Hermite rank of $G q_0 = \min\{q, c_q \neq 0\}$.
- Memory parameter of $Y : \delta(q_0) = d_X q_0 (q_0 1)/2$ (Dalla et al. 2006).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

We apply wavelet–based estimation to Y = G(X)

Theorem (Clausel et al., 2015) General case Y = G(X)Let (j_N) increasing sequence s.t. $\lim_{N\to\infty} N2^{-j_N} = \infty$. Suppose that $M \ge K + \delta(q_0)$. Then, as $N \to \infty$, $\hat{d}_{N,i_N}(Y) \stackrel{(P)}{\to} d_Y = \delta(q_0)$.

▲ □ ▷ < @ ▷ < 클 ▷ < 클 ▷ = ④ < ④</p>
Large scale reduction principle Joint works with F. Roueff, M.S

Asymptotical properties of the wavelet-based estimator Some questions

Memory parameter Wavelet-based estimator First properties Asymptotical behavior

- Consistency not sufficient in view of statistical applications as hypothesis testing.
- Convergence rate and asymptotical behavior of the estimator?
- Reduction principle true for the wavelet coefficients (Clausel et al., 2012). For Y = G(X) with $G = c_{q_0}H_{q_0}/q_0! + \cdots$

$$W_{j,k}^{(Y)} \approx W_{j,k}^{(c_{q_0}H_{q_0}(X)/q_0!)}$$

Does d̂_{N,j}(Y) satisfy the reduction principle? If such the case, for Y = G(X) with

$$G=c_{q_0}H_{q_0}/q_0!+\cdots$$

then $\hat{d}_{N,j}(Y)$ behaves as $\hat{d}_{N,j}(c_{q_0}H_{q_0}(X)/q_0!)$ as $N, j \to \infty$ • Behavior of $\hat{d}_{N,j}(c_{q_0}H_{q_0}(X)/q_0!)$?

Numerical experiments Bibliography

 $\begin{array}{c} \mbox{Memory parameter}\\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0$

Theorem (Clausel et al., 2014) Case $Y = H_{q_0}(X)/q_0!$, $q_0 \ge 2$

Assume $M \ge K + \delta(q_0)$. As $N \to \infty$, if j = j(N) is such that $j \to \infty$ and $N2^{-j} \to \infty$, then

$$\hat{d}_{N,j}(Y) = d_Y + (N2^{-j})^{2d_X - 1} O_P(1) + O\left(2^{-\tilde{eta}j}\right)$$

where $\tilde{\beta}$ is related to the smoothness at 0 of $f^*(\lambda) = |\lambda|^{2d_X} f(\lambda)$. Moreover the O_P -term converges in distribution to a Rosenblatt variable U_2 .

Asymptotical properties of the wavelet–based estimator Hint of the proof (1)

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography

• Harmonizable representation of X

$$X_\ell = \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\lambda\ell} f^{1/2}(\lambda) \mathrm{d}\widehat{W}(\lambda) \; ,$$

- $Y_{\ell} = c_{q_0} H_{q_0}(X_{\ell})/q_0!$ multiple stochastic integral of order q_0 .
- $W_{i,k}^{(Y)}$ linear in Y : multiple stochastic integral of order q_0 .
- Centered empirical variance? Need to estimate

$$\frac{1}{n} \sum_{k=0}^{n-1} [W_{j,k}^{(Y)}]^2 - \mathbb{E}\left[\frac{1}{n} \sum_{k=0}^{n-1} [W_{j,k}^{(Y)}]^2\right]$$

• Product formula for multiple stochastic integrals applied to the multiple stochastic integral $W_{j,k}^{(Y)}$

 \Rightarrow decomposition into Wiener chaos of the centered empirical variance

$$\hat{\sigma}_{N,j} - \mathbb{E}[\hat{\sigma}_{N,j}] = \sum_{q=1}^{q_0} I_{N,j}^{(2q)}$$

with I_{2q} multiple integrals of order 2q.

• Dominating term $I_{N,j}^{(2)}$: Rosenblatt variable whose asymptotic variance is known

 \Rightarrow asymptotical behavior of the empirical variance and the estimator of the memory parameter using the delta method.

(ロ) (同) (E) (E) (E)

Asymptotical properties of the wavelet-based estimator A reduction principle?

- End of the story ?
 - We know the asymptotic limit of the estimator if $G = H_{q_0}$ in the two cases $q_0 = 1$ (Gaussian) and $q_0 \ge 2$ (Rosenblatt).

