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Introduction

Historical recall on some stochastic models

Stochastic model tries to better fit real datasets

Brownian motion (H = 1/2)
Einstein 1905, Bachelier 1901, Wiener 1930 . . .

Fractional Brownian motion (0 < H < 1)
Kolmogorov 1940, Mandelbrot 1968.

Multifractional Brownian motion (H(t) is time-varying)
Benassi, Jaffard, Roux 1997, Peltier, Levy-Vehel 1996, . . .

Different generalisations motivated by specific applications
Many references since 2000.
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Introduction

Future ?

Stochastic model tries to better fit real datasets

Brownian motion (H = 1/2)

Fractional Brownian motion (H 6= 1/2)

Multifractional Brownian motion (H(t) is time-varying)

Different generalisations motivated by specific applications

What next ?

Multifractional Brownian motion with a Hurst index H(t,ω) being
itself a stochastic process ?

A parcimonious model ?
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Introduction

A statistical artifact
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Linear Regression GQV Estimator Y (Fraclab)

FIGURE: We have simulated a fBm with constant Hurst index H = 0.7 and
estimated it as a time-varying Hurst index Ĥ(t)
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Fractional Brownian motion and multifractional Brownian motion

Recall on fractional Brownian motion

The fractional Brownian motion (fBm), with Hurst index H and
variance σ2, is a zero mean Gaussian process with covariance

RH(t1, t2) = cov
(
X(t1), X(t2)

)
=

1
2

σ
2 {|t|2H + |s|2H−|t− s|2H} .

The Hurst index H ∈]0, 1[.

When H = 1/2 et σ = 1, B1/2 is a standard Brownian motion.
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Fractional Brownian motion and multifractional Brownian motion

Fractional Brownian motion
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Une trajectoire de 10000 points d’un MBF de parametre 0.3

FIGURE: We have simulated a path of fBm with constant Hurst index H = 0.3

PR BERTRAND - ME DURY (Clermont Auvergne U.) Overfitting Hurst index February 17th, 2016 8 / 31



Fractional Brownian motion and multifractional Brownian motion

The Hurst index H drives 3 properties :

1 Pathwise regularity ∀t, α∗(t) = H a.s. where

α
∗(t) = sup

{
α, limsuph→0

|X(t + h)−X(t)|
hα

= 0

}
2 Self-similarity :

(BH(λt))t∈IR
(d)
=
(
λ

H BH(t)
)

t∈IR .

3 Correlation of the increments :

r(n) = cov (X(n + 1)−X(n), X(1)−X(0)) .

If H > 1/2, then ∑
+∞

k=−∞
|r(k)|= ∞ (Long memory)
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Fractional Brownian motion and multifractional Brownian motion

Three representations of fBm

1 Moving average representation (Mandelbrot & Van Ness, 1968)

BH(t) = C
∫ +∞

−∞

[
(t− s)

H−1/2
+ − (−s)

H−1/2
+

]
dWs.

2 Harmonisable representation (Kolmogorov, 1940)

BH(t) =
∫

IR

(
eitξ−1

)
×|ξ|−(H+1/2) Ŵ (dξ)

where Ŵ (dξ) is the Fourier transform of the Wiener measure
W (dx).
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Fractional Brownian motion and multifractional Brownian motion

Wavelet series expansion of fBm

1 Wavelet series expansion (Meyer, Sellan, Taqqu, 1999)

B(t,H) =
∞

∑
j=−∞

∞

∑
k=−∞

2−jH
εj,k

{
Ψ(2j t− k ,H)−Ψ(−k ,H)

}
, (1)

where
(
εj,k
)
(j,k)∈Z2 is a family of independent Gaussian random

variables N (0,1) ;
{2j/2ψ(2jx− k) : (j,k) ∈ Z2} is a Lemarié-Meyer wavelet basis ;
and

Ψ(x ,H) =
∫

IR
eixξ ψ̂(ξ)

|ξ|H+1/2
dξ. (2)

The convergence of the series is uniform on every compact subset
I×K ⊂ (0,1)× IR, almost surely (Ayache & Taqqu, 2003).
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Fractional Brownian motion and multifractional Brownian motion

Recall on multifractional Brownian motion

The multifractional Brownian motion (mBm) can be seen as a
generalisation of the fBm

The Hurst index 0 < H < 1 is replaced by a time-varying function
t 7→ H(t)

X(t) = B(t,H(t))

where B(t,H) := BH(t) is the wavelet series expansion of fBm, or
another representation.
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Fractional Brownian motion and multifractional Brownian motion

Applications in many fields

Models with a time-varying Hurst index can be encountered in many
different fields

In turbulence (see Papanicolaou and Solna, 2002) : the mBm with
a regularly time-varying Hurst index is used for the air velocity.

