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Learning from Examples of the input-output pairs

An input xi ∈ X ⊂ Rd may cause an output
yi ∈ Y ⊂ [−M;M].
We are given a training set z = {(xi , yi )}mi=1 ∈ Z = X × Y of
examples of the input-output pairs.
The problem is to learn from z how to predict the
input-output behavior of a given black box.
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Types of learning tasks
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Learning ranking from examples

Herbrich et al. (2000), Crammer, Singer (2001), Freund et al.
(2003), Mukherjee, Zhou (2006), Cossock, Zhang (2006), Agarwal,
Niyogi (2009), Chen (2012):

1 The inputs x ∈ X ⊂ Rd are related to their ranks
y ∈ Y = [−M,M] through an unknown probability
distribution ρ(x , y) = ρ(y |x)ρX (x) on Z = X × Y .

2 The distribution ρ is given only through a set of samples
z = {(xi , yi )}mi=1 ⊂ Z .
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The Ranking Problem
The problem is to learn from z = {(xi , yi )}mi=1 a ranking function
f = fz : X → Y that predicts the risk of x as f (x), for any x ∈ X .
A performance measure. For given true ranks y and y ′ of the
inputs x , x ′ ∈ X the value(

y − y ′ −
(
f (x)− f (x ′)

))2
is interpreted as the magnitude-preserving least squares loss of a
ranking function f .
Then the quality of a ranking function is measured via the
expected risk

E(f ) =

∫
Z

∫
Z

(
y − y ′ −

(
f (x)− f (x ′)

))2 dρ(x , y)dρ(x ′, y ′)
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The target functions
In the space L2(X , ρX ) the risk E(f ) is minimized by functions
from the set

Fρ = {f : f (x) = fρ(x) + c, c ∈ R} ,

where
fρ(x) =

∫
Y
ydρ(y |x), x ∈ X ,

is known in learning theory as the regression function. Then the
deviation of a ranking function f ∈ L2(X , ρX ) from the risk
minimizers can be measured by

E(f )−E(fρ) =

∫
X

∫
X

((
fρ(x)− fρ(x ′)

)
−
(
f (x)− f (x ′)

))2 dρX (x)dρX (x ′)
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An approximation in a stronger norm

Let H be an embedded subspace of L2(X , ρX ), and Fρ ⊂ H. Then,
as in Chen (2012), the quality of a ranking function f ∈ H can be
measured by the distance

dH(f ,Fρ) = inf
g∈Fρ

‖f − g‖H.

The choice of H as the reproducing kernel Hilbert space (RKHS)
H = HK associated with a kernel K : X ×X → R is widely used in
learning theory.
Then a ranking function may appear in minimizing a regularized
risk functional

E(f ) + α‖f ‖2HK → min
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Ranking by Lavrentiev regularization
Chen (2012) has observed that the minimizer f = f α of the
regularized risk functional satisfies the following equation(

α
2 I + LK

)
f = LK fρ,

where the integral operator

LK f (·) =

∫
X

∫
X
f (x)

(
K (x , ·)− K (x ′, ·)

)
dρX (x)dρX (x ′)

can be seen as a self-adjoint positive linear operator in HK . Then
f α is Lavrentiev regularized approximation to a solution of

LK f = LK fρ.
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A quick overview of known efficiency estimates

Under the assumption that the ideal input-output predictor
has a Hoelder-type regularity of order r measured through the
corresponding source condition in HK the following is known.

Learning
algorithm and
regularity range

Regression Learning Ranking Learning

Excess risk Learning rate
in HK

Excess risk Learning rate
inHK

Tikhonov/ Lavrentiev
r ∈ (0; 1]

O(m−
2r+1
2r+2 ) O(m−

r
2r+2 ) O(m−

r
2r+3 ) O(m−

r
2r+3 )

Smale, Zhou (2007) Chen (2012)
General Regularization

scheme
r ∈ (0;∞)

O(m−
2r+1
2r+2 ) O(m−

r
2r+2 ) ?! ?!Bauer, Pereverzyev,

Rosasco (2007)
Spectral

Regularization
r ∈ (0;∞)

