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Statement of the problem

We observe
Xj = θj + σξj , j = 1, ..., d ,

where σ > 0, ξ1, ..., ξd i.i.d. standard Gaussian r.v. and we assume
that θ = (θ1, ..., θd) belongs to

Θd(s, a) =
{
θ ∈ Rd : there exists a set S ⊆ {1, . . . , d}

with s elements , such that |θj | ≥ a for all j ∈ S ,

and θj = 0 for all j 6∈ S} .

Here, a > 0 and s ∈ {1, . . . , d} are given constants.

Variable selection problem: estimate the binary vector
η = (η1, . . . , ηd) where

ηj = I (θj 6= 0).
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A selector η̂ = η̂(X1, . . . ,Xn) is a binary valued estimator in Rd :

η̂ = (η̂1, . . . , η̂d), η̂j ∈ {0, 1}.

Hamming loss of a selector η̂ = η̂(X1, . . . ,Xn) is

|η̂ − η| :=
d∑

j=1

|η̂j − ηj |.
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Two risk measures:

Hamming risk

Eθ
∣∣η̂ − η∣∣

Probability of wrong recovery

Pθ(Sη̂ 6= S(θ))

where S(θ) is the support of θ (and of η), and Sη̂ is the
support of η̂.
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Relation between the two risk measures:

Probability of wrong recovery is the ‘Hamming risk with an
indicator loss”:

Pθ(Sη̂ 6= S(θ)) = Pθ(|η̂ − η| ≥ 1)

since Sη̂ = {j : η̂j = 1} and S(θ) = {j : ηj(θ) = 1}.

By Markov inequality,

Pθ(Sη̂ 6= S(θ)) ≤ Eθ|η̂ − η|.
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Statistical questions:

1 Minimax estimation w.r.t. the Hamming risk

inf
η̃

sup
θ∈Θ

Eθ
∣∣η̃ − η∣∣

Θ = Θd(s, a) or

Θ = Θ+
d (s, a) = {θ ∈ Θd(s, a) : θj ≥ 0,∀j},

inf η̃ denotes the minimum over all selectors.

2 Minimax estimation w.r. to the prob. of wrong recovery

inf
η̃

sup
θ∈Θ

Pθ(Sη̃ 6= S(θ)).
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Further statistical question:

Adaptive estimation w.r.t. the Hamming risk and
to the Probability of wrong recovery:

adaptation to a and s.

Surprisingly: no answers known to questions about minimax
Hamming estimation, or adaptation to a and s for both risks.

Very rough results available about the minimax probability
of wrong recovery (in the regression/Lasso context):

If a ≥ Cσ
√

log d for C > 0 large enough, then there is a selector η̂
such that

sup
θ∈Θd (s,a)

Pθ(Sη̂ 6= S(θ))→ 0,

whereas no such selector exist if a < cσ
√

log d , for c > 0 small
enough (e.g., Wainwright, 2009).
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Bayesian setting

More is known about the Bayesian setting:

– Genovese, Jin, Wasserman, Yao (2012) JMLR,
– Ji, Jin (2012) Ann. Statist.

consider linear regression model with fixed and random covariates,
in a Bayesian setup with s ∼ d1−β, for some known β in (0, 1).

There is no class Θd(s, a) but θ is random with independent
components taking values 0 and ad with probabilities
1− sd/d and sd/d .

The setting is asymptotic, d →∞.

Hamming risk is used.

The results are about the properties of Exact recovery and
Almost full recovery:
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Bayesian setting (Genovese, Jin et al., 2012)

Exact recovery (Bayesian) is possible for if there exists a selector
η̂ such that

lim
d→∞

∫
Eθ|η̂ − η|dPθ = 0,

respectively it is impossible when

lim inf
d→∞

inf
η̃

∫
Eθ|η̃ − η|dPθ > 0.

Almost full recovery (Bayesian) is possible if there exists a
selector η̂ such that

lim
d→∞

1

sd

∫
Eθ|η̂ − η|dPθ = 0.

respectively, almost full recovery is impossible if

lim inf
d→∞

inf
η̃

1

sd

∫
Eθ|η̃ − η|dPθ > 0.
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Minimax setting

Exact recovery (minimax) is possible for (Θd(sd , ad))d≥1 if there
exists a selector η̂ such that

lim
d→∞

sup
θ∈Θd (sd ,ad )

Eθ|η̂ − η| = 0,

respectively it is impossible when

lim inf
d→∞

inf
η̃

sup
θ∈Θd (sd ,ad )

Eθ|η̃ − η| > 0.

Almost full recovery (minimax) is possible for (Θd(sd , ad))d≥1 if
there exists a selector η̂ such that

lim
d→∞

sup
θ∈Θd (sd ,ad )

1

sd
Eθ|η̂ − η| = 0.

respectively, almost full recovery is impossible if

lim inf
d→∞

inf
η̃

sup
θ∈Θd (sd ,ad )

1

sd
Eθ|η̃ − η| > 0.
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Ingster, Stepanova (2014) J. Mathem Sciences, B. and
Stepanova (2015)

Gaussian white noise model, smoothness classes of θ, adaptive
exact and almost full recovery.

