

Statistical Blind Source Separation (with Applications in Cancer Genetics)

Merle Behr¹, Chris Holmes³, and Axel Munk¹²

¹Institute for Mathematical Stochastics, Göttingen,

²Max Planck Institute for Biophysical Chemistry, Göttingen,

³University of Oxford, Department of Statistics

Mathematical Statistics Inverse Problems Week C.I.R.M., February 8th, 2016

Blind Source Separation (BSS): Information transmission, cancer genetics, ...

Blind Source Separation (BSS): Information transmission, cancer genetics, ...

- 1. Introduction of the SBSSR Model.
- 2. Identifiability conditions.
- 3. Estimator, which SEparateS finite Alphabet MixturEs (SESAME) and yields confidence statements.
- 4. Applications and Simulations.

Linear mixtures of finite alphabet step functions

Blind source separation:

Linear mixtures of finite alphabet step functions

Blind source separation:

Linear mixtures of finite alphabet step functions

Linear mixtures of finite alphabet step functions

 $\mathfrak{A} \coloneqq \{a_1, \dots, a_k\}$ finite alphabet, known

Linear mixtures of finite alphabet step functions

Remark: Extensions to general ω possible (not shown).

Linear mixtures of finite alphabet step functions

Linear mixtures of finite alphabet step functions

Example: m = 3, $\mathfrak{A} = \{0, 1, 2\}$, $\omega = (0.11, 0.29, 0.6)$

Linear mixtures of finite alphabet step functions

Example: m = 3, $\mathfrak{A} = \{0, 1, 2\}$, $\omega = (0.11, 0.29, 0.6)$

$$g = \omega_1 f^1 + \omega_2 f^2 + \omega_3 f^3$$

Linear mixtures of finite alphabet step functions

Example: m = 3, $\mathfrak{A} = \{0, 1, 2\}$, $\omega = (0.11, 0.29, 0.6)$

$$Y = \omega_1 f^1 + \omega_2 f^2 + \omega_3 f^3 + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

First Attempts

Idea 1. : Estimate the mixture and decompose afterwards.

- Small signal differences will be hard to recover
- Not every step function can be decomposed: alphabet-specific restrictions on function values! 4

$$Y = \omega_1 f^1 + \omega_2 f^2 + \omega_3 f^3 + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

Naive clustering approach (has been advocated in SP literature...)

Idea 2. : Pre-estimate the mixture function values.

Clustering of (at most) k^m modes is known to be a hard problem!

 $Y = \omega_1 f^1 + \omega_2 f^2 + \omega_3 f^3 + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$

Naive clustering approach (has been advocated in SP literature...)

Idea 2. : Pre-estimate the mixture function values.

Clustering of (at most) k^m modes is known to be a hard problem!

 $Y = \omega_1 f^1 + \omega_2 f^2 + \omega_3 f^3 + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$

SESAME avoids preclustering

- recovers all quantities based on mixture model & finite alphabet
- simultaneous multiscale inference

Statistical Blind Source Separation Regression (SBSSR)

$$Y_j = \sum_{i=1}^m \omega_i f^i(x_j) + \epsilon_j, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I), \quad j = 1, \dots, n$$

with $f^1, \dots, f^m \in \mathcal{S}(\mathfrak{A})$ and $\omega \in \Omega(m), \quad x_j = j/n.$

$$\frac{\text{Mixing weights:}}{\Omega(m) := \left\{ \omega \in \mathbb{R}^m : 0 < \omega_1 < \dots < \omega_m \text{ and } \sum_{i=1}^m \omega_i = 1 \right\}$$
Finite alphabet step functions:

$$\overline{S(\mathfrak{A}) := \left\{ \sum_{i=0}^{K} \theta_i \mathbb{1}_{[\tau_i, \tau_{i+1})} : \theta_i \in \mathfrak{A}, 0 = \tau_0 < \dots < \tau_{K+1} = 1, K \in \mathbb{N} \right\}}$$

Known are

- 1. the alphabet $\mathfrak{A} = \{a_1, \ldots, a_k\}$,
- 2. the number of source functions $m \in \mathbb{N}$, and
- 3. the (pre-estimated) standard deviation σ .