O(m−
2r+1
2r+2 ) O(m−

r
2r+2 ) ?! O(m−

r
2r+3 )

Bauer, Pereverzyev,
Rosasco (2007)

Xu, Fang,
Wang (2014)

Online gradient
descent learning

O(m−
2r+1
2r+2 ) O(m−

r
2r+2 ) O(m−

2r+1
2r+3 ) ?Ying, Pontil (2008) Ying, Zhou (2015)
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Sample discretization
The regularized empirical risk minimization

1
m2

m∑
i,j=1

(yi − yj − (f (xi )− f (xj)))2 + α‖f ‖2HK
→ min

leads to the ranking function

f αz =
( 1

m2 S∗xDSx + α
2 I
)−1 1

m2 S∗xDy,

that can be seen as Lavrentiev regularized approximation to a solution of
discrete equation

1
m2 S∗xDSxf = 1

m2 S∗xDy,
where y = (y1, y2, . . . , ym)T ∈ Rm, D = mI− 1× 1T ,
I, 1 are the m-th order unit matrix and the vector of all ones,
Sx : HK → Rm is the sampling operator Sxf = (f (x1), f (x2), . . . , f (xm))T

associated with a discrete set x = {xi}m
i=1 ⊂ X , and S∗x : Rm → HK is

the adjoint of Sx.
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Improvements and Generalizations
Definition
ϕ : (0, d)→ R is called operator monotone (o.m.f.) on (0, d) if ∀Ai = A∗i : X → X ,
sp(Ai ) ⊂ (0, d), i = 1, 2,

A1 ≥ A2 ⇒ ϕ(A1) ≥ ϕ(A2).

Ψd = {ϕ : (0, d)→ R, ϕ is o.m.f., ϕ(0) = 0}.

Φd = {ϕ : ϕ = ϕ1 · ϕ2, ϕ1 ∈ Ψd , ϕ2 is Lipschitz monotone, ϕ2(0) = 0}.

Examples

ϕ(t) = tr ; ϕ ∈ Ψd for r ∈ (0, 1], d > 0.

ϕ(t) = log−r 1
t ; ϕ ∈ Ψd for r ∈ (0, 1], d ∈ (0, 1).

ϕ(t) = tp log−r 1
t ; ϕ /∈ Ψd , but ϕ ∈ Φd for p ≥ 1, r ∈ [0, 1], d ∈ (0, 1).
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Improvements and Generalizations (Continuation)

LK f = LK fρ −→ 1
m2 S∗x DSxf = 1

m2 S∗x Dy,

f αz = gα
(

1
m2 S∗x DSx

)
1

m2 S∗x Dy.

Definition
A regularization scheme generated by a family of functions {gα} has a qualification p
if ∃γp > 0 : ∀α > 0

sup
t

tp |1− tgα(t)| ≤ γpα
p .

Examples

1 Lavrentiev regularization is generated by gα(t) =
(
α
2 + t

)−1
and has qualification p = 1.

2 p-times iterated Lavrentiev regularization is generated by
gα(t) = t−1 (1− (α/(α+ 2t))p) and has qualification p.
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Improvements and Generalizations (Continuation)
Definition (Mathé & Pereverzev, 2003)
ϕ ∈ Ψd ∪ Φd is covered by qualification p if tp

ϕ(t) is non-decreasing
function of f ∈ [0, d ].

Theorem (1)
Assume that fρ ∈ Range(ϕ(LK )), ϕ ∈ Ψd ∪ Φd ,
d > supx |K (x , x)|

(
2 + 26m− 1

2 log 1
δ

)
, and ϕ is covered by qualification

of {gα}. Then for α = Θ−1(m−1/2), Θ(t) = ϕ(t)t, with confidence 1− δ
we have

inf
g∈Fρ

‖f αz − g‖HK = O
(
ϕ
(

Θ−1(m− 1
2 )
)
log 1

δ

)

Note. For ϕ(t) = t r , 0 < r ≤ 1, we have the convergence rate in HK of
order O

(
m− r

2r+2
)
that improves the order O

(
m− r

2r+3
)
known previously

(Chen, 2012)
www.ricam.oeaw.ac.at S.V. Pereverzyev, Linear Functional Strategy



Johann Radon Institute for Computational and Applied Mathematics

Ranking by the linear functional strategy

The usual parameter choice rules require the computation of a
sequence {f αiz }, although they select just one candidate out of
such a sequence.
The idea is to use {f αiz }Ii=1 as a basis for constructing a new
ranking function

fz =
∑
p∈Π

cpf αp
z , Π ⊂ {1, 2, . . . , I}.

