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Angiogenesis in cancer

Angiogenesis : growth of new blood vessels from pre-existing vessels.
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Angiogenesis in cancer

Facts on tumors

Population of rapidly dividing and growing cells

Cannot grow beyond a small size if lack of oxygen and nutrients

Induce angiogenesis by secreting growth factors

Develop fast, anarchic and inefficient blood pathways

Spread in metastases through blood vessels

From the relations: An early 90’s point of view

tumor 
 growth 
 energy 
 glucose 
 vascularization

anti-angiogenesis treatments are introduced with expectation that:

“Reducing angiogenesis will asphyxiate the tumor”.
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Angiogenesis in cancer

An interesting but unfortunately wrong idea

Penalizing angiogenesis induces:

a regularization of the tumor blood pathways,

an improvement of the tumor vessel efficiency.

Current point of view

If anti-angiogenesis treatments improve the tumor vessel efficiency, then
they can help to bring chemical weapons inside the tumor.

“Anti-angiogenesis treatments help to fight tumors from inside”.

Angiogenesis changes blood flow
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Blood flow characterization

Blood flow evaluation is useful for:

Early detection of metastases,

Diagnostic after a stroke,

Prognostic in cancer or after a stroke,

Monitoring the efficiency of treatments, etc.

Blood flow quantifications are needed to:

clarify medical decisions,

help comparisons in longitudinal or multi-centric studies.
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Dynamical Contrast Enhanced Computed
Tomography (DCE-CT) experiment
DCE-CT follow-up of contrast agent injection - about 30-40 images in 100 seconds
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DCE-CT pre-processing: Rozenholc & Reiss (2011)

Typical enhancements
aorta (red), veinous (blue), tumor (green)
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REMISCAN study

Medical and economic impact of the prediction of response to
anti-angiogenic treatment in metastatic renal cell carcinoma by functional
CT and functional MRI

Main goal: Define imaging biomarkers using functional CT and MRI to
• Optimize the selection of patients likely to benefit from anti-angiogenic drugs
• Adjust real-time processing to improve efficiency while limiting its side effects

Establishments: 16 French hospital centers
Disease: Metastatic Kidney Cancer
Patients: 100 patients with metastatic renal cell carcinoma under anti-angiogenic
therapy
Coordinators: Profs. Cuenod (radiology) and Oudard (Oncology)
Funding: 1 M Euros
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A nonparametric model for tissue microvascular
circulation

AIF (t) number of particles inside the aorta at time t, AIF (0) = 0

β AIF (t − δ) number of arrivals into voxel x at time t

q(t) number of particles in the voxel x at time t

Si i.i.d. sojourn times in the voxel x with c.d.f. F

Link between arrivals and sojourn times:

Ey(t) =

∫ t−δ

0

β AIF (t − δ − z) dz

︸ ︷︷ ︸
arrived before time t

−
∫ t−δ

0

β AIF (t − δ − z)P(S ≤ z) dz

︸ ︷︷ ︸
left before time t

=

∫ t−δ

0

β AIF (t − δ − z)(1 − F (z))dz
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The model for time transit distribution

This leads to the following model

q(ti ) =

∫ ti−δ

0

AIF (ti − δ − τ )β (1 − F (τ ))dτ, i = 1, ..., n.

The value of delay δ can be measured with the small error using the decay
between the jumps after the injection of the contrast agent inside the aorta and
the tissue.

f = β(1 − F ) is an unknown function to estimate
g = AIF (t) can be estimated with relatively small error
q is measured with error =⇒ ill-posed problem
Parameter β, the blood flow, is of great interest to physicians
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Laplace deconvolution in the presence of noise

Discrete noisy version of Laplace convolution equation of the first kind :

q(t) =

∫ t

0

g(t − τ )f (τ )dτ, t ≥ 0.