Statistical Blind Source Separation Regression (SBSSR)

$$Y_j = \sum_{i=1}^m \omega_i f^i(x_j) + \epsilon_j, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I), \quad j = 1, \dots, n$$

with $f^1, \dots, f^m \in \mathcal{S}(\mathfrak{A})$ and $\omega \in \Omega(m), \quad x_j = j/n.$

$$\frac{\text{Mixing weights:}}{\Omega(m) := \left\{ \omega \in \mathbb{R}^m : 0 < \omega_1 < \dots < \omega_m \text{ and } \sum_{i=1}^m \omega_i = 1 \right\}$$
Finite alphabet step functions:

$$\overline{S(\mathfrak{A}) := \left\{ \sum_{i=0}^K \theta_i \mathbb{1}_{[\tau_i, \tau_{i+1})} : \theta_i \in \mathfrak{A}, 0 = \tau_0 < \dots < \tau_{K+1} = 1, K \in \mathbb{N} \right\}}$$

Unknowns are

- 1. the mixing weights $\omega = (\omega_1, \ldots, \omega_m)$ and
- 2. the source functions f^1, \ldots, f^m , i.e.
 - 2.1 their number of change-points K^i ,
 - 2.2 their change-point locations τ_1, \ldots, τ_K , and
 - 2.3 their function values ($\theta \in \mathfrak{A}$).

A non-identifiable mixture

For m = 2 and $\mathfrak{A} = \{a_1, a_2, a_3, a_4\} = \{10, 13.75, 20, 25\}$:

 \Rightarrow Identifiability is a necessary assumption for valid signal recovery in the SBSSR model!

Identifiability (for given \mathfrak{A} and $m\in\mathbb{N})$

$$g ext{ is identifiable } \Leftrightarrow \quad \exists ! \ (\omega, f) \in \Omega(m) imes \mathcal{S}(\mathfrak{A})^m ext{ s.t. } g = \omega^ op f.$$

The following two conditions ensure identifiability: 1

1. Alphabet separation boundary for ω (ASB)

&

2. Variability of sources f (VS)

 \Rightarrow Identifiability

¹[Diamantaras, 2006, Behr and Munk, 2015]

Necessary identifiability condition

1. (Necessary) condition on the weights ω for the source functions f^1, \ldots, f^m to be identifiable:

Necessary identifiability condition

1. (Necessary) condition on the weights ω for the source functions f^1, \ldots, f^m to be identifiable:

Finite alphabet separation boundary: $0 < \delta := \min_{a \neq a' \in \mathfrak{A}^m} \left| \omega^\top a - \omega^\top a' \right| \qquad (ASB)$

Sufficient identifiability condition

2. (Sufficient) condition on the source functions f^1, \ldots, f^m for the weights ω to be identifiable:

Example: If $f^1 = \ldots = f^m$, then $g = \sum_{i=1}^m \omega_i f^i = f^1$ irrespective of $\omega \Rightarrow f^1, \ldots, f^m$ must differ sufficiently much.

Sufficient identifiability condition

2. (Sufficient) condition on the source functions f^1, \ldots, f^m for the weights ω to be identifiable:

Variability of source function: For all r = 1, ..., m exists a sampling point x_r such that $(f^1(x_r), ..., f^m(x_r)) = (a_1, ..., a_1, \underbrace{a_2}_{r \text{th position}}, a_1, ..., a_1)$ (VS)

Example: If $f^1 = \ldots = f^m$, then $g = \sum_{i=1}^m \omega_i f^i = f^1$ irrespective of $\omega \Rightarrow f^1, \ldots, f^m$ must differ sufficiently much.

Sufficient identifiability condition

2. (Sufficient) condition on the source functions f^1, \ldots, f^m for the weights ω to be identifiable:

Variability of source function: For all r = 1, ..., m exists a sampling point x_r such that $(f^1(x_r), ..., f^m(x_r)) = (a_1, ..., a_1, \underbrace{a_2}_{r \text{th position}}, a_1, ..., a_1)$ (VS)

Stable recovery of weights and sources

Let $g = \omega^{\top} f, \tilde{g} = \tilde{\omega}^{\top} \tilde{f}$ be two mixtures, both satisfying the identifiability conditions 1. and 2. (for the same ASB δ). Let ϵ be such that $0 < \epsilon < \delta(a_2 - a_1)/(2m(a_k - a_1))$. If

$$\sup_{x\in[0,1)}|g(x)-\tilde{g}(x)|<\epsilon,$$

then the weights satisfy the stable approximate recovery (SAR) property max_{i=1,...,m} |ω_i - ω̃_i| < ε/(a₂ - a₁) and
 the sources satisfy the stable exact recovery (SER) property f = f̃.

