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0 Medical framework

9 Formulation of the problem

e Laplace deconvolution - challenges

e Laplace deconvolution with a fully known kernel: resolvent solution
e Laplace deconvolution with a data-driven kernel

@ Application of overcomplete dictionaries
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Angiogenesis in cancer

Angiogenesis : growth of new blood vessels from pre-existing vessels.
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Angiogenesis in cancer

Facts on tumors
@ Population of rapidly dividing and growing cells
@ Cannot grow beyond a small size if lack of oxygen and nutrients
@ Induce angiogenesis by secreting growth factors
@ Develop fast, anarchic and inefficient blood pathways
(*]

Spread in metastases through blood vessels

From the relations: An early 90’s point of view
tumor = growth = energy = glucose = vascularization

anti-angiogenesis treatments are introduced with expectation that:

“Reducing angiogenesis will asphyxiate the tumor”.
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Angiogenesis in cancer

An interesting but unfortunately wrong idea
Penalizing angiogenesis induces:
9 a regularization of the tumor blood pathways,

@ an improvement of the tumor vessel efficiency.

Current point of view

If anti-angiogenesis treatments improve the tumor vessel efficiency, then
they can help to bring chemical weapons inside the tumor.

“Anti-angiogenesis treatments help to fight tumors from inside”.

Angiogenesis changes blood flow
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Blood flow characterizati

Blood flow evaluation is useful for:
@ Early detection of metastases,
@ Diagnostic after a stroke,
@ Prognostic in cancer or after a stroke,

@ Monitoring the efficiency of treatments, etc.

Blood flow quantifications are needed to:
@ clarify medical decisions,

@ help comparisons in longitudinal or multi-centric studies.
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Dynamical Contrast Enhanced Computed

Tomography (DCE-CT) experiment

DCE-CT follow-up of contrast agent injection - about 30-40 images in 100 seconds
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DCE-CT pre-processing: Rozenholc & Reiss (2011)
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REMISCAN study

Medical and economic impact of the prediction of response to
anti-angiogenic treatment in metastatic renal cell carcinoma by functional
CT and functional MRI

Main goal: Define imaging biomarkers using functional CT and MRI to
e Optimize the selection of patients likely to benefit from anti-angiogenic drugs
e Adjust real-time processing to improve efficiency while limiting its side effects

Establishments: 16 French hospital centers

Disease: Metastatic Kidney Cancer

Patients: 100 patients with metastatic renal cell carcinoma under anti-angiogenic
therapy

Coordinators: Profs. Cuenod (radiology) and Oudard (Oncology)

Funding: 1 M Euros
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A nonparametric model for tissue microvascular

circulation

o AIF(t) number of particles inside the aorta at time ¢, AIF(0) =0
@ [ AIF(t—0) number of arrivals into voxel x at time ¢
9 q(t) number of particles in the voxel x at time ¢
oS i.i.d. sojourn times in the voxel x with c.d.f. F

Link between arrivals and sojourn times:

t—6 t—6
Ey(t) = ; ﬂAIF(tféfz)dzf/0 BAIF(t—0—2z)P(S<z)dz
arrived before time t left before time t
t—§

— BAIF(t—6 —z)(1— F(z))dz
0
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The model for time transit distribution

This leads to the following model

ti—0
q(t,-):/o AIF(ti — 6 —7)8 (1 — F(r))dr, i=1,...n.

The value of delay § can be measured with the small error using the decay
between the jumps after the injection of the contrast agent inside the aorta and
the tissue.

f = B(1 — F) is an unknown function to estimate

g = AIF(t) can be estimated with relatively small error

g is measured with error —> ill-posed problem

Parameter (3, the blood flow, is of great interest to physicians
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Laplace deconvolution in the presence of noise

Discrete noisy version of Laplace convolution equation of the first kind :

q(t) :/0 g(t —71)f(r)dr, t>0.

Observations:
ti
y(ti):/ g(t,'fT)f(T)dTﬁ»O'e,-, i:]-a"'7na
0

where 0 < t; < ...<t, < T, ¢ are i.i.d. N(0,1) and T, may grow with the
number of observations n.

Marianna Pensky ( UCF ) 12 / 40



Laplace deconvolution and Fourier deconvolution

Technically, Laplace deconvolution can be viewed as a
particular case of Fourier deconvolution

y(ti):/ g(t,'fT)f(T)dTﬁ»O'e,-, i:]-a"'?na

— 00

which has been extensively studied in the last thirty years

In reality, Laplace deconvolution is very different from Fourier
deconvolution

@ The problem is harder than it seems

@ Fourier deconvolution approaches do not work for Laplace deconvolution. |
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Laplace deconvolution - challenges

Can Laplace convolution equation be solved by Fourier
transform on an interval (FFT)?

ti
y(t) :/ g(ti—7)f(r)dT +o0¢;, 0<t;<...<t,<T,
0

This is impossible:

@ application of FFT assumes periodicity of  and g on [0, T,] which is not
true

@ application of FFT to Laplace convolution does not result in the product
of Fourier transforms of f and g on [0, T]
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Laplace deconvolution - challenges

Can Laplace convolution equation be solved by Fourier
transform on a real line?

ti
y(ti) =/ g(ti—7)f(r)dT +oej, 0<t;<..<t,<T,
0

This is problematic!