In contrast to known aggregation procedures by Nemirovski
(2000), Bunea, Tsybakov & Wegkamp (2007) or Hebiri,
Loubes & Rochet (2014) no penalization or sample splitting
will be used. Moreover, an aggregation will be performed not
in the empirical norm, but in terms of excess risk and learning
rate.
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Ranking by the linear functional strategy

The vector c = (cp) of the ideal coefficients for approximation in a
Hilbert space H ↪→ L2(X , ρX ) minimizes the norm

‖fρ −
∑

p
cpf αp

z ‖H → min

and solves the linear system Gc = g with the Gram matrix
G =

(
〈f αp
z , f αj

z 〉H
)

p,j∈Π
and the right-hand-side vector

g =
(
〈fρ, f αp

z 〉H
)

p∈Π

The regularization theory tells (see, e.g. Goldenshluger, Pereverzev
(2000), Bauer, Mathé, Pereverzev (2007), Lu, Pereverzev (2013))
that the values of linear bounded functionals 〈f αp

z , ·〉H at fρ can be
estimated by the so-called linear functional strategy much more
accurately than fρ in H.
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Convergence rate of the discretized LFS
Known results on the linear functional strategy are obtained under the assumption
that equation operators, such as LK , are accessible, which is not the case in Ranking.

Theorem (2)
Assume that fρ ∈ Range(ϕ(LK )), l ∈ Range(ψ(LK )), ϕ ∈ Φd ∪Ψd ,
ψ ∈ Ψd , and d meets the condition of Theorem 1. If the product ϕ · ψ is
covered by the qualification of {gα} then for α = Θ−1(m−1/2),
Θ(t) = ϕ(t)t, with confidence 1− δ we have

|〈l , fρ〉HK − 〈l , f αz 〉HK | = O
(
ϕ
(

Θ−1(m−1/2)
)
ψ
(

Θ−1(m−1/2)
)
log 1

δ

)
,

where the coefficient implicit in O-symbol depends on l , fρ, gα, but does
not depend on m.

Note due to Mathé, Hofmann (2008) for any l ∈ HK there is always a function ψ
such that l ∈ Range(ψ(LK )). Then in view of Examples of o.m.f. the assumption that
ψ is o.m.f. is not a real restriction.
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A by-product result on the excess risk
Theorem (3)

Assume the conditions of Theorem 1. Then for α = Θ−1(m−1/2) with
confidence 1− δ we have

E(f αz )− E(fρ) = O
(
ϕ2
(

Θ−1(m−1/2)
)

Θ−1(m−1/2) log2 1
δ

)

Sketch of the proof: At first we observe that

E(f αz )− E(fρ) = 〈LK (f αz − fρ), (f αz − fρ)〉HK = ‖L
1
2
K (f αz − fρ)‖2HK

Then using Theorem 2 with ψ(t) =
√
t we obtain ‖L

1
2
K (f αz − fρ)‖HK =

sup
‖g‖HK =1

|〈L
1
2
Kg , fρ〉HK−〈L

1
2
Kg , f

α
z 〉HK | = O

(
ϕ
(

Θ−1(m−1/2)
)√

Θ−1(m−1/2) log 1
δ

)
Note For ϕ(t) = t r Theorem 3 gives an estimation of the excess risk of order
O
(
m−

2r+1
2r+2
)
that improves the order O

(
m−

r
2r+3
)
given by Chen (2012).
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Ranking by the LFS (Continuation)

