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Blind Source Separation (BSS): Information transmission, cancer genetics, ...
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1. Introduction of the SBSSR Model.

2. Identi�ability conditions.

3. Estimator, which SEparateS �nite
Alphabet MixturEs (SESAME) and yields
con�dence statements.

4. Applications and Simulations.
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Linear mixtures of �nite alphabet step functions

Blind source separation:

f 1, . . . , f m︸ ︷︷ ︸
source functions

ω−→︸︷︷︸
linear mixing

g︸︷︷︸
mixture
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Linear mixtures of �nite alphabet step functions

f 1, . . . , f m︸ ︷︷ ︸
source functions

ω−→︸︷︷︸
linear mixing

g︸︷︷︸
mixture

A := {a1, . . . , ak} �nite alphabet, known
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Linear mixtures of �nite alphabet step functions

f 1, . . . , f m︸ ︷︷ ︸
source functions

ω−→︸︷︷︸
linear mixing

g︸︷︷︸
mixture

g =
m∑
i=1

ωi f
i , with

m∑
i=1

ωi = 1 and 0 < ωi < 1.

Remark: Extensions to general ω possible (not shown).
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Linear mixtures of �nite alphabet step functions

f 1, . . . , f m︸ ︷︷ ︸
source functions

ω−→︸︷︷︸
linear mixing

g︸︷︷︸
mixture

Example: m = 3, A = {0, 1, 2}
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Linear mixtures of �nite alphabet step functions

f 1, . . . , f m︸ ︷︷ ︸
source functions

ω−→︸︷︷︸
linear mixing

g︸︷︷︸
mixture

Example: m = 3, A = {0, 1, 2}, ω = (0.11, 0.29, 0.6)
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Linear mixtures of �nite alphabet step functions

f 1, . . . , f m︸ ︷︷ ︸
source functions

ω−→︸︷︷︸
linear mixing

g︸︷︷︸
mixture

Example: m = 3, A = {0, 1, 2}, ω = (0.11, 0.29, 0.6)

g = ω1f
1 + ω2f

2 + ω3f
3
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Linear mixtures of �nite alphabet step functions

f 1, . . . , f m︸ ︷︷ ︸
source functions

ω−→︸︷︷︸
linear mixing

g︸︷︷︸
mixture

+ ε

Example: m = 3, A = {0, 1, 2}, ω = (0.11, 0.29, 0.6)

Y = ω1f
1 + ω2f

2 + ω3f
3 + ε, ε ∼ N (0, σ2I )
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First Attempts

Idea 1. : Estimate the mixture and decompose afterwards.

• Small signal di�erences will be hard to recover

• Not every step function can be decomposed:
alphabet-speci�c restrictions on function values! �

Y = ω1f
1 + ω2f

2 + ω3f
3 + ε, ε ∼ N (0, σ2I )
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Naive clustering approach (has been advocated in SP literature...)

Idea 2. : Pre-estimate the mixture function values.

Clustering of (at most) km modes is known to be a hard problem!

Y = ω1f
1 + ω2f

2 + ω3f
3 + ε, ε ∼ N (0, σ2I )

SESAME avoids preclustering
� recovers all quantities based on mixture model & �nite alphabet
� simultaneous multiscale inference
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Statistical Blind Source Separation Regression (SBSSR)

Yj =
m∑
i=1

ωi f
i (xj) + εj , ε ∼ N (0, σ2I ), j = 1, . . . , n

with f 1, . . . , f m ∈ S(A) and ω ∈ Ω(m), xj = j/n.

Mixing weights:

Ω(m) :=
{
ω ∈ Rm : 0 < ω1 < ... < ωm and

∑m
i=1

ωi = 1
}

Finite alphabet step functions:

S(A) :=
{∑K

i=0
θi1[τi ,τi+1) : θi ∈ A, 0 = τ0 < ... < τK+1 = 1,K ∈ N

}
Known are

1. the alphabet A = {a1, . . . , ak},
2. the number of source functions m ∈ N, and
3. the (pre-estimated) standard deviation σ.
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Statistical Blind Source Separation Regression (SBSSR)

Yj =
m∑
i=1

ωi f
i (xj) + εj , ε ∼ N (0, σ2I ), j = 1, . . . , n

with f 1, . . . , f m ∈ S(A) and ω ∈ Ω(m), xj = j/n.