Observations:

y(ti ) =

∫ ti

0

g(ti − τ )f (τ )dτ + σεi , i = 1, ..., n,

where 0 ≤ t1 ≤ ... ≤ tn ≤ Tn, εi are i.i.d. N(0, 1) and Tn may grow with the
number of observations n.
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Laplace deconvolution and Fourier deconvolution

Technically, Laplace deconvolution can be viewed as a
particular case of Fourier deconvolution

y(ti ) =

∫ ∞

−∞

g(ti − τ )f (τ )dτ + σεi , i = 1, ..., n,

which has been extensively studied in the last thirty years

In reality, Laplace deconvolution is very different from Fourier
deconvolution

The problem is harder than it seems

Fourier deconvolution approaches do not work for Laplace deconvolution.
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Laplace deconvolution - challenges

Can Laplace convolution equation be solved by Fourier
transform on an interval (FFT)?

y(ti ) =

∫ ti

0

g(ti − τ )f (τ )dτ + σεi , 0 ≤ t1 ≤ ... ≤ tn ≤ Tn

This is impossible:

application of FFT assumes periodicity of f and g on [0,Tn] which is not
true

application of FFT to Laplace convolution does not result in the product
of Fourier transforms of f and g on [0,T ]
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Laplace deconvolution - challenges

Can Laplace convolution equation be solved by Fourier
transform on a real line?

y(ti ) =

∫ ti

0

g(ti − τ )f (τ )dτ + σεi , 0 ≤ t1 ≤ ... ≤ tn ≤ Tn

This is problematic!

there is no data available for t > Tn: if Tn is not very large, estimator

ŷ(ω) =

n∑

j=1

e itj ωy(tj )

of the Fourier transform of q may have poor precision

This is an artificial problem since Laplace deconvolution has causality
property:

f (t) for t < T depends only on y(t) for t < T
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Laplace deconvolution - challenges

Can Laplace convolution equation can be solved using Laplace
transform?

This is difficult:

Inverse Laplace transform is usually founds using partial fractions, series
expansions or Tables of inverse Laplace transforms, and is not applicable
with observational data

Finding inverse Laplace transform numerically is often a more difficult
task than solving a Laplace convolution equation

There is no data available for t > Tn.
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Resolvent solution: noiseless case

Idea of the approach (no noise)

Let r ≥ 1 be such that

g (j)(0) =

{
0, if j = 0, ..., r − 2,
Br 6= 0, if j = r − 1.

Taking derivatives of both sides of the equation

q(t) =

∫ t

0

g(t − τ )f (τ )dτ, t ≥ 0.

one obtains

q(j)(t) =

∫ t

0

g (j)(t − τ )f (τ )dτ, j = 1, ..., r − 1;

· · ·
q(r)(t) = Br f (t) +

∫ t

0

g (r)(t − τ )f (τ )dτ

Marianna Pensky ( UCF ) Laplace Deconvolution 17 / 40



Laplace deconvolution with a simple kernel:
resolvent solution

There exists an unique solution φ of the equation

g (r)(t) = Brφ(t) +

∫ t

0

g (r)(t − τ )φ(τ )dτ

called a resolvent of g (r) (Gripenberg, Londen & Staffans, 1990)

Resolvent φ can be recovered exactly as an inverse Laplace transform
of Φ, where

Φ(s) =
srG (s) − Br

srG (s)
,

G is the Laplace transform of g , known exactly

There exists a unique solution of Laplace convolution equation

f (t) = B−1
r q(r)(t) − B−1

r

∫ t

0

q(r)(t − τ )φ(τ )dτ.
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Laplace deconvolution with a simple kernel: explicit
solution

Let sl be distinct zeros of G (s) of orders αl , respectively, l = 1, ...,M, M <∞.
Set s0 = 0 and α0 = r . Then, f is of the form

f (t) = B−1
r


q(r)(t) −

r−1∑

j=0

bjq
(r−1−j)(t) −

∫ t

0

q(t − x)φ
(r)
1 (x)dx


 ,

where

φ1(x) =

M∑

l=1

αl−1∑

j=0

aljx
jeslx

j!
, bj = a0j +

M∑

l=1

min(j,αl−1)∑

i=0

(
j

i

)
ali s

j−i
l

alj =
1

(αl − 1 − j)!

dαl−j−1

dsαl−j−1
[(s − sl)

αl Φ(s)]

∣∣∣∣∣
s=sl

,
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Adaptive estimation

In a general case, estimate f by

f̂ (t) = B−1
r q̂(r)(t) − B−1

r

∫ t

0

q̂(r)(t − τ )φ(τ )dτ

or, if the number of zeros of G (s) is finite,

f̂ (t) = B−1
r


q̂(r)(t) −

r−1∑

j=0

bj
̂q(r−1−j)(t) −

∫ t

0

q̂(t − x)φ
(r)
1 (x)dx


 ,

where q̂(l)(t) are estimators of derivatives q(l)(t), l = 0, · · · , r .
Abramovich, Pensky& Rozenholc (2013): kernel estimators with
adaptive choice of bandwidth using Lepskii method (Lepski (1991), Lepski,
Mammen and Spokoiny (1997))