Hamming loss was also considered e.g. in

Neuvial, Roquain (2012) Ann. Statist.: oracle inequalities for
multiple classification under sparsity;

Zhang, Zhou (2015): community detection in stochastic block
models. Exact recovery for minimax Hamming risk.
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Non-asymptotic minimax selection bounds

Define the selector

η̂j = I (|Xj | ≥ t), j = 1, . . . , d , (1)

where the threshold is defined by

t =
a

2
+
σ2

a
log

(
d

s
− 1

)
. (2)

The selector is not of the form I (|Xj | ≥ Cσ
√

log d) !

On the positive valued set Θ+
d (s, a), we define the selector

η̂+
j = I (Xj ≥ t), j = 1, . . . , d , (3)

with t as in (2).
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Theorem 1 - Non-asymptotic minimax
Hamming risk

(i) For any a > 0 and s < d we have:

sup
θ∈Θd (s,a)

1

s
Eθ|η̂ − η| ≤ 2Ψ(d , s, a),

sup
θ∈Θ+

d (s,a)

1

s
Eθ|η̂+ − η| ≤ Ψ+(d , s, a).

(ii) Moreover,

inf
η̃

sup
θ∈Θ+

d (s,a)

1

s
Eθ|η̃ − η| ≥ Ψ+(d , s, a),

where inf η̃ denotes the infimum over all selectors η̃ (not
necessarily separable).
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The minimax constants are:

Ψ(d , s, a) =

(
d

s
− 1

)
Φ

(
− a

2σ
− σ

a
log
(d
s
− 1
))

+Φ

(
−
( a

2σ
− σ

a
log
(d
s
− 1
))

+

)
,

Φ(·) denotes the standard Gaussian cumulative distribution
function, and x+ = max(x , 0),

Ψ+(d , s, a) =

(
d

s
− 1

)
Φ

(
− a

2σ
− σ

a
log
(d
s
− 1
))

+Φ

(
−
( a

2σ
− σ

a
log
(d
s
− 1
)))

.

Note that Ψ(d , s, a) ≤ Ψ+(d , s, a).
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Proof

Upper bound (case of Θ+
d (s, a)):

|η̂+ − η| =
∑
j :ηj=0

I (ξj ≥ t) +
∑
j :ηj=1

I (σξj + θj < t),

and
E (I (σξj + θj < t)) ≤ P(ξ < (t − a)/σ).

Thus, for any θ ∈ Θ+
d (s, a),

1

s
Eθ|η̂+ − η| ≤

(
d

s
− 1

)
P(ξ ≥ t/σ) + P(ξ < (t − a)/σ)

= Ψ+(d , s, a).
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Proof: Lower bound

Reduction to separable estimators η̄j with values in [0,1].

Decomposition in element-wise testing problems:

sup
θ∈Θ+

d (s,a)

1

s

d∑
j=1

Ej ,θj |η̄j − ηj | ≥

≥ d

s
inf

T∈[0,1]

((
1− s

d

)
E0(T ) +

s

d
Ea(1− T )

)
where Eu is the expectation with respect to the distribution of
X = u + σξ with ξ ∼ N (0, 1).

Bayes solution is the test (ϕ = density of N (0, 1))

T ∗(X ) = I

(
(s/d)ϕσ(X − a)

(1− s/d)ϕσ(X )
> 1

)
which results in the risk Ψ+(d , s, a).
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Theorem 2 - Probability of wrong recovery

For any a > 0 and s < d the selectors η̂ and η̂+ with the threshold
t defined in (2) satisfy

sup
θ∈Θ+

d (s,a)

Pθ(Sη̂+ 6= S(θ)) ≤ sΨ+(d , s, a),

and
sup

θ∈Θd (s,a)
Pθ(Sη̂ 6= S(θ)) ≤ 2sΨ(d , s, a).

Furthermore,

inf
η̃∈T

sup
θ∈Θ+

d (s,a)

Pθ(Sη̃ 6= S(θ)) ≥ sΨ+(d , s, a)

1 + sΨ+(d , s, a)

where inf η̃∈T denotes the infimum over all separable selectors η̃.
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Phase transitions

Theorem 3 - Necessary and sufficient
conditions of almost full/exact recovery

(i) Almost full recovery is possible for (Θd(sd , ad))d≥1 if and only
if

Ψ+(d , sd , ad)→ 0 as d →∞.

In this case, the selector η̂ defined in (1) with threshold (2)
achieves almost full recovery.

(ii) Exact recovery is possible for (Θd(sd , ad))d≥1 if and only if

sdΨ+(d , sd , ad)→ 0 as d →∞.

In this case, the selector η̂ defined in (1) with threshold (2)
achieves exact recovery.
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Phase transitions

Theorem - Phase transitions Assume that s < d/2.

(i) If a2 ≥ σ2
(

2 log(d/s − 1) + W
)

for some W > 0, then the

selector η̂ defined in (1) with threshold (2) satisfies

sup
θ∈Θd (s,a)

Eθ|η̂ − η| ≤ (2 +
√

2π)s Φ(−∆),

where ∆ =
W

2
√

2 log(d/s − 1) + W
.