@ there is no data available for t > T,: if T, is not very large, estimator
n
g(w) = e y(t)
j=1
of the Fourier transform of g may have poor precision

@ This is an artificial problem since Laplace deconvolution has causality
property:

@ f(t) for t < T depends only on y(t) for t < T
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Laplace deconvolution - challenges

Can Laplace convolution equation can be solved using Laplace
transform?

This is difficult:

@ Inverse Laplace transform is usually founds using partial fractions, series
expansions or Tables of inverse Laplace transforms, and is not applicable
with observational data

@ Finding inverse Laplace transform numerically is often a more difficult
task than solving a Laplace convolution equation

@ There is no data available for t > T,.
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Resolvent solution: noiseless case

Idea of the approach (no noise)

@ Let r > 1 be such that

) _ 0, if j:O,...,r72,
€ (0)_{ B,£0, if j=r—1.

@ Taking derivatives of both sides of the equation

q(t) = /0 g(t—7)f(r)dr, t=>0.

one obtains

t
qV(t) = /g(j)(th)f(T)dT, j=1,..,r—1;
0

d(t) = B,f(t)Jr/tg(r)(tT)f(T)dT
0
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Laplace deconvolution with a simple kernel:

resolvent solution

@ There exists an unique solution ¢ of the equation
t
£(0) = Bo(t) + | £e—r)o(r)er

called a resolvent of g(") (Gripenberg, Londen & Staffans, 1990)

@ Resolvent ¢ can be recovered exactly as an inverse Laplace transform

of ®, where
_ s"G(s) - B,
*0 =56

G is the Laplace transform of g, known exactly

@ There exists a unique solution of Laplace convolution equation

()= 87400 ~ 87 [ a0t~ n)otryar
0
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Laplace deconvolution with a simple kernel: explicit

solution

Let s; be distinct zeros of G(s) of orders «, respectively, | =1,.... M, M < cc.
Set sp = 0 and ag = r. Then, f is of the form

r—1 t
f(8) = B [ q(8) = 3 gt )(e) - /0 a(t — )6 (x)x |
Jj=0

where

$1(x)

M a—1 . Xjeslx M min(j,a—1) J
lj j—i
Z , bj = aopj + Z (I) a/,-sf

/=1 j=0 =1 =0
1 gor—i-1
(=1 — ) dsi—i-1 I

ayj s — )M d(s)]

s=s;
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Adaptive estimation

@ In a general case, estimate f by

— t —_—
() = B 2q0(0) — B | q(e — r)o(r)ar
0
or, if the number of zeros of G(s) is finite,

~

- r—1 P t
Fe) =B [ () = 3 brgt10)(2) 7/ Bl — e |
j=0 0

where q/(T)(t) are estimators of derivatives q\)(t), /| =0,---,r.

@ Abramovich, Pensky& Rozenholc (2013): kernel estimators with
adaptive choice of bandwidth using Lepskii method (Lepski (1991), Lepski,
Mammen and Spokoiny (1997))

@ The estimator is minimax optimal under additional assumptions on the
model
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Merits and defects of the approach

Merits of the method
@ Reduces the problem to a well-known problem
@ Allows to write an estimator in an explicit form

@ Allows to apply a variety of techniques for estimating regression function
and its derivatives

@ Produces asymptotically optimal estimators

Defects of the method

@ Requires knowledge of kernel g in general and parameters r and B, in
particular (hard to use in applications)

@ Produces boundary effects: does not allow to estimate (3, the blood flow
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Laplace deconvolution with the data-driven kernel:

Laguerre functions approach

Consider a system of Laguerre functions defined as
ok(t) = V2ae 'Ly (2at), k=0,1,---,

where Li(t) are Laguerre polynomials

@ Functions ¢x(t), k =0,1,---, form an orthonormal basis of the L?(0, c0)

space
o Let (), gk ¢k and y() k =0,--- oo, be Laguerre coefficients of
functions f(x), g(x), g(t) and y(t), respectively.
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Relations between Laguerre coefficients

By plugging expansions of f(x), g(x) and q(t) into the Laplace convolution
equation

a(t) = /0 g(t — 7)f(r)dr

obtain

Z 9ok = 2" 190 [ 6Wg0(e e
0

k=0 j=0

Using identity
/0 S(X)¢5(t — x)ax = (2a) 72 [fyesj(£) — Ducajra (B,

equation above can be re-written as

3 qWi(t) = (22) 12 Z¢ [f(k)g(0)+z glk=1) _ glk=1=1)y£().