Mixing weights:

Ω(m) :=
{
ω ∈ Rm : 0 < ω1 < ... < ωm and

∑m
i=1

ωi = 1
}

Finite alphabet step functions:

S(A) :=
{∑K

i=0
θi1[τi ,τi+1) : θi ∈ A, 0 = τ0 < ... < τK+1 = 1,K ∈ N

}
Unknowns are

1. the mixing weights ω = (ω1, . . . , ωm) and
2. the source functions f 1, . . . , f m, i.e.

2.1 their number of change-points K i ,
2.2 their change-point locations τ1, . . . , τK , and
2.3 their function values (θ ∈ A).
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A non-identi�able mixture

For m = 2 and A = {a1, a2, a3, a4} = {10, 13.75, 20, 25}:

⇒ Identi�ability is a necessary assumption for valid signal recovery
in the SBSSR model!
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Identi�ability (for given A and m ∈ N)

g is identi�able ⇔ ∃! (ω, f ) ∈ Ω(m)× S(A)m s.t. g = ω>f .

The following two conditions ensure identi�ability: 1

1. Alphabet separation boundary for ω (ASB)

&

2. Variability of sources f (VS)

⇒ Identi�ability

1[Diamantaras, 2006, Behr and Munk, 2015]
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Necessary identi�ability condition

1. (Necessary) condition on the weights ω for the source functions
f 1, . . . , f m to be identi�able:

Finite alphabet separation boundary:

0 < δ := min
a 6=a′∈Am

∣∣∣ω>a− ω>a′∣∣∣ (ASB)

Example: m = 2, A = {10, 20, 30}, and (ω1, ω2) = (13 ,
2
3):
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Su�cient identi�ability condition

2. (Su�cient) condition on the source functions f 1, . . . , f m for the
weights ω to be identi�able:

Variability of source function:
For all r = 1, ...,m exists a sampling point xr such that

(f 1(xr ), ..., f m(xr )) = (a1, ..., a1, a2︸︷︷︸
rth position

, a1, ..., a1) (VS)

Example: If f 1 = . . . = f m, then g =
∑m

i=1 ωi f
i = f 1 irrespective

of ω ⇒ f 1, . . . , f m must di�er su�ciently much.
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Stable recovery of weights and sources

Let g = ω>f , g̃ = ω̃>f̃ be two mixtures, both satisfying the
identi�ability conditions 1. and 2. (for the same ASB δ). Let ε be
such that 0 < ε < δ(a2 − a1)/(2m(ak − a1)). If

sup
x∈[0,1)

|g(x)− g̃(x)| < ε,

1. then the weights satisfy the stable approximate
recovery (SAR) property
maxi=1,...,m |ωi − ω̃i | < ε/(a2 − a1) and

2. the sources satisfy the stable exact recovery
(SER) property f = f̃ .
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SESAME (SEparateS �nite Alphabet MixturEs)

1. Construct a con�dence region C1−α for the mixing weights ω
(characterized by acceptance region of a multiscale test),
→ with diameter ln(n)/

√
n.

2. Estimate ω̂ ∈ C1−α(Y ).

3. Estimate f̂ 1, . . . , f̂ m as a constrained maximum likelihood
estimator (With the same multiscale constraint as for C1−α
but with a possibly di�erent level β)

4. This yields asymptotically uniform multivariate (honest)
con�dence bands H(β) for f 1, . . . , f m.
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Inferring the mixing weights ω

For ω and f satisfying the identi�ability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

=⇒ exact recovery algorithm for ω, O(km).
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Inferring the mixing weights ω

For ω and f satisfying the identi�ability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

=⇒ exact recovery algorithm for ω, O(km).