SESAME (SEparateS finite Alphabet MixturEs)

- 1. Construct a confidence region $C_{1-\alpha}$ for the mixing weights ω (characterized by acceptance region of a multiscale test), \rightarrow with diameter $\ln(n)/\sqrt{n}$.
- 2. Estimate $\hat{\omega} \in \mathcal{C}_{1-\alpha}(Y)$.
- 3. Estimate $\hat{f}^1, \ldots, \hat{f}^m$ as a constrained maximum likelihood estimator (With the same multiscale constraint as for $C_{1-\alpha}$ but with a possibly different level β)
- 4. This yields asymptotically uniform multivariate (honest) confidence bands $\mathcal{H}(\beta)$ for f^1, \ldots, f^m .

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

 \implies exact recovery algorithm for ω , $O(k^m)$.

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

 \implies exact recovery algorithm for ω , $O(k^m)$. Example: m = 3, $\mathfrak{A} = \{0, 1\}$ $\omega_1 0 + \omega_2 0 + \omega_3 0 = 0$ $\omega_1 1 + \omega_2 0 + \omega_3 0 = 0.11$ $\omega_1 0 + \omega_2 1 + \omega_3 0 = 0.29$ $\omega = (0.11, 0.29, 0.6) \Rightarrow \omega_1 1 + \omega_2 1 + \omega_3 0 = 0.4$ $\omega_1 0 + \omega_2 0 + \omega_3 1 = 0.6$ $\omega_1 1 + \omega_2 0 + \omega_3 1 = 0.71$ $\omega_1 0 + \omega_2 1 + \omega_3 1 = 0.89$ $\omega_1 1 + \omega_2 1 + \omega_3 1 = 1$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}0 = 0$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}0 = 0.11$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}0 = 0.29$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}0 = 0.4$$

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}1 = 0.6$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}1 = 0.71$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}1 = 0.89$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}1 = 1$$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}0 = 0$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}0 = 0.11$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}0 = 0.29$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}0 = 0.4$$

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}1 = 0.6$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}1 = 0.71$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}1 = 0.89$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}1 = 1$$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}0 = 0$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}0 = 0.11$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}0 = 0.29$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}0 = 0.4$$

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}1 = 0.6$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}1 = 0.71$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}1 = 0.89$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}1 = 1$$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}0 = 0$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}0 = 0.11$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}0 = 0.29$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}0 = 0.4$$

$$\omega_{1}0 + \omega_{2}0 + \omega_{3}1 = 0.6$$

$$\omega_{1}1 + \omega_{2}0 + \omega_{3}1 = 0.71$$

$$\omega_{1}0 + \omega_{2}1 + \omega_{3}1 = 0.89$$

$$\omega_{1}1 + \omega_{2}1 + \omega_{3}1 = 1$$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

 \implies exact recovery algorithm for ω , $O(k^m)$. Example: m = 3, $\mathfrak{A} = \{0, 1\}$: $\omega_1 0 + \omega_2 0 + \omega_3 0 = 0$ $\omega_1 1 + \omega_2 0 + \omega_3 0 = 0.11 \rightarrow \omega_1$ $\omega_1 0 + \omega_2 1 + \omega_3 0 = 0.29$ $\omega = (0.11, 0.29, 0.6) \iff \omega_1 1 + \omega_2 1 + \omega_3 0 = 0.4$ $\omega_1 0 + \omega_2 0 + \omega_3 1 = 0.6$ $\omega_1 1 + \omega_2 0 + \omega_3 1 = 0.71$ $\omega_1 0 + \omega_2 1 + \omega_3 1 = 0.89$ $\omega_1 1 + \omega_2 1 + \omega_3 1 = 1$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