Due to Theorem 2 the vector g =
(
〈fρ, f αp

z 〉HK

)
p∈Π

can be

approximated by a vector g̃ =
(
〈f αlp
z , f αp

z 〉HK

)
p∈Π

such that

‖g − g̃‖Rq = o
(
ϕ
(

Θ−1(m−1/2)
)
log 1

δ

)
,

where the coefficient implicit in o-symbol depends on the
cardinality q of the involved sequence of the regularized ranking
functions {f αp

z }p∈Π, which is assumed not to be very large. In our
numerical tests we take αp, p = 0, 152, 200, from the sequence
{αi = (0.97)i , i = 0, 1, . . . , 200}, because such αp have three
different orders of magnitude 100, 10−2, 10−3.
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Ranking by the LFS (Continuation)

Theorem 2 also tells us that the accuracy of order
o
(
ϕ
(
Θ−1(m−1/2)

)
log 1

δ

)
in approximating 〈fρ, f αp

z 〉HK can be
achieved with the same value of the regularization parameter
α that does not depend on f αp

z .
This observation opens the door for applying one’s favorite
parameter choice rule, and it may be done only once. In our
numerical tests the value α for approximating 〈fρ, f αp

z 〉HK by
〈f αz , f

αp
z 〉HK was selected randomly from

{αi = (0.97)i , i = 0, 1, . . . , 200}
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Ranking by the linear functional strategy in HK

Thus, the linear function strategy allows us to construct a ranking
function

fz =
∑
p∈Π

c̃pf αp
z , c̃ = (c̃p) = G−1g̃ ,

such that under the condition of Theorem 1 with confidence 1− δ
it holds

‖fρ− fz‖ = min
cp
‖fρ−

∑
p∈Π

cpf αp
z ‖HK + o

(
ϕ
(

Θ−1(m−1/2)
)
log 1

δ

)
.

This means that we can effectively construct a ranking function
from span{f αp

z , p ∈ Π}, whose distance in HK to a risk minimizer
differs from the minimal one by a quantity of higher order than the
guaranteed convergence rate.
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Ranking by the linear functional strategy in L2(X , ρX )
In the case H = L2(X , ρX ) neither Gram matrix G =

(
〈f αp
z , f αj

z 〉H
)

p,j∈Π
, nor

the vector g =
(
〈fρ, f αp

z 〉H
)

p∈Π
is accessible, since the marginal probability

distribution ρX is not assumed to be given. This issue can be resolved if we aim
at approximating the other risk minimizer

fρ = fρ −
∫

X
fρ(x)dρX (x).

Proposition (1)

Under the conditions of Theorem 1 with condifence 1− δ it holds

〈f αp
z , f αj

z 〉L2(X ,ρX ) = m−1〈Sxf αp
z , Sxf

αj
z 〉Rm + O(m−

1
2 log 1

δ
),

〈fρ, f αp
z 〉L2(X ,ρX ) = m−2〈Dy,Sxf αp

z 〉Rm + O(m−
1
2 log 1

δ
).

Note In the space H = L2(X , ρX ) the estimation of the values of linear bounded
functional 〈f αp

z , ·〉H at fρ is not an ill-posed problem, such that no regularization is
required.
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Ranking by the LFS in L2(X , ρX ) (continuation)
Proposition (2)

Let G̃ =
(
m−1〈Sxf αp

z , Sxf
αj
z 〉Rm

)
p,j∈Π

, g̃ =
(
m−2〈Dy, Sxf αp

z 〉Rm
)

p∈Π
. Then

under the condition of Theorem 1 with confidence 1− δ in holds

‖G̃ − G‖Rq→Rq = O(m−
1
2 log 1

δ
), ‖g̃ − g‖Rq = O(m−

1
2 log 1

δ
).

Theorem (4)

Consider a ranking function fz =
∑

p∈Π c̃pf αp
z , c̃ = (c̃p) = G̃−1g̃ . Then under

the conditions of Theorem 1 with confidence 1− δ it holds

‖fρ − fz‖L2(X ,ρX ) = min
cp
‖fρ −

∑
p∈Π

c̃pf αp
z ‖L2(X ,ρX ) + O(m−

1
2 log 1

δ
).