Example: m = 3, A = {0, 1}

ω = (0.11, 0.29, 0.6) ⇒

ω10 + ω20 + ω30 = 0

ω11 + ω20 + ω30 = 0.11

ω10 + ω21 + ω30 = 0.29

ω11 + ω21 + ω30 = 0.4

ω10 + ω20 + ω31 = 0.6

ω11 + ω20 + ω31 = 0.71

ω10 + ω21 + ω31 = 0.89

ω11 + ω21 + ω31 = 1
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Inferring the mixing weights ω

For ω and f satisfying the identi�ability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

=⇒ exact recovery algorithm for ω, O(km).

• Recovery of the weights relies on a good estimate of the
function values of g = ω>f taking into account the speci�c
structure of underlying step functions f i ∈ S(A).

• Estimation of f is not required.

• From this one can construct a honest con�dence set for ω
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Multiscale statistic
As the jump locations may occur at any place, a natural way for
inferring the function values of g is to use local log-likelihood ratio
test statistics in a multiscale fashion2. For the local test problem

H0 : g |[xi ,xj ] ≡ gij vs. H1 : g |[xi ,xj ] 6≡ gij

we employ the test statistic

T j
i (Yi , . . . ,Yj , gij) =

(
∑j

l=i Yl − gij)
2

σ2(j − i + 1)
,

in a multiscale fashion

Tn(Y , g̃) := max
1≤i≤j≤n

g̃ |[i/n,j/n]≡g̃ij

|
∑j

l=i Yl − g̃ij |
σ
√
j − i + 1

−

√
2 ln

(
en

j − i + 1

)
.

2[Siegmund and Yakir, 2000, Dümbgen and Spokoiny, 2001,
Davies and Kovac, 2001, Dümbgen and Walther, 2008]
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Geometric interpretation of the statistic Tn

Tn(Y , g̃) ≤ q ⇔ g̃ij ∈ B(i , j) ∀1 ≤ i ≤ j ≤ n with g̃ |[i/n,j/n] ≡ g̃ij ,

for q ∈ R, with intervals

B(i , j) :=

[
Y

j
i −

q + pen(j − i + 1)√
j − i + 1/σ

,Y
j
i +

q + pen(j − i + 1)√
j − i + 1/σ

]
.

From simulations one obtains qn(α), α ∈ (0, 1), the 1− α quantile
of Tn = Tn(Y , 0), i.e.,

inf
g
P(Tn(Y , g) ≤ qn(α)) ≥ 1− α.

Hence, for B(i , j) with q = qn(α),

inf
g
P(gij ∈ B(i , j) ∀1 ≤ i ≤ j ≤ n with g |[i/n,j/n] ≡ gij) ≥ 1− α.
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Con�dence boxes
Let B = {B(i , j) : 1 ≤ i ≤ j ≤ n} with q = qn(α) and assume
B? := B(i?1 , j

?
1 )× . . .× B(i?m, j

?
m) ∈ Bm has been constructed, such

that
f |[i?r ,j?r ] ≡ [A]r , (1)

with A as in (VS). Then

{ω ∈ A−1B?} ⊃
⋂

1≤r≤m
{g |[i?r j?r ] ≡ ω

>[A]r ∈ B(i?r , j
?
r )}

and
{Tn(Y , g) ≤ qn(α)} =

⋂
1≤i≤j≤n

g |[i/n,j/n]≡gij

{gij ∈ B(i , j)}

which implies

{ω ∈ A−1B?} ⊃ {Tn(Y , g) ≤ qn(α)}
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Con�dence boxes
One cannot obtain B? directly as f 1, . . . , f m are unknown. �

⇒ Construct B? ⊂ Bm, with P (B? ∈ B?|Tn ≤ qn(α)) = 1 and
de�ne

C1−α :=
⋃

B∈B?

A−1B.

