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Statement of the problem

Statement of the problem

We observe
Xj:9j—|—0'£j, j=1..d,
where 0 > 0, &1, ..., &y i.i.d. standard Gaussian r.v. and we assume

that 0 = (04, ...,04) belongs to

O4(s,a) = {0€R: there existsaset SC {1,...,d}
with s elements ,such that |6;| > a for all j € S,
and §; =0 forall j & S}.

Here, a> 0 and s € {1,...,d} are given constants.
Variable selection problem: estimate the binary vector

n=(1m,...,nd4) Where
nj = 1(0; # 0).



Statement of the problem

A selector /) = /j(X1, ..., X,) is a binary valued estimator in R¢:

A~

ﬁ:(7717~--77/7\d)7 ﬁje{071}
Hamming loss of a selector ) = 7j(X1,...,X,) is

d
7= nl =Y [ — njl.
=1



Statement of the problem

Two risk measures:
e Hamming risk
Eo|) — n)|

o Probability of wrong recovery

Po(Sy # 5(0))

where 5(#) is the support of 6 (and of 1), and S; is the
support of 7.



Statement of the problem

Relation between the two risk measures:

@ Probability of wrong recovery is the ‘Hamming risk with an
indicator loss”:

Py(Sq # S(0)) = Po(l —nl = 1)
since S5 = {j : mj =1} and S(0) = {j : 7;(0) = 1}.
e By Markov inequality,

Py(S5 7 5(0)) < Egli — nl-



Statement of the problem

Statistical questions:
@ Minimax estimation w.r.t. the Hamming risk
inf sup Ey[7j — )|
N 9eO

° O = @d(s, a) or
e ©=0/(s,a)={0 €0Oq4(s,a): 6, > 0,V},

inf5 denotes the minimum over all selectors.

@ Minimax estimation w.r. to the prob. of wrong recovery

inf sup Py(S; # S(0)).
SIS



Statement of the problem

Further statistical question:

o Adaptive estimation w.r.t. the Hamming risk and
to the Probability of wrong recovery:

adaptation to a and s.



Statement of the problem

Further statistical question:

o Adaptive estimation w.r.t. the Hamming risk and
to the Probability of wrong recovery:

adaptation to a and s.

@ Surprisingly: no answers known to questions about minimax
Hamming estimation, or adaptation to a and s for both risks.

@ Very rough results available about the minimax probability
of wrong recovery (in the regression/Lasso context):

If a> Co+/logd for C > 0 large enough, then there is a selector 7j
such that
sup Pg(Sﬁ 7'5 5(9)) — 0,
0€B©4(s,a)
whereas no such selector exist if a < cov/logd, for ¢ > 0 small
enough (e.g., Wainwright, 2009).




Statement of the problem

Bayesian setting

@ More is known about the Bayesian setting:
— Genovese, Jin, Wasserman, Yao (2012) JMLR,
- Ji, Jin (2012) Ann. Statist.
consider linear regression model with fixed and random covariates,
in a Bayesian setup with s ~ d'=#, for some known 3 in (0,1).

@ There is no class ©4(s, a) but 6 is random with independent
components taking values 0 and ay with probabilities
1—sy4/d and s4/d.

@ The setting is asymptotic, d — oc.
@ Hamming risk is used.

@ The results are about the properties of Exact recovery and
Almost full recovery:



Statement of the problem

Bayesian setting (Genovese, Jin et al., 2012)

Exact recovery (Bayesian) is possible for if there exists a selector
7 such that

lim /Eg”ﬁ - n‘dpg = 0,
d—o0
respectively it is impossible when

liminf inf /Eg|ﬁ —n|dPy > 0.
d—oo 17
Almost full recovery (Bayesian) is possible if there exists a
selector 7} such that
1
lim — Egm - n’dpg =0.
d—oo Syq
respectively, almost full recovery is impossible if

1
liminf inf — [ Eg|fj — n|dPy > 0.
7 Sd

d—oo



Statement of the problem

Minimax setting

Exact recovery (minimax) is possible for (©4(s4, a4))q>1 if there
exists a selector 7 such that

lim  sup  Eplf) —n| =0,
d—=00 9O y(sq,ad)

respectively it is impossible when

liminf inf  sup  Eg|fj—n| > 0.
d=00 11 90 4(s4,a4)

Almost full recovery (minimax) is possible for (©4(sq4, ad))d>1 if
there exists a selector 7} such that

1
lim sup — Eglhi—n|=0.
d—oo 0€0y(sq,aq) 5d

respectively, almost full recovery is impossible if

1
liminf inf  sup — Ep|fj —n| > 0.

d—oo  ij 0€O4(sy,aq) Sd



Statement of the problem

@ Ingster, Stepanova (2014) J. Mathem Sciences, B. and
Stepanova (2015)

Gaussian white noise model, smoothness classes of 6, adaptive
exact and almost full recovery.