The estimator is minimax optimal under additional assumptions on the
model

Marianna Pensky ( UCF ) Laplace Deconvolution 20 / 40



Merits and defects of the approach

Merits of the method

Reduces the problem to a well-known problem

Allows to write an estimator in an explicit form

Allows to apply a variety of techniques for estimating regression function
and its derivatives

Produces asymptotically optimal estimators

Defects of the method

Requires knowledge of kernel g in general and parameters r and Br in
particular (hard to use in applications)

Produces boundary effects: does not allow to estimate β, the blood flow

Marianna Pensky ( UCF ) Laplace Deconvolution 21 / 40



Laplace deconvolution with the data-driven kernel:
Laguerre functions approach

Consider a system of Laguerre functions defined as

φk(t) =
√

2ae−atLk (2at), k = 0, 1, · · · ,

where Lk (t) are Laguerre polynomials

Lk (t) =
k∑

j=0

(−1)j
(

k

j

)
t j

j!
, t ≥ 0.

Functions φk(t), k = 0, 1, · · · , form an orthonormal basis of the L2(0,∞)
space

Let f (k), g (k), q(k) and y (k), k = 0, · · · ,∞, be Laguerre coefficients of
functions f (x), g(x), q(t) and y(t), respectively.
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Relations between Laguerre coefficients

By plugging expansions of f (x), g(x) and q(t) into the Laplace convolution
equation

q(t) =

∫ t

0

g(t − τ )f (τ )dτ

obtain
∞∑

k=0

q(k)φk (t) =
∞∑

k=0

∞∑

j=0

f (k)g (j)

∫ t

0

φ(k)(x)φ(j)(t − x)dx .

Using identity

∫ t

0

φk(x)φj(t − x)dx = (2a)−1/2 [φk+j(t) − φk+j+1(t)],

equation above can be re-written as

∞∑

k=0

q(k)φk(t) = (2a)−1/2
∞∑

k=0

φk(t)[f
(k)g (0) +

k−1∑

l=0

(g (k−1) − g (k−l−1))f (l)].
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System of linear equations

Equating coefficients for each basis function, obtain an infinite triangular
system of linear equations.

Define fm(x) =

m−1∑

k=0

f (k)φk(x) =⇒ Need m equations to recover

coefficients f (k), k = 0, · · · ,m − 1.

Lemma. Let fm, gm and qm be m-dimensional vectors with elements f (k), g (k)

and q(k), k = 0, 1, · · · ,m − 1, respectively. Then, for any m, one has

qm = Gmfm

where Gm is the lower triangular Toeplitz matrix with elements

G (ji) =





(2a)−1/2 g (0), if i = j ,

(2a)−1/2 (g (j−i) − g (j−i−1)), if i < j ,
0, if i > j ,
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Evaluating Laguerre coefficients from discrete noisy
data

Recall: one observes y(ti ) =

∫ ti

0

g(ti − τ )f (τ )dτ + σεi , i = 1, · · · , n, with

measurements y(ti ) taken at points 0 ≤ t1 ≤ ... ≤ tn ≤ T <∞, where both n
and T are large.

Choose large M, so the bias in representation of f by fM is very small.

Form an (n × M) matrix ΦM with elements Φ(i,k) = φk(ti), i = 1, · · · , n,
k = 0, · · · ,M − 1.

Let ~y be n-dimensional vector with components y(ti ) i = 1, · · · , n.

Let Jm,M = (Im 0m,M−m) be the m × M matrix which has the m × m
identity matrix Im as its first m columns and the rest of the columns are
equal to zero
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Non-adaptive estimation

Construction:
Denote the initial estimator of vector qM by

q̂M := (ΦT
M ΦM )−1ΦT

M~y

Consider a collection {1, . . . ,M} of indices and define a collection of estimators
for all m, 1 ≤ m ≤ M, given by

f̂m := G−1
m Jm,Mq̂M = G−1

m Jm,M(ΦT
M ΦM)−1ΦT

M~y

Motivation:

Use regression approach, not numerical integration for estimating the
Laguerre coefficients (the bias depends on M, not T )

Do not need to re-fit estimator q̂M for every model size m
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The oracle risk

Denote

Qm =
n

T
[(ΦT

MΦM)−1]m([GMGT
M ]m)−1

If T and n are large, T/n is small, then ΦT
MΦM ≈ nT−1I.