 \implies exact recovery algorithm for ω , $O(k^m)$. Example: m = 3, $\mathfrak{A} = \{0, 1\}$: $\omega_1 0 + \omega_2 0 + \omega_3 0 = 0$ $\omega_1 1 + \omega_2 0 + \omega_3 0 = 0.11 \rightarrow \omega_1$ $\omega_1 0 + \omega_2 1 + \omega_3 0 = 0.29$ $\omega = (0.11, 0.29, 0.6) \iff \omega_1 1 + \omega_2 1 + \omega_3 0 = 0.4$ $\omega_1 0 + \omega_2 0 + \omega_3 1 = 0.6$ $\omega_1 1 + \omega_2 0 + \omega_3 1 = 0.71$ $\omega_1 0 + \omega_2 1 + \omega_3 1 = 0.89$ $\omega_1 1 + \omega_2 1 + \omega_3 1 = 1$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

 \implies exact recovery algorithm for ω , $O(k^m)$. Example: m = 3, $\mathfrak{A} = \{0, 1\}$: $\omega_1 0 + \omega_2 0 + \omega_3 0 = 0$ $\omega_1 1 + \omega_2 0 + \omega_3 0 = 0.11 \rightarrow \omega_1$ $\omega_10 + \omega_21 + \omega_30 = 0.29 \rightarrow \omega_2$ $\omega = (0.11, 0.29, 0.6) \iff \omega_1 1 + \omega_2 1 + \omega_3 0 = 0.4$ $\omega_1 0 + \omega_2 0 + \omega_3 1 = 0.6$ $\omega_1 1 + \omega_2 0 + \omega_3 1 = 0.71$ $\omega_1 0 + \omega_2 1 + \omega_3 1 = 0.89$ $\omega_1 1 + \omega_2 1 + \omega_3 1 = 1$

For ω and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the mixture function values.

- \implies exact recovery algorithm for ω , $O(k^m)$.
 - Recovery of the weights relies on a good estimate of the function values of g = ω^T f taking into account the specific structure of underlying step functions fⁱ ∈ S(𝔄).
 - Estimation of *f* is not required.
 - From this one can construct a honest confidence set for ω
Multiscale statistic

As the jump locations may occur at any place, a natural way for inferring the function values of g is to use local log-likelihood ratio test statistics in a multiscale fashion². For the local test problem

$$H_0: g|_{[x_i,x_j]} \equiv g_{ij}$$
 vs. $H_1: g|_{[x_i,x_j]} \not\equiv g_{ij}$

we employ the test statistic

$$T_i^j(Y_i,\ldots,Y_j,g_{ij})=\frac{(\sum_{l=i}^j Y_l-g_{ij})^2}{\sigma^2(j-i+1)},$$

in a multiscale fashion

$$T_n(Y, \tilde{g}) \coloneqq \max_{\substack{1 \leq i \leq j \leq n \\ \tilde{g}|_{[i/n,j/n]} \equiv \tilde{g}_{ij}}} \frac{|\sum_{l=i}^j Y_l - \tilde{g}_{ij}|}{\sigma \sqrt{j-i+1}} - \sqrt{2 \ln\left(\frac{en}{j-i+1}\right)}.$$

²[Siegmund and Yakir, 2000, Dümbgen and Spokoiny, 2001, Davies and Kovac, 2001, Dümbgen and Walther, 2008]

Geometric interpretation of the statistic T_n

$$\mathcal{T}_n(Y, \widetilde{g}) \leq q \ \Leftrightarrow \widetilde{g}_{ij} \in \mathcal{B}(i,j) \ \forall 1 \leq i \leq j \leq n \ \text{with} \ \widetilde{g}|_{[i/n,j/n]} \equiv \widetilde{g}_{ij},$$

for $q \in {\rm I\!R}$, with intervals

$$B(i,j) := \left[\overline{Y}_i^j - \frac{q + pen(j-i+1)}{\sqrt{j-i+1}/\sigma}, \overline{Y}_i^j + \frac{q + pen(j-i+1)}{\sqrt{j-i+1}/\sigma}\right].$$

From simulations one obtains $q_n(\alpha)$, $\alpha \in (0, 1)$, the $1 - \alpha$ quantile of $T_n = T_n(Y, 0)$, i.e.,

$$\inf_{g} \mathbf{P}(T_n(Y,g) \leq q_n(\alpha)) \geq 1 - \alpha.$$

Hence, for B(i,j) with $q = q_n(\alpha)$,

$$\inf_{g} \mathbf{P}(g_{ij} \in B(i,j) \ \forall 1 \leq i \leq j \leq n \text{ with } g|_{[i/n,j/n]} \equiv g_{ij}) \geq 1 - \alpha.$$