P (ω ∈ C1−α)

=P (ω ∈ C1−α|Tn ≤ qn(α))P (Tn ≤ qn(α))

=P

(
ω ∈

⋃
B∈B?

A−1B

∣∣∣∣∣Tn ≤ qn(α)

)
P (Tn ≤ qn(α))

≥P
(
ω ∈ A−1B?

∣∣Tn ≤ qn(α)
)
P (Tn ≤ qn(α))

≥1− α.
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Construction of B?

Apply reduction rules R1. - R3. on Bm reducing it to a smaller set
B? ⊂ Bm:

R 1. Delete B ∈ Bm if there exists an r ∈ {1, . . . ,m}, s.t.
projr (B) ∈

{B(i , j) ∈ B : ∃[s, t], [u, v ] ⊂ [i , j ] with B(s, t) ∩ B(u, v) = ∅}.

All boxes, s.t. g̃ ∈M satis�es MS constraint, cannot be constant
on [i , j ]

→ Exploring the fact that f = (f1, . . . , f
m)> is constant on [i?r , j

?
r ],

with B? := B(i?1 , j
?
1 )× . . .× B(i?m, j

?
m), conditioned on

{Tn ≤ qn(α)}.
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Construction of B?

Apply reduction rules R1. - R3. on Bm reducing it to a smaller set
B? ⊂ Bm:

R 2. Delete B ∈ Bm, with [br , br ] := projr (B),

1. for any 2 ≤ r ≤ m

a2 + (m − 1)a1 −
∑r−1

k=1 bk
m − r + 1

≤ br or br−1 ≥ br , or

2. . . .

→ Exploring the structure of Ω(m), e.g.,
ωi−1 < ωi < (1−

∑i−1
j=1 ωj)/(m − i + 1), . . . , together with the

speci�c choice of the matrix A in (VS).
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Construction of B?

Apply reduction rules R1. - R3. on Bm reducing it to a smaller set
B? ⊂ Bm:

R 3. Delete B ∈ Bm, if there exists a k ∈ {1, . . . , n} such that for
all [i , j ] ∈ {[i , j ] : k ∈ [i , j ] and B(i , j) 6∈ Bnc}[

max
i≤u≤v≤j

buv , min
i≤u≤v≤j

buv
]
∩
{
ω̃>a : a ∈ Am and ω̃ ∈ A−1B

}
is empty, with B(u, v) = [buv , buv ] ∈ B.

→ Exploring the fact that g = ω>f maps to
{ω̃>a : a ∈ Am and ω̃ ∈ A−1B?} conditioned on {Tn ≤ qn(α)}.
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Diameter of C1−α

Assume a minimal scale for jumps λ > 0 and the identi�ability
conditions (ASB) and (VS), then

P

(
dist(ω,C1−αn(Y )) <

c2
a2 − a1

ln(n)√
n

)
≥ 1− exp(−c1 ln2(n))

for all n ≥ N? and αn := exp(−c1 ln2(n)), with some constants
c1 = c1(λ, δ), c2 = c2(λ, δ) and some explicit N? ∈ N, with
ln(N?) > c(A,m)σ2/(λδ2), where dist(d ,D) := supd̃∈D ‖d − d̃‖∞.
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Estimating the mixing weights

SESAME estimates ω by

ω̂ :=
1∑m

i=1(ωi + ωi )
(ω1 + ω1, . . . , ωm + ωm),

with C1−α =: [ω1, ω1]× . . .× [ωm, ωm].

→ α can be seen as tuning parameter for ω̂.

⇒ Data driven selection method (MVT- and SST-method 3).

3[Behr et al., 2015]
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Inferring the source functions f 1, . . . , f m

For ω̂ ∈ C1−α(Y ) we estimate f 1, . . . , f m with a constrained
maximum likelihood estimator4:

(f̂ 1, . . . , f̂ m) := argmaxf ∈H(β) LY (f ),

with L being the likelihood function and

H(β) := {f ∈ S(A)m : Tn

(
Y , ω̂>f

)
≤ qn(β) and K

(
ω̂>f

)
= K̂}.

and

K̂ := inf
f ∈S(A)m

K (ω̂>f ) s.t. Tn(Y , ω̂>f ) ≤ qn(β).