Define the set of indices Mn = Mn(ℵ) = {1, . . . ,M0} such that condition
T n−1Tr(Qm) ≤ ℵ, holds for all m ≤ M0.
The smallest possible risk, the oracle risk, is given by

Roracle = min
m∈Mn(ℵ)

[
‖fm − f ‖2

2 + σ2Tn−1 Tr(Qm)
]
.
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Model selection using complexity penalty

Denote

Am =

√
n

T
G−1

m Jm,M(ΦT
M ΦM)−1ΦT

M

v2
m = ‖Am‖2

2 = Tr(Qm), ρ2
m = ρ2(Am).

Recall that
f̂m =

√
T/n Am~y .

For any constant B > 0 introduce a penalty

pen(m) = 4σ2Tn−1
[
(1 + B)v2

m + (1 + B−1)ρ2
m log(m2ρ2

m)
]
.

Choose model size

m̂ = arg min
{

m ∈ Mn : −‖f̂m‖2 + pen(m)
}
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Risk of penalized estimator

If M = n2/3 and q(t) =
∫ t

0
g(t − τ )f (τ )dτ is sufficiently smooth, then

E(‖f̂bm − f ‖2
2) ≤ C

[
log(m2

0ρ
2
m0

)Roracle + σ2 T

m0n
+

a

n

]
,

where a is the scaling parameter of the Laguerre functions and m0 = m0(n,T ) is
the value of m which minimizes the right-hand side of the oracle inequality.

The penalized estimator f̂bm has the risk within log(m2
0ρ

2
m0

) of the oracle risk
under almost no assumptions on the model

With some extra assumptions, one can show that the estimator is minimax
optimal within a logarithmic factor of n
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Merits and defects of the approach

Advantages of the method

Does not require exact knowledge of r and exact representation of the
kernel g

Computationally very easy and fast: solution of a relatively small system
of equations. The system is triangular with a Toeplitz matrix.

No boundary effects due to extension at zero and cut-off at T .

Presence of an extra parameter a allows to control the error of
approximation of both q and f .

Shortcomings of the method

Does not work well for functions which do not have simple
representation via Laguerre functions basis

Hard to enforce positivity or shape restrictions
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General approach

Consider a general ill-posed linear inverse problem

yi = q(ti ) + ξi with q(t) = (Qf )(t) =

∫ b

a

u(t, τ )f (τ )dτ, t ∈ [c, d]

Q does not have a bounded inverse
ξi are i.i.d.centered sub-gaussian random variables
Eξi = 0, P (|ξi | > t) ≤ exp(−t2/2σ2)
Our particular case is a discrete noisy version of Laplace convolution
equation of the first kind where f ∈ L2[0,T ], q ∈ L2[0,T ]

u(t, τ ) = g(t − τ ); g(z) = AIF (z) if z ≥ 0; g(z) = 0 otherwise

0 ≤ t1 ≤ ... ≤ tn ≤ T are observation times
n = 90 for DCE-MRI data and n = 23 for DCE-CT data
f (τ ) = β(1 − F (τ ) is a nonnegative decreasing function
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Application of overcomplete dictionaries

Consider a dictionary {ϕj , j = 1, · · · , p} such that functions ϕj are linearly
independent and ‖ϕj‖2 = 1. For any t ∈ Rp, denote

ft(z) =

p∑

j=1

tjϕj (z).

Estimate f by fbθ

If function f were known, we would search for the vector of coefficients θ as a
solution of θ = arg mint ‖f − ft‖2 where the contrast is

‖f − ft‖2
2 = ‖f ‖2 + ‖ft‖2 − 2

p∑

j=1

〈f , ϕj〉tj .

Here f is independent of t and ft is completely known
Need to estimate the last term only
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Lasso solution

Let Q∗ be the conjugate operator for Q:

(Q∗u)(z) =
∫ T

z
g(x − z)u(x)dx , 0 ≤ z ≤ T .