1=0
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System of linear equations

@ Equating coefficients for each basis function, obtain an infinite triangular
system of linear equations.
-1

3

@ Define f,(x) = f ¢y (x) = Need m equations to recover

M

0
=0,---,m—1.

>
= |l

coefficients (k)

Lemma. Let f,, g, and q,, be m-dimensional vectors with elements F(k) g(k)
and ¢, k =0,1,---,m—1, respectively. Then, for any m, one has

am = Gmfm

where G, is the lower triangular Toeplitz matrix with elements

" 2a)~1/2 g(0), if 1=/,
GU) — (2a)~ Y2 (gu=1) — gli="=1) if i<,
0, if >,
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Evaluating Laguerre coefficients from discrete noisy

data

ti
Recall: one observes y(t;) = / g(ti —7)f(7)dT + o€;, i=1,---,n, with

0
measurements y(t;) taken at points 0 < t; < ... <t, < T < oo, where both n
and T are large.

@ Choose large M, so the bias in representation of f by fy is very small.

@ Form an (n x M) matrix ®y with elements ®("%) = ¢, (t;), i=1,---,n,

k=0,---,M—1.
@ Let y be n-dimensional vector with components y(t;) i=1,---, n.

o LetJyvm=(Im Omn—m) be the m x M matrix which has the m x m
identity matrix I, as its first m columns and the rest of the columns are
equal to zero

Marianna Pensky ( UCF )

25 / 40



Non-adaptive estimation

Construction:

Denote the initial estimator of vector qu by
G = (O] Ou) 'oFy

Consider a collection {1, ..., M} of indices and define a collection of estimators
for all m, 1 < m < M, given by

fr = G o man = G dmm(OF, Oy 0Ly

Motivation:

@ Use regression approach, not numerical integration for estimating the
Laguerre coefficients (the bias depends on M, not T)

@ Do not need to re-fit estimator qu; for every model size m
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The oracle risk

Denote
Qn = 2@ 0u) n(GuG]In)

If T and n are large, T /n is small, then fb,\T/,th ~ nTLl.

Define the set of indices M, = M,(X) = {1,..., My} such that condition
T n~'Tr(Qm) < R, holds for all m < Mj.
The smallest possible risk, the oracle risk, is given by

Roracle = me%i';'(m [fn — 12+ 02 Tn™" Tr(Qu)] -
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Model selection using complexity penalty

Denote

n _ _
A, =4 /? G, mm(®f du)to),
Vo = [Anll3 = Tr(Qm),  ph = p°(Am).

fn=1/T/n ALy

For any constant B > 0 introduce a penalty

Recall that

pen(m) = 40 Tn~ " [(1 + B)v2, + (1 + B™1)pZ, log(m?p3,)] -
Choose model size

m = arg min {m EMy: —|Ifmll?+ pen(m)}
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Risk of penalized estimator

If M = n?/3 and q(t fo (t — 7)f(7)dT is sufficiently smooth, then

2 T a
E ffﬁ* f 2 < C |l 2p2 Rorace — -
(17~ 1) < [og(mopm) et 2],

where a is the scaling parameter of the Laguerre functions and mg = mg(n, T) is
the value of m which minimizes the right-hand side of the oracle inequality.

v

The penalized estimator f has the risk within Iog(m%p%no) of the oracle risk
under almost no assumptions on the model

With some extra assumptions, one can show that the estimator is minimax
optimal within a logarithmic factor of n
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Merits and defects of the approach

Advantages of the method

@ Does not require exact knowledge of r and exact representation of the
kernel g

@ Computationally very easy and fast: solution of a relatively small system
of equations. The system is triangular with a Toeplitz matrix.

@ No boundary effects due to extension at zero and cut-off at T.

@ Presence of an extra parameter a allows to control the error of
approximation of both g and f.