This means that in L2(X , ρX ) the distance of fz to a risk minimizer differs from
the best approximation by a quantity of parametric rate order O(m−

1
2 ).
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Numerical example, Micchelli & Pontil (2005)

fρ(x) =
1
10

(
x + 2(e−8( 43π−x)2 − e−8( π

2 −x)2 − e−8( 32π−x)2)
)
, x ∈ [0, 2π]

y = fρ(x) + ε, ε ∈ [−0.02, 0.02]

0 1 2 3 4 5 6 7
-0.1

0

0.1

0.2
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f
ρ

z
f1
f2
f3
f

Figure: The target function fρ (red line), training set

z, f α
z for α = 0.1, 0.2, 0.3, and fz

K(x , x ′) = e−8(x−x′)2 + x · x ′

Function Fraction of
misranked
pairs

Mean
squared
error

f1 = f 0.1z 6.04% 0.0020
f2 = f 0.2z 7.58% 0.0032
f3 = f 0.3z 7.89% 0.0041
fz 1.18% 0.00032
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LFS for the prediction of Nocturnal Hypoglycemia (NH)

NH (a low BG-concentration during the sleep period) is the most common
and particular worrisome hypoglycemia in individuals with diabetes.
One of the first method for predicting NH was proposed by Whincup and
Milner (1987). The method is based on the latest before bed
BG-measurement x (mg/dL), and it ranks the risk of NH by means of a
ranking function

fa(x) =

{
1, x < a (mg/dL),
−1, x ≥ a (mg/dL),

where the value (-1) means no risk of NH, while 1 means that there is a
risk of NH.
In clinical study by Whincup and Milner (1987) the ranking functions
fa = fai , ai = 90 + 18(i − 1), i = 1, 2, . . . , 6, were tested on a data set
consisting of 71 nights; NH was observed in 34% of them.
As a result, fa3 , a3 = 126 (mg/dL) was suggested as the best NH-predict.
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Linear functional strategy in NH-prediction
Assuming that there is an ideal ranking function fρ(x) predicting NH
from the latest before bed BG-measurement x , then the idea is to
approximate f̄ρ(x) by

fz =
6∑

p=1
c̃pfap (x),

where z = {(xi , yi )}m
i=1 is a training set of historical data such that yi = 1,

if the latest before bed measurement xi was followed by a night with NH,
and yi = −1, if this was not the case.
Following the ranking by the linear functional strategy in L2(X , ρX ) . We
define the coefficients vector c̃ = (c̃p)6p=1 as the solution of the linear
system G̃ c̃ = g̃ , where

G̃ = (m−1〈Sx fap , Sx faq 〉Rm )6p,q=1, g̃ = (m−2Dy, Sx fap 〉Rm )6p=1

and
Sx fap = (fap (x1), fap (x2), . . . , fap (xm)), y = (y1, y2, . . . , ym).
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Test on clinical data

We use a data set collected withing EU-project DIAdvisor
(www.diadvisor.eu). The set consists of 150 nights; NH was
observed in 27% of them. We consider 200 training sets z that have
been randomly chosen from the DIAdvisor data set.

Each training set z consisting of 70 nights has been used to
construct fz(x) by means of the above mentioned linear functional
strategy. Then the constructed ranking function fz(x) has been
tested on the other 80 nights that were not included in z.

Following Whincup and Milner (1987) the performance of
NH-predictors, such as fz(x), or fap (x), p = 1, 2, . . . , 6 has been
evaluated in terms of Sensitivity (SE), Specificity (SP), Positive
Predictive Value(PPV), Negative Predictive Value (NPV), and also
in terms of F1 score. The average values of the above performance
metrics over all 200 tests are reported in Table 3.
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Comparative Performance of NH-predictors