- If $G = c_{q_0}H_{q_0}/q_0! + \cdots$ and reduction principle true $d_{N,j}(Y) \approx d_{N,j}(c_{q_0}H_{q_0}(X)/q_0!)....$
- Unfortunately not so simple (Abry et al. 2011) !!
- The reduction principle may not hold....

Memory parameter Wavelet-based estimator First properties Asymptotical behavior

Numerical experiments Bibliography

Asymptotical properties of the wavelet-based estimator A counterexample for the reduction principle

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography

- Case Y = G(X) with $G = H_{q_0} + H_{q_0+1}$, $q_0 \ge 2$.
- $W_{j,k}^{(Y)} = W_{j,k}^{(q_0)} + W_{j,k}^{(q_0+1)}$ with $W_{j,k}^{(q)}$ in the *q*-th Wiener chaos for $q = q_0, q_0 + 1$.
- Product formula

$$[W_{j,k}^{(Y)}]^2 = [W_{j,k}^{(q_0)}]^2 + [W_{j,k}^{(q_0+1)}]^2 + 2W_{j,k}^{(q_0)}W_{j,k}^{(q_0+1)}$$

• If reduction principle true

$$\frac{1}{n} \sum_{k=0}^{n-1} [W_{j,k}^{(Y)}]^2 \approx \frac{1}{n} \sum_{k=0}^{n-1} [W_{j,k}^{(q_0)}]^2$$

Statistical properties of the wavelet-based estimator A counterexample for the reduction principle

• If $N \ll 2^{2j}$, the sum

$$1/n\left(\sum_{k=0}^{n-1} [W_{j,k}^{(q_0)}]^2\right)$$

is dominating in the empirical variance and the reduction principle holds.

• Unfortunately, if $2^{2j} \ll N$, the sum

Memory parameter Wavelet-based estimator First properties Asymptotical behavior

$$1/n\left(\sum_{k=0}^{n-1}W_{j,k}^{(q_0)}W_{j,k}^{(q_0+1)}
ight)$$

is dominating and the reduction principle does not hold !! • Extension to the case $G = H_{q_0} + H_{q_{\ell_0}} + H_{q_{\ell_0}+1}$. The reduction principle holds or not depending whether $N \ll 2^{j(\nu+1)}$ or $2^{j(\nu+1)} \ll N$ with $\nu = 2q_{\ell_0} + 1 - 2q_0$.

Numerical experiments

Bibliography

Statistical properties of the wavelet-based estimator A counterexample for the reduction principle

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography

- General case (Clausel et al. 2013) . Maybe complicated : limit may be Gaussian, Rosenblatt or Hermite and the rate of convergence of the estimator can be different !
- Depends on the value of ν such that N ~ 2^{j(ν+1)} with respect to some critical indices depending on the whole function G....
- Sufficient conditions for the reduction principle to hold?

Statistical properties of the wavelet–based estimator Sufficient conditions for the reduction principle

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography

Theorem

Assume $M \ge K + \delta(q_0)$. There exists some critical index ν_c which can be defined explicitly and depends only on G, d_X , such that if $N \ll 2^{j(\nu_c+1)}$, the reduction principle holds as $j, N \to \infty$.

In some cases this critical index is very simple.

• *G* even :
$$\nu_c = \infty$$
.

• $q_0 \ge 2$ and there is two LRD terms in the Hermite expansion of G

$$\nu_c = 1 + 2(q_{\ell_0} - 2q_0)$$

(ロ) (同) (E) (E) (E) (O)

- Definition of a statistical test procedure which applies to a general *G*.
- Let d_0^* : possible value for the true unknown memory parameter d_Y of Y.
- Hypotheses

$$H_0: d_Y=d_0^* \quad ext{against} \quad H_1: d_Y \in ig(0, ar{K}+1/2ig) \setminus \{d_0^*\}.$$

Statistical properties of the wavelet-based estimator Application to hypothesis testing

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments

- $\alpha \in (0,1)$ be a significance level.
- Statistical test

$$\delta_{s} = \begin{cases} 1 & \text{if } |\hat{d}_{0} - d_{0}^{*}| > s_{N}(\alpha), \\ 0 & \text{otherwise.} \end{cases}$$
(1)

where $s_N(\alpha)$ is the $(1 - \alpha/2)$ quantile of $U_1/(N2^{-j})^{1/2}$ or $U_1/(N2^{-j})^{1/2}$ depending on the Hermite rank of G.