Hamming loss was also considered e.g. in
e Neuvial, Roquain (2012) Ann. Statist.: oracle inequalities for
multiple classification under sparsity;
@ Zhang, Zhou (2015): community detection in stochastic block
models. Exact recovery for minimax Hamming risk.



Non-asymptotic minimax selection bounds

Non-asymptotic minimax selection bounds

Define the selector
i =10X>1t), j=1,...,d,

where the threshold is defined by
a o? d
t:+|og<—1>.
2 a s

The selector is not of the form /(| X;| > Co+/logd) !

On the positive valued set © (s, a), we define the selector
ﬁf =I(X;>t), j=1,....d,

with t as in (2).



Non-asymptotic minimax selection bounds

Theorem 1 - Non-asymptotic minimax
Hamming risk

(i) Forany a > 0 and s < d we have:

1
sup —Ep|i—n| <2¥(d,s,a),
0€By(s,a) S

1_ ..
sup  ~Eplfi" — | < W.i(d,s, a).
007 (s,a) e
(i) Moreover,

1_
i'lf sup _E9|77 - 77| = \U-i-(d?s’ a)’
T 90 (s,a) =

where infj denotes the infimum over all selectors 7 (not
necessarily separable).




Non-asymptotic minimax selection bounds

The minimax constants are:

d a o d
\U(d,s,a) = (S—l)d)(—%—alog(s—l))
a o
®(+) denotes the standard Gaussian cumulative distribution

function, and x; = max(x, 0),

Note that W(d,s,a) < V,(d,s,a).



Non-asymptotic minimax selection bounds

Proof

o Upper bound (case of ©] (s, a)):

At —nl= Y Hg =)+ Y I(og+0; <),
0

Jmj= Jjm=1

and
E(I(0& +0; < 1)) < P(E < (t — 2) /o).

Thus, for any 6 € ©1(s, a),

SBI* = (S -1) Pz t/o)+ Pl < (¢ /o)

=WV, (d,s,a).



Non-asymptotic minimax selection bounds

Proof: Lower bound

@ Reduction to separable estimators 7; with values in [0,1].

@ Decomposition in element-wise testing problems:

sup Z 7.0, |75 — il =

007 (s, a)
25 1igy (= 50+ Gra0-7)

where £, is the expectation with respect to the distribution of
X = u+ o€ with £ ~ N(0,1).
@ Bayes solution is the test (¢ = density of A/(0,1))

* (s/d)eu(X ~3) _
X = ’((1—s/d> X 1)

which results in the risk W (d,s, a).




Non-asymptotic minimax selection bounds

Theorem 2 - Probability of wrong recovery

For any a > 0 and s < d the selectors 7} and 7 with the threshold
t defined in (2) satisfy

sup  Py(Sy+ # S(0)) < sV, (d,s,a),

6‘6@;(5,3)
and
sup  Py(S; # S(0)) < 2sV(d,s, a).
0€04(s,a)
Furthermore,
: sV,(d,s,a)
inf  su Py(S5 # S5(0)) >
ﬁeT@e@jl(Ds,a) g Bl = 1+sV,(d,s,a)

where infzc7 denotes the infimum over all separable selectors 7.

4




Phase transitions

Phase transitions

Theorem 3 - Necessary and sufficient
conditions of almost full/exact recovery

(i) Almost full recovery is possible for (©4(s4,aq4))q>1 if and only
if
V,(d,s4,a4) +0 asd — oc.
In this case, the selector 7 defined in (1) with threshold (2)
achieves almost full recovery.

(ii) Exact recovery is possible for (©4(s4, aq))d>1 if and only if
sqVi(d,sq,a4) = 0 asd— 0.

In this case, the selector 7 defined in (1) with threshold (2)
achieves exact recovery.




Phase transitions

Phase transitions

Theorem - Phase transitions Assume that s < d/2.
(i) If a2 > 02 (2 log(d/s — 1)+ W) for some W > 0, then the
selector 7} defined in (1) with threshold (2) satisfies
sup  Eg|lfj —n| < (2+ V2m)sd(—-A),
0€By(s,a)
w

where A = .
2y/2log(d/s — 1)+ W

(i) If 2?2 < 02 (2 log(d/s — 1)+ W) for some W > 0, then

inf sup Byl —n| = s(-A),
T 0€0y(s,a)

where the infimum is taken over all selectors 7.