Ranking
function

SE (%) SP(%) PPV (%) NPV (%) F1

fa1 49.21 99.1 95.1 84.06 0.6400
fa2 69.82 91.5 75.36 89.08 0.7200
fa3 79.49 71.32 50.61 90.38 0.6141
fa4 83.99 53.28 39.87 90.01 0.5370
fa5 97.26 38.61 36.88 97.43 0.5317
fa6 97.26 31.09 34.23 96.86 0.5033
fz 71.32 85.92 68.07 89.15 0.6824
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Test on clinical data

As it can be seen from the table the ranking function fa3 , that
was suggested by Whincup and Milner (1987) as the best
NH-predictor, is the fourth worst in our tests. On the other
hand, the ranking function fa2 , that was the second worst in
the tests by Whincup and Milner (1987), is the best in our
experiments.
At the same time, the ranking function fz, that has been
constructed by means of the linear functional strategy on the
basis of all considered ranking functions fai , i = 1, 2, . . . , 6
exhibits the second best performance.
This can be seen as a demonstration of the ability of the linear
functional strategy to construct a predictor that automatically
follows the leader. Such a predictor looks more safe than the
individual predictors from which it is constructed.
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Nocturnal Hypoglycemia risk

An extension of the number of possible outputs (risks) of the
ranking function fρ(x) can provide diabetes patients with more
information on their health state. For example, instead of using
classification {−1, 1} (similar to saying NO or YES), we may set
the following scenarios and the corresponding ranks:

fρ(x) =



2, very high risk of NH,
1, high risk of NH,
0, moderate risk of NH,
−1, low risk of NH,
−2, no risk of NH.
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Predictors based on low blood glucose index (LBGI)

LGBI was introduced originally in (Kovatchev et. al. 1998) for measuring
the risk of severe hypoglycemia (SH), based on SBGM.
LBGI takes nonnegative continuous values.
It was observed that LBGI was significantly higher on the day prior to an
SH.

Method 1: Calculate the LBGI based on 4 measurements during a day.
Method 2: Calculate the LGBI based on the latest before bed
BG-measurement (analog of the method by Whincup and Milner (1987)).
Assign the ranks similar to

flbgi (x) =



2, lbgi ≥ 5,
1, 2.5 ≤ lbgi < 5,
0, 1 ≤ lbgi < 2.5,
−1, 0.5 ≤ lbgi < 1,
−2, lbgi < 0.5.
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Aggregation of predictors based on LBGI

We aggregate these two predictors and approximate f̄ρ(x) by

fz = c̃1flbgi1(x) + c̃2flbgi4(x).

To measure the performance of 3 predictors in terms of SE, SP,
PPV, NPV and F1-score we set the following classification
condition:

Each non-negative output of predictors (0, 1 or 2 for LBGI
predictors) we interpret as YES (set predicted value as 1), each
negative as NO (-1).

Our test were performed on the same set of data and in the same
way as for ranking functions from Whincup and Milner (1987).
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Comparative Performance of NH-predictors

Ranking
function

SE (%) SP(%) PPV (%) NPV (%) F1 Pairwise
Misrank-
ing

fρ 1 1 1 1 1
flbgi4 65.69 95.63 84.74 88.31 0.7378 0.4452
flbgi1 55.56 97.29 88.29 85.63 0.6789 0.5755
fz 79.91 91.28 78.63 92.60 0.7870 0.3884
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Application to the data from AMMODIT

Using a dataset of 150 nights, collected within the EU-FP7 Project
DIAdvisor we aggregate in fz the NH-predictors known in the literature.
Within the EU-Horizon 2020-project AMMODIT the trained predictor fz
with fixed coefficients c̃ has been implemented as a Smartphone App
and tested on another database consisting of 476 nights (different
patients, children), collected in a Ukrainian hospital.
Additionally, the predictor fz has been tested on data (182 day records) of
a single patient.

SE (%) SP(%) PPV (%) NPV (%) F1-score
Ukrainian
dataset

77.03 81.89 78.80 80.31 0.7790

Single patient 69.23 79.23 57.14 86.55 0.6261
State of the art
(HypoMon)

72.73 68.29 38.10 90.32 0.5000
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DIApvisor vs HypoMon

www.ricam.oeaw.ac.at S.V. Pereverzyev, Linear Functional Strategy