Bibliography

Statistical properties of the wavelet-based estimator Application to hypothesis testing

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography

000000000000

The constant ζ is a constant depending on the behavior of $f(\lambda)|\lambda|^{2d}$ at $\lambda = 0$.

Theorem

Let $i = (i_N)$ s.t. $N2^{-j} \to \infty$ holds, $M > K + \delta(q_0)$. Suppose moreover that, as $N \to \infty$.

$$N2^{-j} \ll 2^{j\nu_c^*},$$

and that

$$2^{-\zeta j} \ll u_N^{-1},$$

with $u_N = (N2^{-j})^{1/2}$ if $q_0 = 1$, $u_N = (N2^{-j})^{1-2d_X}$ otherwise. Then, the test δ_s is a consistent test with asymptotic significance level α .

э

Numerical experiments

 X_t Gaussian ARFIMA(0,d,0). Tests with two models

- Model 1 : $Y_t = H_1(X_t) + 1/(2\sqrt{3})H_3(X_t)$: $q_0 = 1$, $d_0 = d$ and $\nu_c = (1 - 2d)/(2d - 1/2)$
- Model 2 : $Y_t = 1/\sqrt{2}H_2(X_t) + 1/(2\sqrt{3})H_3(X_t)$, $q_0 = 2$, $d_0 = 2d - 1/2$ and $\nu_c = 1$

Monte-Carlo simulations involving 1000 independent draws of samples.

Numerical experiments Performances of the regression estimator

bias		std	MSE
d=0.3	-0.0338	0.0402	0.0028
d=0.325	-0.0878	0.1112	0.0201
d=0.35	-0.0368	0.0425	0.0032
d=0.375	-0.0363	0.0619	0.0051
d=0.4	-0.0513	0.1289	0.0192

TABLE: Model 1, $N = 2^{15}$.

Large scale reduction principle Joint works with F. Roueff, M.S

- 4 回 2 - 4 □ 2 - 4 □

æ

Memory parameter Wavelet-based estimator First properties Asymptotical behavior Numerical experiments Bibliography 00000000

Numerical experiments Performances of the regression estimator

	d_0	bias	std	MSE
d=0.35	0.2	-0.0302	0.0811	0.0075
d=0.375	0.25	-0.0722	0.1026	0.0157
d=0.4	0.3	-0.0462	0.0891	0.0101
d=0.425	0.35	-0.0455	0.0831	0.0090
d=0.45	0.4	-0.0409	0.0856	0.0090

TABLE: Model 2, $N = 2^{15}$.

イロト イポト イヨト イヨト Large scale reduction principle Joint works with F. Roueff, M.S.

 Memory parameter
 Wavelet-based estimator
 First properties
 Asymptotical behavior
 Numerical experiments
 Bibliography

 000
 00
 00
 00
 00
 00
 00
 00

Numerical experiments Finite sample performances of the test

d_0^*	0.3	0.325	0.35	0.375	0.4
$\alpha = 0.01$	0.0730	0.0700	0.0930	0.0730	0.0590
$\alpha = 0.05$	0.1780	0.1840	0.1830	0.1590	0.1530
$\alpha = 0.1$	0.2630	0.2460	0.2620	0.2390	0.2150

TABLE: Rejection rates under H_0 for different values of d_0^* and α for Model 1 with $N = 2^{15}$.

In case of Model 2, asymptotic limit may be difficult to deal with ! \Rightarrow bootstrap–like strategy

- Pick *m* sub-samples of the original time series of 2^{N-L} consecutive observations, randomly with replacement.
- For $\ell = 1, ..., m$, compute an estimator $\hat{d}_0(\ell)$ based on the ℓ th sub-sample (with the same j and weights w_i as for \hat{d}_0).
- Compute the empirical variance \hat{v}_L of the sample $\hat{d}_0(\ell)$, $\ell = 1, \ldots, m$ obtained in previous step and set the empirical variance of the full sample estimate \hat{d}_0 to $\hat{v} = 2^{-L(1-2d_0^*)}\hat{v}_L$.

Numerical experiments Finite sample performances of the test

d_0^*	0.15	0.2	0.25	0.3	0.35	0.4
$\alpha = 0.01$	0.4210	0.3230	0.3860	0.4470	0.4250	0.4250
$\alpha = 0.05$	0.5110	0.4280	0.4770	0.4840	0.4580	0.4450
$\alpha = 0.1$	0.5760	0.4970	0.5290	0.5430	0.4980	0.4820

TABLE: Rejection rates under H_0 for different values of d_0^* and different levels α for Model 2 ($N = 2^{15}$).