(ii) If a2 ≤ σ2
(

2 log(d/s − 1) + W
)

for some W > 0, then

inf
η̃

sup
θ∈Θd (s,a)

Eθ|η̃ − η| ≥ s Φ(−∆),

where the infimum is taken over all selectors η̃.
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Assume that exact recovery is possible for the classes
(Θd(sd , ad))d≥1 and (Θ+

d (sd , ad))d≥1. Then, for the selectors η̂
and η̂+ we have

lim
d→∞

sup
θ∈Θ+

d (sd ,ad )

Pθ(Sη̂+ 6= S(θ))

sdΨ+(d , sd , ad)

= lim
d→∞

inf
η̃∈T

sup
θ∈Θ+

d (sd ,ad )

Pθ(Sη̃ 6= S(θ))

sdΨ+(d , sd , ad)
= 1,

and

lim sup
d→∞

sup
θ∈Θd (sd ,ad )

Pθ(Sη̂ 6= S(θ))

sdΨ+(d , sd , ad)
≤ 2,

lim inf
d→∞

inf
η̃∈T

sup
θ∈Θd (sd ,ad )

Pθ(Sη̃ 6= S(θ))

sdΨ+(d , sd , ad)
≥ 1.
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Almost full recovery

Assume that lim supd→∞ sd/d < 1/2.

(i) If, for all d large enough,

a2
d ≥ σ2

(
2 log((d − sd)/sd) + Ad

√
2 log((d − sd)/sd)

)
for an arbitrary sequence Ad →∞, as d →∞, then almost
full recovery is possible.

(ii) Moreover, if there exists A > 0 such that for all d large
enough the reverse inequality holds:

a2
d ≤ σ2

(
2 log((d − sd)/sd) + A

√
2 log((d − sd)/sd)

)
then almost full recovery is impossible.
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Exact recovery

Assume that sd →∞ as d →∞, and lim supd→∞ sd/d < 1/2.

(i) If a2
d ≥ σ2

(
2 log((d − sd)/sd) + Wd

)
for all d large enough,

where the sequence Wd is such that

lim inf
d→∞

Wd

4
(

log(sd) +
√

log(sd) log(d − sd)
) ≥ 1,

then exact recovery is possible;

(ii) If a2
d ≤ σ2

(
2 log((d − sd)/sd) + Wd

)
for all d large enough,

where the sequence Wd is such that

lim sup
d→∞

Wd

4
(

log(sd) +
√

log(sd) log(d − sd)
) < 1,

then exact recovery is impossible.
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Adaptive exact recovery

Assume that sd →∞ and that lim supd→∞ sd/d < 1/2.
The phase transition level for exact recovery is,

aEd = σ
(√

2 log(d − s) +
√

2 log(s)
)
.

In particular, if s ∼ d1−β, then aEd ∼ (1 +
√

1− β)
√

2σ2 log d .

Then the optimal selector η̂ has threshold

t = σ
√

2 log(d − s) ∼ σ
√

2 log d

achieves exact recovery, adaptively to s.
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Adaptive almost full recovery

Transition level is aAFd ∼ σ
√

2 log(d/s − 1).

Consider a grid of points {g1, . . . , gM} on Sd where gj = 2j−1 and
M is the maximal integer such that gM ≤ s∗d . For each gm,
m = 1, ...,M, we define a selector

η̂(gm) = (η̂j(gm))j=1,...,d , (I (|Xj | ≥ w(gm)))j=1,...,d ,

where

w(s) = σ

√
2 log

(d
s
− 1
)
.

Note that w(s) is monotonically decreasing.
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Lepski-type data-driven procedure:

m̂ = min {m ∈ {2, . . . ,M} :
d∑

j=1

I
(
w(gk) ≤ |Xj | < w(gk−1)

)
≤ τgk ,

for all k ≥ m} ,

where τ =
(

log (d/s∗d − 1)
)− 1

7 .

Finally, the adaptive selector is

η̂ad = η̂(gm̂).
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We assume that

sd ∈ Sd , {1, 2, . . . , s∗d} where s∗d is an integer such that
d

s∗d
→∞

and that sd < d/4 together with

Ad ≥ 4

(
log log

(
d

s∗d
− 1

))1/2

,

Then,

lim
d→∞

sup
θ∈Θd (sd ,ad )

1

sd
Eθ|η̂ad − η| = 0

for all sequences (sd , ad)d≥1 such that ad ≥ aAFd .
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Extensions and related problems

Exact minimax results for other distributions than the
Gaussian. Exponential families with monotone likelihood ratio.
Caveat: no meaningful solution for the Bernoulli case.

Two-dimensional problem: other conditions of almost full and
exact recovery (Hajek, Wu and Xu, 2015). More structured
subsets. Butucea and Ingster (2013) - exact recovery/ prob.
of wrong recovery. Connection to detection boundary of
Butucea, Ingster and Suslina (2015). Hajek, Wu and Xu
(2015): Meaningful solution for the Bernoulli case.

Exact minimax results for selection from more structured
subsets?

Sharp adaptation for the minimax Hamming risk?
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