(K(g) denotes the number of change-points of g)

4[Frick et al., 2014]
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Exact recovery of the source functions f 1, . . . , f m

Assuming a minimal scale for jumps λ > 0, the identi�ability
condition (ASB) and (VS) and choosing

αn, βn = exp(−C∗ ln2(n)),

then for n ≥ N? with probability at least 1− αn the estimator
f̂ 1, . . . , f̂ m

1. estimates the number of change-points of f i correctly for
i = 1, . . . ,m,

2. estimates the change-point locations with rate ln2(n)
n , and

3. estimates the function values of f 1, . . . , f m exactly (up to the
uncertainty in the change point location).
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Con�dence bands

Let T̃n be as Tn, but with penalty term increased by(
(a2−a1) ln(n)

m +

√
8σ2 ln(e/λ)

λ

)√
j−i+1

n , and let H̃ be as H but with

Tn replaced by T̃n.
Assume the identi�ability conditions (ASB) and (VS), then for
ω̂ = ω̂(αn) in H̃(β)

lim
n−→∞

inf
g
P((f 1, ..., f m) ∈ H̃(β)) ≥ 1− β.
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SESAME's rates of convergence

1. SESAME recovers the change point locations of f i in
probability with rate ln2(n)/n.
→ Estimation rate is bounded from below by the sampling
rate 1/n ⇒ optimal rate up to a ln2(n) factor.

2. The minimal scale λ may depend on n. If λ−1n ∈ o(ln(n))
SESAME's estimates remain consistent.
→ No method can recover �ner details of the mixture g below
its detection boundary which is of the same order5.

3. The weights' estimation rate ln(n)/
√
n, arises from the box

height with qn(αn) ∈ O(ln(n)) and attains the optimal rate
O(1/

√
n) up to a ln(n) term.

5[Dümbgen and Walther, 2008, Frick et al., 2014]
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Example
m = 3, A = {0, 1, 2}, σ = 0.22, and n = 7680, with ω = (0.11, 0.29, 0.6). We
estimated ω̂ = (0.11, 0.26, 0.63) (with C0.9 = [0.00, 0.33]× [0.07, 0.41]× [0.39, 0.71]).

Color code: deviation with con�dence{0, 1, 2}



The SBSSR model Identi�ability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography Appendix

Violation of identi�ability

1. (ASB) condition violated, i.e., δ = 0:

1.1 Little in�uence on ω̂.
1.2 Big in�uence on f̂ 1, . . . , f̂ m, but uncertainty is captured in

con�dence bands.

2. (VS) condition violated, i.e., too little variation of f 1, ..., f m:

2.1 Big in�uence on ω̂.
2.2 Big in�uence on f̂ 1, ..., f̂ m as estimate is based on ω̂.

−→ Simulation study (Behr et al.'15)
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Violation of identi�ability

1. (ASB) condition violated, i.e., δ = 0:

1.1 Little in�uence on ω̂.
1.2 Big in�uence on f̂ 1, . . . , f̂ m, but uncertainty is captured in

con�dence bands.

2. (VS) condition violated, i.e., too little variation of f 1, ..., f m:

2.1 Big in�uence on ω̂.
2.2 Big in�uence on f̂ 1, ..., f̂ m as estimate is based on ω̂.

−→ Simulation study (Behr et al.'15)

When f comes from a Markov chain, probability
that variation is rich enough converges exponenti-
ally fast to 1.
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Inferring intra-tumor heterogeneity 6

CNVs := Copy-number variations

6[Beroukhim et al., 2010, Greaves and Maley, 2012, Shah et al., 2012]
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Inferring intra-tumor heterogeneity 6

f 1, . . . , f m ∼ CNVs of tumor-clones / normal contamination.