- 4 回 2 - 4 □ 2 - 4 □

Numerical experiments Finite sample performances of the test

FIGURE: ROC curves for Model 1 and $d_0^* = 0.4$ for three data sets : $d_0 = 0.3$ (blue top curve), $d_0 = 0.325$ (green middle curve), $d_0 = 0.35$ (red bottom curve). $N = 2^{15}$.

æ

Numerical experiments Finite sample performances of the test

FIGURE: ROC curves for Model 2 and $d_0^* = 0.3$ for three data sets : $d_0 = 0.15$ (red top curve), $d_0 = 0.2$ (blue middle curve), $d_0 = 0.25$ (green bottom curve). $N = 2^{15}$.

æ

- G.W.Wornell, A.V.Oppenheim, Estimation of fractal signals from noisy measurements using wavelets. IEEE SP. (1992).
- C.M.Hurvich, B.K. Ray, Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. JTSA (1995).
- P. Abry, D. Veitch, Wavelet analysis of long-range-dependent traffic. IEEE TIT (1998).
- J.M.Bardet, Statistical study of the wavelet analysis of fractional Brownian motion. IEEE TIT (2002).
- V.Dalla, L.Giraitis, J. Hidalgo, Consistent estimation of the memory parameter for nonlinear time series. JTSA (2006).

- E. Moulines, F. Roueff, M. S. Taqqu. On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. JTSA (2007).
- F. Roueff, M. S. Taqqu. Central limit theorems for arrays of decimated linear processes. SPA (2009).
- J.M. Bardet, C. A. Tudor. A wavelet analysis of the Rosenblatt process : chaos expansion and estimation of the self-similarity parameter. SPA (2010)
- P.Abry, H.Helgason, V. Pipiras. Wavelet-based analysis of non-Gaussian long-range dependent processes and estimation of the Hurst parameter. Lith. Math. J. (2011).

◆□> ◆□> ◆目> ◆目> ◆日 ● の へ ④

- M. Clausel, F. Roueff, M.S. Taqqu, C. Tudor, Large scale behavior of wavelet coefficients of non–linear subordinated processes with long memory. ACHA (2012).
- M. Clausel, F. Roueff, M.S. Taqqu, C. Tudor, High order chaotic limits of wavelet scalograms under long-range dependence. ALEA (2013).
- M. Clausel, F. Roueff, M.S. Taqqu, C. Tudor, Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes. ESAIM P.S.(2014)
- M. Clausel, F. Roueff, M.S. Taqqu, Large scale reduction principle and application to hypothesis testing. EJS (2015)

The critical exponent is

$$\nu_{c} = \begin{cases} \infty, \text{ if } \mathcal{L} = \{0\} \text{ or if } q_{0} = 1, \ d \leq 1/4 \text{ and } l_{0} = \emptyset, \\ \frac{d+1/2-2\delta_{+}(q_{\ell_{0}})}{d}, \text{ if } q_{0} = 1, \ d \leq 1/4 \text{ and } l_{0} \neq \emptyset, \\ \frac{1-2\delta_{+}(q_{1}-1)}{2d-1/2}, \text{ if } q_{0} = 1, \ d > 1/4, \ 1 \in \mathcal{L} \text{ and } J_{d} = \emptyset, \\ \min\left(\frac{1-2\delta_{+}(q_{1}-1)}{2d-1/2}, \frac{2d+1/2-2\delta_{+}(q_{\ell_{r}})-\delta(r+1)}{\delta(r+1)} : r \in \mathcal{I}_{r}\right), \\ \text{ if } q_{0} = 1, \ d > 1/4 \text{ and } J_{d} \neq \emptyset, \\ \infty, \text{ if } q_{0} \geq 2 \text{ and } l_{0} = \emptyset, \\ 1 + \frac{4(\delta(q_{0}) - \delta_{+}(q_{\ell_{0}}))}{1-2d}, \text{ if } q_{0} \geq 2 \text{ and } l_{0} \neq \emptyset. \end{cases}$$

Finite sample performances of the test

FIGURE: Rejection rates as a function of d_0 for two data sets : $(X_t)_{1 \le t \le N}$ (blue bottom curve), Model 1 (red top curve), $d_0^* = 0.4$, $N = 2^{15}$.

Finite sample performances of the test

FIGURE: Rejection rates as a function of d_0 for two data sets : $(H_2(X_t))_{1 \le t \le N}$ (blue bottom curve), Model 2 (red top curve), $d_0^* = 0.3$, $N = 2^{15}$.

- 4 回 2 - 4 □ 2 - 4 □