Phase transitions

Assume that exact recovery is possible for the classes
(©4(sd, ad))a>1 and (@j(sd, a4))d>1- Then, for the selectors 7
and /T we have

lim sup Po(Sy+ 7 5(9))
4= 9o (s4,24) sqV1(d, sd, ad)

Po(S7 7 5(6))

= lim inf sup —————-—-—""=1
d—oo ﬁETGGG:;(sd,ad) SdW+(d, Sd, ad)

and

|- Pu(S; £ 5(6))
imsup  sup < ———1 7 2770
d—o0 0Oy (sy,aq) SdV+(d; Sd; ad)
Py(S; # S(0
liminf inf  sup M > 1.
d—o0 TET ey (sy,aq) SdV+(d; Sds ad)

<2,



Phase transitions

Almost full recovery

Assume that limsup,_,. sq4/d < 1/2.
(i) If, for all d large enough,

a3 > 0 (21og((d — s4)/sa) + Aqv/2108((d — 54)/5a) )

for an arbitrary sequence Ay — 00, as d — oo, then almost
full recovery is possible.

(i) Moreover, if there exists A > 0 such that for all d large
enough the reverse inequality holds:

a3 < 0?(210g((d — sa)/54) + A\/2108((d — 59)/54) )

then almost full recovery is impossible.



Phase transitions

Exact recovery

Assume that s; — oo as d — o0, and limsupy_, .. S¢/d < 1/2.
(i) If a3 > o2 (2 log((d — sq4)/s4) + Wd) for all d large enough,
where the sequence Wy is such that
W,
liminf d
d—ro0 4( log(sq) + +/log(sq) log(d — sd))

> 1,

then exact recovery is possible;

(i) If a3 < o2 (2 log((d — s4)/sd) + Wd> for all d large enough,
where the sequence Wy is such that

lim sup d
dso0 4<|og(5d) + \/log(sq) log(d — 5d)>

<1,

then exact recovery is impossible.



Adaptation to sparsity

Adaptive exact recovery

Assume that s; — oo and that limsupy_,. sq/d < 1/2.
The phase transition level for exact recovery is,

=0 <\/2 log(d — s) + /2 Iog(s)> :
In particular, if s ~ d*=?, then 35 ~ (14 +1-75)y/20?logd.

Then the optimal selector 7 has threshold

t =o0+/2log(d —s) ~oy/2logd

achieves exact recovery, adaptively to s.

Q.



Adaptation to sparsity

Adaptive almost full recovery

Transition level is aQ‘F ~ oy/2log(d/s —1).
Consider a grid of points {gi,...,gm} on Sy where g; = 2/~1 and

M is the maximal integer such that gy < s}. For each gp,,
m=1,..., M, we define a selector

fi(gm) = (ﬁj(gm))jzl ..... g = (/(‘)<J| > W(gm)))j:1 d:

w(s) = o1/2log <g —1>.

Note that w(s) is monotonically decreasing.

where



Adaptation to sparsity

Lepski-type data-driven procedure:

m = min{m€{2 M}
Z/ w(gk) < |Xj| < wlgk-1)) < 78k,

for all k > m},

1

where 7 = (log (d/sj — 1)) 7.
Finally, the adaptive selector is

79 = ii(gm)-



Adaptation to sparsity

We assume that

: : d
sq € Sq ={1,2,...,s;} where s}, is an integer such that = — 00
d

and that sy < d/4 together with

d 1/2
Ad24(|og|og <s*_1>> ,
d

1
lim sup  —Epi?? —n|=0
d=0 @ y(sq,24) Sd

Then,

for all sequences (sq, a4)q>1 such that ag > aﬁF.



Extensions and rel:

Extensions and related problems

@ Exact minimax results for other distributions than the
Gaussian. Exponential families with monotone likelihood ratio.
Caveat: no meaningful solution for the Bernoulli case.

@ Two-dimensional problem: other conditions of almost full and
exact recovery (Hajek, Wu and Xu, 2015). More structured
subsets. Butucea and Ingster (2013) - exact recovery/ prob.
of wrong recovery. Connection to detection boundary of
Butucea, Ingster and Suslina (2015). Hajek, Wu and Xu
(2015): Meaningful solution for the Bernoulli case.

@ Exact minimax results for selection from more structured
subsets?

@ Sharp adaptation for the minimax Hamming risk?
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