In statistical study on magnetic dynamics (see Wanliss and
Dobias, 2007) : an abrupt change in Hurst index can be observed
before a space storm in solar wind.
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Fractional Brownian motion and multifractional Brownian motion

Behavioural economics. . .

Economic point of view is developed by Bianchi (2005) – Bianchi,
Pantanella, Pianese (2015).

Periods with significantly Hurst index H 6= 1/2 (independence of
the increments = efficiency of the market) can be explained by
behavioural economics :

1 H(t) < 1/2 [increments negatively correlated] :
the market is not confident in the past and it overreacts to new
informations.

2 H(t) > 1/2 [increments positively correlated] :
the market is too confident in the past and it underreacts to new
informations.

In behavioural finance, underreaction is due to overconfidence of
investors.
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Fractional Brownian motion and multifractional Brownian motion

. . .against mainstream Finance

Arbitrage opportunity for fBm is possible when the Hurst index H is
constant and known by advance without transaction costs (Rogers
1997, Shyriaev 1998).

However, arbitrage with fBm does no more exist with transaction
costs (Cheridito 2003, Guasoni, 2006).

Moreover, arbitrage opportunity is not possible for a stochastic
Hurst index, even without transaction costs.
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Estimating the Hurst index for fBm or mBm

Estimating Hurst index

Let X be a fBm or a mBm. We observe one path of size n of the
process X with mesh hn = 1

n , namely
(
X(0),X(t1), . . . ,X(tn)

)
.

The standard method for estimating a time-varying Hurst index for
mBm is to localise the estimation of a constant Hurst index on a
small vicinity of each time t , namely on

V (t,εn) =
{

tk such that |tk − t| ≤ εn
}
,

where εn = n−α, with 0 < α < 1. Thus

εn→ 0 and
εn

hn
→ ∞ as n→ ∞.
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Estimating the Hurst index for fBm or mBm

Overfitting of localized estimator

Localization of Hurst index estimation implies overfitting as stated by the
functional CLT of Coeurjolly (2005) for the GQV estimator Ĥn(t) :

Theorem (Coeurjolly, 2005–2006)

If t 7−→ H(t) is regular enough, then Ĥn(t)−→ H and

√
2εn ·n×

(
Ĥn(t)−H(t)

)
−→(L) G′(t)

where G′(t) a zero mean Gaussian process, with covariance structure :

var(G′(t)) = γ(H(t)) for all t ∈ (0,1),

cov(G′(t1),G′(t2)) = 0 with (t1, t2) ∈ (0,1)2 for t1 6= t2,
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Estimating the Hurst index for fBm or mBm

Technical details

Assume 0 < H(t) < 1 where H ∈ C β
(
[0,1],(0,1)

)
, with β > 0.

X = BH(t) is a mBm observed at times (tk = k/n)k=1,...,n.

the Generalized Quadratic Variation associated to the filter
a = (1;−2;1) is

Vn(t,a) :=
1
vn

∑
tk∈V (t,εn)

∣∣X(tk )−2X(tk−1) + X(tk−2)
∣∣2.

The estimator is

Ĥn(t) =
At

2AAt

(
ln(Vn(t,a)

)
j=1,...,M

.
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Estimating the Hurst index for fBm or mBm

Technical details (continued)

The variance of G′(t) is

γ(H) =

(
1

πa
H(0)2 ∑

k∈Z
π

a
H(k)2

)
× At(UU t)A

4‖A‖4 (3)

where

π
a
H(k) := −1

2

2

∑
q=0

2

∑
q′=0

aq aq′ |q−q′+ k |2H ,

A is the row vector Aj = ln(j)− 1
M

M

∑
ν=1

ln(ν) for j = 1, . . . ,M and

U = (1, . . . ,1).
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Estimating the Hurst index for fBm or mBm

Explanation of the statistical artifact

In this covariance structure, we have

cov(G′(t1),G′(t2)) = 0

for all (t1, t2) ∈ (0,1)2 such that t1 6= t2. This explains the statistical
artifact
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Estimating the Hurst index for fBm or mBm