ω ∼ proportion of the clone in the tumor.

6[Beroukhim et al., 2010, Greaves and Maley, 2012, Shah et al., 2012]
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Generating test data for CNV characterization 7

7Sequencing was done through a collaboration of Complete Genomics with
the Welcome Trust Center for Human Genetics at the University of Oxford.
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Characterizing CNVs in tumors

For (ωNormal, ωClone 1, ωClone 2) = (0.2, 0.35, 0.45) SESAME estimated
(ω̂Normal, ω̂Clone 1, ω̂Clone 2) = (0.12, 0.35, 0.53).
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Summary

1. Statistical Blind Source Separation Regression
(SBSSR) model 1.

2. Complete (not shown) characterization of identi�ability2.

3. SESAME:
• Optimal estimators (up to log-factors) for the mixing weights

and the source functions under very weak identi�ability
conditions.

• Honest con�dence statements1 for all quantities.
• Algorithms1 for e�cient computations (DP based, not shown).

1Behr, M., Holmes, C., and Munk, A., Multiscale blind source separation,
prepint 2015

2Behr, M. and Munk, A. (2015). Identi�ability for blind separation of
multiple �nite alphabet linear mixtures, arXiv:1505.05272.
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Discussion

• 'Objective' parameter choice for α, β.
Data driven choices targeting minimizing risk possible (not
shown)

• Simulations studies show stability in choice of con�dence
parameters α and β and reasonable robustness against
normality and heteroscedasticity1.
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Discussion

• How big is the set ASB(ω) ≥ δ?

Finite alphabet separation boundary:

0 < δ := min
a 6=a′∈Am

∣∣∣ω>a− ω>a′∣∣∣ (ASB)

0 1/2δ (1-δ)/20 1/2δ (1-δ)/20 1/2δ (1-δ)/20 1/2δ (1-δ)/2

ω1

ω2

1/2

1/2

1/4

1/4

1/3

(1-δ)/2

δ
0

1/3

(1-δ)/2

δ

ω1

ω2

1/2

1/2

1/4

1/4

1/3

(1-δ)/2

δ
0

1/3

(1-δ)/2

δ

We can show:
P(ω identi�able) = 1− O(δ)
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Discussion/Outlook

• linear model

Y = Fω + ε, F = (f i (xj))1≤i≤m,1≤j≤n

compressive sensing: F known, ω sparse
matrix completion: here we sample from one linear functional
(mixture), no low rank assumption, rather large rank is
bene�cial → identi�ablity, �nite alphabet is crucial

• nonnegative matrix factorization F , ω ≥ 0,
(Donoho/Stodden'03) simpliciality condition ↔
ASB-condition, M > 1, �nite alphabet is crucial again.

• Open issue: unknown m (number of mixture components),
unknown alphabet
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Technical Material
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Multiscale statistic
As the jump locations may occur at any place, a natural way for
inferring the function values of g is to use local log-likelihood ratio
test statistics in a multiscale fashion8. For the local test problem

H0 : g |[xi ,xj ] ≡ gij vs. H1 : g |[xi ,xj ] 6≡ gij

we employ the test statistic

T j
i (Yi , . . . ,Yj , gij) =

(
∑j

l=i Yl − gij)
2

σ2(j − i + 1)
,

in a multiscale fashion

Tn(Y , g̃) := max
1≤i≤j≤n

g̃ |[i/n,j/n]≡g̃ij

|
∑j

l=i Yl − g̃ij |
σ
√
j − i + 1

−

√
2 ln

(
en

j − i + 1

)
.

8[Siegmund and Yakir, 2000, Dümbgen and Spokoiny, 2001,
Davies and Kovac, 2001, Dümbgen and Walther, 2008]
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Geometric interpretation of the statistic Tn

Tn(Y , g̃) ≤ q ⇔ g̃ij ∈ B(i , j) ∀1 ≤ i ≤ j ≤ n with g̃ |[i/n,j/n] ≡ g̃ij ,

for q ∈ R, with intervals

B(i , j) :=

[
Y

j
i −

q + pen(j − i + 1)√
j − i + 1/σ

,Y
j
i +

q + pen(j − i + 1)√
j − i + 1/σ

]
.