〈Qf , u〉 = 〈f ,Q∗u〉 for any f , u ∈ L2[0,T ]
Assumption A0 There exist ψj such that

(Q∗ψj)(z) =

∫ T

z

g(x − z)ψj(x)dx = ϕj(z) and ‖ψj‖2 <∞

‖ψj‖2 is the “price” of using dictionary element ϕj

Replace βj = 〈f , ϕj〉 = 〈q, ψj〉 by its estimator β̂j where

β̂j =
1

n

n∑

i=1

yiψj(xi )∆xi , ν2
j =

T 2

n

n∑

i=1

ψ2
j (xi ).
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Lasso solution

The estimation procedure

Let Φ be the matrix with elements Φkj = 〈ϕk , ϕj〉 and WTW = Φ. Estimate f

by fbθ
, where θ̂ is the solution of

θ̂ = arg min
t



tTΦt − 2

p∑

j=1

β̂j tj + α

p∑

j=1

νj |tj |





or
θ̂ = arg min

t

{
‖Wt − γ‖2

2 + α‖Υt‖1

}

Here, γ = (WWT )+Wβ̂ and Υ is the diagonal matrix Υ = diag(ν1, · · · , νp).

Advantage: Lasso is used in a prediction set up where it requires much milder
conditions
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Lasso: slow error rates

Let P = {1, · · · , p} and α ≥
√

2 n−1σ (τ + 1) logp.
Then, under no restriction on the dictionary, with probability at least 1− 2p−τ

‖fbθ
− f ‖2

2 ≤ inf
t


‖Wt − f ‖2

2 + 4α

p∑

j=1

νj |tj |




These are the “slow” Lasso error rates

Under a compatibility condition for matrix W obtain “fast” Lasso error rates

Advantage: Matrix W is the dictionary-generated matrix and can be chosen
to satisfy compatibility conditions (e.g., restricted isometry condition)
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Sharp oracle inequality: fast rates

Let ΦJ be a reduction of Gram matrix Φ to a set of functions {ϕj , j ∈ J}, and
LJ = Span {ϕj , j ∈ J} and compatibility condition hold
Then, with high probability,

‖fbθ
− f ‖2

2 ≤ min
J⊆P



‖f − fLJ

‖2
2 + C

σ2 logp

nλmin(ΦJ)

∑

j∈J

ν2
j



 ,

If f were known, one would choose J ⊆ P and recover f as its estimated
projection f̂ on LJ with the error

E‖f̂ − f ‖2
2 ≥ min

J⊂P



‖f − fLJ

‖2
2 +

σ2

nλmin(ΦJ)

∑

j∈J

ν2
j





Hence, up to a log p factor, the estimator fbθ
attains the minimum possible

mean squared error for a particular function of interest f
Here, log p is the “price” for choosing an appropriate subset of dictionary
functions

Marianna Pensky ( UCF ) Laplace Deconvolution 36 / 40



Application to DCE imaging data

We used a dictionary constructed of Gamma cdfs

ϕk (x) = GammaCDF (x ; ak, bk ), k = 1, · · · , p,

Here (ak , bk) take values on the Cartesian product of (0, 1, · · · ,m1 − 1) and
(∆, 2∆, · · · ,m2∆) with ∆ fixed in advance.

In order to form matrix W with columns ϕj , j = 1, · · · , p, dictionary
functions were evaluated on a fine grid

We assumed that the errors are Gaussian, so that the error vector ξ ∈ Rn is
Gaussian N (0, σ2I)

Matrix Q was constructed so that it carried out numerical integration for
0 ≤ x ≤ T , i.e. q = Qf
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Estimation on the basis of DCE-CT data
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Figure: Top row: estimators f̂ (t) of f (t) = β(1 − F (t) for two different tissue
voxels on the basis of DCE-CT data. Bottom row: observations of tissue
enhancements (red dots), the recovered values of q̂(t) =

∫
AIF(t − τ )f̂ (τ )dτ

(blue line). The number of observations n = 23.
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Merits and defects of the approach

Advantages of the method

Does not require exact knowledge of r and exact representation of the
kernel g

No boundary effects due to extension at zero and cut-off at T .

The dictionary is extremely flexible. Can be comprised of kernel functions,
splines, frames, etc.

Easy to enforce positivity or shape restrictions

Works very well when the noise level is high and the sample size is small

Shortcomings of the method

Computationally is not as easy as Laguerre functions method: need to
evaluate inverse images of the dictionary functions (although this step can
be done in advance) and solve the optimization problem. Easier than the
resolvent solution

The compatibility condition that guarantees fast error rates is hard to check
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