Illustration by Fig.1 p.1022 in Bardet-Surgailis,
SPA (2013).
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Estimates of the function H4(t) = 0.1+0.8(1− t)sin2(10t) with t ∈ (0,1) for n = 6000 and α = 0.3 and
α = 0.4 (from left to right). The top row represents the mean trajectories of Ĥ(t) and H(IR2)(t) the localized
IRS estimator obtained from 100 independent replications of MBM with the above function H(·).
The bottom row represents a trajectory of of Ĥ(t) and H(IR2)(t) obtained from one trajectory of MBM with
the above function H(·). The graphs of H(t), Ĥ(t) and H(IR2)(t) are in black, blue and red, respectively.
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Estimating the Hurst index for fBm or mBm

Fig.2 p.1023 in Bardet-Surgailis, SPA (2013).
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Trajectories of Ĥ(t) and H(IR2)(t) for one of the 50 differentiable Hurst
functions H(·) ∈ C 1.5− for n = 6000 and α = 0.3 and α = 0.4 (from left
to right).

For α = 0.3, we have 2εn = 882×hn.
For α = 0.4, we have 2εn = 370×hn.

The graphs of H(t), Ĥ(t) and H(IR2)(t) are in black, blue and red,
respectively.
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Fitting test of time-varying Hurst index

Convergence of the normalized square error

From the previous functional CLT, we deduce the convergence of
normalized square error

lim
n→∞

IE

[
1
n

n

∑
k=1
|Ĥn(tk )−H(tk )|2

]
=

∫ 1

0
γ
(
H(t)

)
dt.

We also get the CLT

(2nεn)×
[

1
n ∑

n
k=1 |Ĥn(tk )−H(tk )|2

]
−

∫ 1
0 γ
(
H(t)

)
dt[(2

n

)
×

∫ 1
0 γ
(
H(t)

)2
dt
]1/2

D−→
N→∞

N (0,1),

where γ(H) is given by (3).
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Fitting test of time-varying Hurst index

A fitting test for time-varying Hurst index

We want to test if a time-varying Hurst index H̃(·) is an admissible
model, that is

(H0) : H̃(·) = H(·) versus (H1) : H̃(·) 6= H(·).

We use the test statistic

Tn(H̃) =
(2nεn)×

[
1
n ∑

n
k=1 |Ĥn(tk )− H̃(tk )|2

]
−

∫ 1
0 γ
(
H̃(t)

)
dt((2

n

)
×

∫ 1
0 γ
(
H̃(t)

)2
dt

)1/2
.
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Fitting test of time-varying Hurst index

A fitting test for time-varying Hurst index

Under the null hypothesis, we have

Tn(H̃)
D−→

N→∞
N (0,1).

On the other hand, we cannot calculate the power of the test since
H(·) ∈ C ([0,1]) which is an infinite dimensional vector space.
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Fitting test of time-varying Hurst index

1st application to model rejection

The naive time-varying estimator of the Hurst index could not be chosen
as a valid model. Let

H̃(t) = lim
n→∞

Ĥn(t)

Then

Tn(H̃(t)) '
−
∫ 1

0 γH̃(t)dt(
2
n

∫ 1
0 (γH̃(t))

2dt
)1/2

' −
√

n
2
×
‖γH̃(t)‖L1(]0;1[)

‖γH̃(t)‖L2(]0;1[)
−→ ∞ as n→ ∞

The null hypothesis (H0) is asymptotically rejected.
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Work in progress : selection of a sparse time-varying Hurst index for mBm

Application to model selection

Next idea :
Determine the simplest possible function H̃(t), that is eligible for the
test, to describe the theoretical Hurst index H(t)

This model selection is a kind of Portemanteau test :
1 M0 the family of constant models H̃(t) = H,

obtained as the empirical mean of Ĥn(tk ).
2 M1 the family of affine models H̃(t),

obtained by linear regression of Ĥn(tk ).
3 M2 the family of quadratic models H̃(t),
4 . . .
5 Mk the family of polynomial function of order k .

PR BERTRAND - ME DURY (Clermont Auvergne U.) Overfitting Hurst index February 17th, 2016 27 / 31



Work in progress : selection of a sparse time-varying Hurst index for mBm

Conclusion

1 We have explained the statistical artifact.

2 We propose a fitting test for admissible time-varying Hurst index
H(t).

3 Selection of the best model should be enhanced.
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Work in progress : selection of a sparse time-varying Hurst index for mBm

Thanks

Thank for your attention ...
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Work in progress : selection of a sparse time-varying Hurst index for mBm
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Work in progress : selection of a sparse time-varying Hurst index for mBm
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