From simulations one obtains qn(α), α ∈ (0, 1), the 1− α quantile
of Tn = Tn(Y , 0), i.e.,

inf
g
P(Tn(Y , g) ≤ qn(α)) ≥ 1− α.

Hence, for B(i , j) with q = qn(α),

inf
g
P(gij ∈ B(i , j) ∀1 ≤ i ≤ j ≤ n with g |[i/n,j/n] ≡ gij) ≥ 1− α.
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Con�dence boxes
Let B = {B(i , j) : 1 ≤ i ≤ j ≤ n} with q = qn(α) and assume
B? := B(i?1 , j

?
1 )× . . .× B(i?m, j

?
m) ∈ Bm has been constructed, such

that
f |[i?r ,j?r ] ≡ [A]r , (2)

with A as in (VS). Then

{ω ∈ A−1B?} ⊃
⋂

1≤r≤m
{g |[i?r j?r ] ≡ ω

>[A]r ∈ B(i?r , j
?
r )}

and
{Tn(Y , g) ≤ qn(α)} =

⋂
1≤i≤j≤n

g |[i/n,j/n]≡gij

{gij ∈ B(i , j)}

which implies

{ω ∈ A−1B?} ⊃ {Tn(Y , g) ≤ qn(α)}
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Con�dence boxes
One cannot obtain B? directly as f 1, . . . , f m are unknown. �

⇒ Construct B? ⊂ Bm, with P (B? ∈ B?|Tn ≤ qn(α)) = 1 and
de�ne

C1−α :=
⋃

B∈B?

A−1B.

P (ω ∈ C1−α)

≥P (ω ∈ C1−α|Tn ≤ qn(α))P (Tn ≤ qn(α))

=P

(
ω ∈

⋃
B∈B?

A−1B

∣∣∣∣∣Tn ≤ qn(α)

)
P (Tn ≤ qn(α))

≥P
(
ω ∈ A−1B?

∣∣Tn ≤ qn(α)
)
P (Tn ≤ qn(α))

≥1− α.
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Construction of B?

Apply reduction rules R1. - R3. on Bm reducing it to a smaller set
B? ⊂ Bm:

R 4. Delete B ∈ Bm if there exists an r ∈ {1, . . . ,m}, s.t.
projr (B) ∈

Bnc := {B(i , j) ∈ B : ∃[s, t], [u, v ] ⊂ [i , j ] with B(s, t) ∩ B(u, v) = ∅}.

→ Exploring the fact that f = (f1, . . . , f
m)> is constant on [i?r , j

?
r ],

with B? := B(i?1 , j
?
1 )× . . .× B(i?m, j

?
m), conditioned on

{Tn ≤ qn(α)}.



The SBSSR model Identi�ability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography Appendix

Construction of B?

Apply reduction rules R1. - R3. on Bm reducing it to a smaller set
B? ⊂ Bm:

R 5. Delete B ∈ Bm, with [br , br ] := projr (B),

1. for any 2 ≤ r ≤ m

a2 + (m − 1)a1 −
∑r−1

k=1 bk
m − r + 1

≤ br or br−1 ≥ br , or

2. . . .

→ Exploring the structure of Ω(m), e.g.,
ωi−1 < ωi < (1−

∑i−1
j=1 ωj)/(m − i + 1), . . . , together with the

speci�c choice of the matrix A in (VS).
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Construction of B?

Apply reduction rules R1. - R3. on Bm reducing it to a smaller set
B? ⊂ Bm:

R 6. Delete B ∈ Bm, if there exists a k ∈ {1, . . . , n} such that for
all [i , j ] ∈ {[i , j ] : k ∈ [i , j ] and B(i , j) 6∈ Bnc}[

max
i≤u≤v≤j

buv , min
i≤u≤v≤j

buv
]
∩
{
ω̃>a : a ∈ Am and ω̃ ∈ A−1B

}
is empty, with B(u, v) = [buv , buv ] ∈ B.