Shortcomings of the method

@ Does not work well for functions which do not have simple
representation via Laguerre functions basis

@ Hard to enforce positivity or shape restrictions
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General approach

Consider a general ill-posed linear inverse problem

b
yi=q(ti) +&  with q(t)I(Qf)(f)I/ u(t, T)f(r)dr, t € [c,d]

Q@ does not have a bounded inverse

& are i.i.d.centered sub-gaussian random variables

E¢ =0, P(|&|> t) < exp(—t?/207)

Our particular case is a discrete noisy version of Laplace convolution
equation of the first kind where f € L2[0, T], g € L2[0, T]

u(t,7)=g(t—7); g(z)=AIF(z) if z>0; g(z)=0 otherwise

0<t; <..<t,<T are observation times
n = 90 for DCE-MRI data and n = 23 for DCE-CT data
f(7) = B(1 — F(7) is a nonnegative decreasing function
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Application of overcomplete dictionaries

Consider a dictionary {¢j,j =1,---, p} such that functions ; are linearly
independent and ||¢j||> = 1. For any t € RP, denote

fi(2) = D iwi(2)-
j=1

Estimate f by fé

If function f were known, we would search for the vector of coefficients @ as a
solution of @ = argmin, ||f — £||> where the contrast is

p

If = £113 = [P + 1617 = 2D _(F, 0))t;.
j=1

Here f is independent of t and f; is completely known
Need to estimate the last term only
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Lasso solution

Let Q@* be the conjugate operator for Q:
(Q*u)(z) = fZT g(x —z)u(x)dx, 0<z<T.
(Qf ,u) = (f, Q*u) for any f,u € L2[0, T]
Assumption A0 There exist 1; such that

)
(Q*)(2) = / g(x — 2)(x)dx = gi(z) and (|2 < o0

|l1bj]2 is the “price” of using dictionary element ¢;

Replace 8; = (f, ¢j) = (q,1;) by its estimator B; where

. 1 n T2 n
Bi=~ > yii(x)Ax;, VP = — > ().
i=1 i=1
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Lasso solution

The estimation procedure

Let ® be the matrix with elements ®;; = (o, ¢;) and WTW = ®. Estimate f
by f5, where @ is the solution of

P P
0 — i Tt — Bt |t
0—argmt|n t' ot 2Zﬂjtj+a21jj|tj|
j=1 j=1
or

8 = argmin{[[We —~[3 + o Tt]1}

Here, v = (WWT)+WB and T is the diagonal matrix T = diag(v1, - - - , vp).

Advantage: Lasso is used in a prediction set up where it requires much milder
conditions
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Lasso: slow error rates

Let P={1,---,p} and a > \/2n 1o (7 + 1) logp.
Then, under no restriction on the dictionary, with probability at least 1 —2p~7

P
1fg — £I3 < inf | Wt — F[3 + 40 Y vt
j=1

These are the “slow” Lasso error rates

Under a compatibility condition for matrix W obtain “fast” Lasso error rates

v

Advantage: Matrix W is the dictionary-generated matrix and can be chosen
to satisfy compatibility conditions (e.g., restricted isometry condition)
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Sharp oracle inequality: fast rates

Let &, be a reduction of Gram matrix @ to a set of functions {¢;,j € J}, and
L, = Span {yj,j € J} and compatibility condition hold
Then, with high probability,

. o2 logp
75— FI3 < min 4 IF — fe, I + € > 52~ 372

J )
mln((bJ) jeJ

If £ were known, one would choose J C P and recover f as its estimated
projection f on L with the error

E|IF — fI8 > min § If = fz,13 + ———= ,,,J ZJ

mln

Hence, up to a log p factor, the estimator fé attains the minimum possible
mean squared error for a particular function of interest f

Here, log p is the “price” for choosing an appropriate subset of dictionary
functions
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Application to DCE imaging data

@ We used a dictionary constructed of Gamma cdfs
wk(x) = GammaCDF (x; ax, bx), k=1,---,p,
Here (ak, bx) take values on the Cartesian product of (0,1,---, m; — 1) and
(A, 2A, -, mpA) with A fixed in advance.

@ In order to form matrix W with columns ¢;, j =1,---, p, dictionary
functions were evaluated on a fine grid

@ We assumed that the errors are Gaussian, so that the error vector £ € R” is
Gaussian N(0, o1)

@ Matrix Q was constructed so that it carried out numerical integration for
0<x<T,ie g=Qf
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Estimation on the basis of DCE-CT data

Figure: Top row: estimators ?(t) of f(t) = B(1 — F(t) for two different tissue
voxels on the basis of DCE-CT data. Bottom row: observations of tissue
enhancements (red dots), the recovered values of q(t) = [ AlIF(t — 7)f(7)dT

(blue line). The number of observations n = 23.
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Merits and defects of the approach

Advantages of the method

@ Does not require exact knowledge of r and exact representation of the
kernel g

@ No boundary effects due to extension at zero and cut-off at T.

@ The dictionary is extremely flexible. Can be comprised of kernel functions,
splines, frames, etc.

@ Easy to enforce positivity or shape restrictions

@ Works very well when the noise level is high and the sample size is small

Shortcomings of the method

@ Computationally is not as easy as Laguerre functions method: need to
evaluate inverse images of the dictionary functions (although this step can
be done in advance) and solve the optimization problem. Easier than the
resolvent solution

@ The compatibility condition that guarantees fast error rates is hard to check
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