→ Exploring the fact that g = ω>f maps to
{ω̃>a : a ∈ Am and ω̃ ∈ A−1B?} conditioned on {Tn ≤ qn(α)}.
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Example
m = 3, A = {0, 1, 2}, σ = 0.22, and n = 7680, with ω = (0.11, 0.29, 0.6). We
estimated ω̂ = (0.11, 0.26, 0.63) (with C0.9 = [0.00, 0.33]× [0.07, 0.41]× [0.39, 0.71]).

Color code: deviation with con�dence{0, 1, 2}
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Violation of identi�ability

1. (ASB) condition violated, i.e., δ = 0:

1.1 Little in�uence on ω̂.
1.2 Big in�uence on f̂ 1, . . . , f̂ m, but uncertainty is captured in

con�dence bands.

2. (VS) condition violated, i.e., too little variation of f 1, ..., f m:

2.1 Big in�uence on ω̂.
2.2 Big in�uence on f̂ 1, ..., f̂ m as estimate is based on ω̂.
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Violation of identi�ability
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Violation of identi�ability

For f as in our example, but ω choose randomly, uniformly
distributed on Ω(3), we compute 10.000 realizations of ω̂, C1−α,
f̂ 1, . . . , f̂ 3, and H̃(β), for σ = 0.05, n = 1280, and α = β = 0.1.
Consequently, for each run we get a di�erent ω and δ, respectively.

δ ∈ MAE(ω̂) [10−3] dist(ω, C1−α) [10−3]

[0, 0.0001] (6, 4, 5) 29
[0.0001, 0.01] (7, 4, 7) 34

[0.01, 0.02] (4, 4, 4) 30
[0.02, 0.03] (4, 4, 4) 29
[0.03, 0.04] (4, 3, 4) 31
[0.04, 0.05] (4, 3, 4) 31
[0.05, 0.06] (4, 3, 5) 31
[0.06, 0.07] (3, 3, 4) 31

→ SESAME's performance of ω̂ and C1−α, respectively, is not
much in�uenced by the ASB δ
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Violation of identi�ability

For f as in our example, but ω choose randomly, uniformly
distributed on Ω(3), we compute 10.000 realizations of ω̂, C1−α,
f̂ 1, . . . , f̂ 3, and H̃(β), for σ = 0.05, n = 1280, and α = β = 0.1.
Consequently, for each run we get a di�erent ω and δ, respectively.

δ ∈ MIAE(f̂ i ) [10−4] med(|H̃x(0.1)|) δ(x) ∈
[0, 0.0001] (1916, 1067, 483) 3 [0, 0.001]

[0.0001, 0.01] (1536, 923, 354) 3 [0.001, 0.01]
[0.01, 0.02] (671, 474, 147) 3 [0.01, 0.02]
[0.02, 0.03] (236, 164, 40) 3 [0.02, 0.03]
[0.03, 0.04] (96, 37, 7) 2 [0.03, 0.04]
[0.04, 0.05] (100, 7, 2) 2 [0.04, 0.05]
[0.05, 0.06] (42, 1, 0) 2 [0.05, 0.1]
[0.06, 0.07] (16, 4, 0) 1 [0.1, 0.33]

→ Uncertainty is captured in the con�dence bands.
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Violation of identi�ability

1. (ASB) condition violated, i.e., δ = 0:
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2. (VS) condition violated, i.e., too little variation of f 1, ..., f m:

2.1 Big in�uence on ω̂.
2.2 Big in�uence on f̂ 1, ..., f̂ m as estimate is based on ω̂.
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When f comes from a Markov chain, probability
that variation is rich enough converges exponenti-
ally fast to 1.9

9[Behr and Munk, 2015]
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