Confidence boxes

Let $\mathfrak{B} = \{B(i,j) : 1 \leq i \leq j \leq n\}$ with $q = q_n(\alpha)$ and assume $B^* := B(i_1^*, j_1^*) \times \ldots \times B(i_m^*, j_m^*) \in \mathfrak{B}^m$ has been constructed, such that

$$f|_{[i_r^\star, j_r^\star]} \equiv [A]_r, \tag{1}$$

with A as in (VS). Then

$$\{\omega \in A^{-1}B^{\star}\} \supset \bigcap_{1 \le r \le m} \{g|_{[i_r^{\star}j_r^{\star}]} \equiv \omega^{\top}[A]_r \in B(i_r^{\star}, j_r^{\star})\}$$

and

$$\{T_n(Y,g) \le q_n(\alpha)\} = \bigcap_{\substack{1 \le i \le j \le n \\ g \mid_{[i/n,j/n]} \equiv g_{ij}}} \{g_{ij} \in B(i,j)\}$$

which implies

$$\{\omega \in A^{-1}B^{\star}\} \supset \{T_n(Y,g) \leq q_n(\alpha)\}$$

Confidence boxes

One cannot obtain B^* directly as f^1, \ldots, f^m are unknown. 4

 \Rightarrow Construct $\mathfrak{B}^* \subset \mathfrak{B}^m$, with $\mathsf{P}(B^* \in \mathfrak{B}^* | T_n \leq q_n(\alpha)) = 1$ and define

$$\mathcal{C}_{1-lpha}\coloneqq igcup_{B\in\mathfrak{B}^{\star}} A^{-1}B.$$

$$\begin{split} & \mathbf{P}\left(\omega \in \mathcal{C}_{1-\alpha}\right) \\ = & \mathbf{P}\left(\omega \in \mathcal{C}_{1-\alpha} | \mathcal{T}_n \leq q_n(\alpha)\right) \mathbf{P}\left(\mathcal{T}_n \leq q_n(\alpha)\right) \\ = & \mathbf{P}\left(\omega \in \bigcup_{B \in \mathfrak{B}^{\star}} A^{-1}B \middle| \mathcal{T}_n \leq q_n(\alpha)\right) \mathbf{P}\left(\mathcal{T}_n \leq q_n(\alpha)\right) \\ \geq & \mathbf{P}\left(\omega \in A^{-1}B^{\star} \middle| \mathcal{T}_n \leq q_n(\alpha)\right) \mathbf{P}\left(\mathcal{T}_n \leq q_n(\alpha)\right) \\ \geq & 1 - \alpha. \end{split}$$

Construction of \mathfrak{B}^{\star}

Apply reduction rules R1. - R3. on \mathfrak{B}^m reducing it to a smaller set $\mathfrak{B}^* \subset \mathfrak{B}^m$:

R 1. Delete $B \in \mathfrak{B}^m$ if there exists an $r \in \{1, \ldots, m\}$, s.t. proj $_r(B) \in$

 $\{B(i,j)\in\mathfrak{B}:\exists [s,t],[u,v]\subset [i,j] \text{ with } B(s,t)\cap B(u,v)=\emptyset\}.$

All boxes, s.t. $ilde{g} \in \mathcal{M}$ satisfies MS constraint, cannot be constant on [i,j]

→ Exploring the fact that $f = (f_1, ..., f^m)^{\top}$ is constant on $[i_r^*, j_r^*]$, with $B^* := B(i_1^*, j_1^*) \times ... \times B(i_m^*, j_m^*)$, conditioned on $\{T_n \leq q_n(\alpha)\}$.

Construction of \mathfrak{B}^{\star}

Apply reduction rules R1. - R3. on \mathfrak{B}^m reducing it to a smaller set $\mathfrak{B}^* \subset \mathfrak{B}^m$:

R 2. Delete
$$B \in \mathfrak{B}^m$$
, with $[\underline{b}_r, b_r] := \operatorname{proj}_r(B)$,
1. for any $2 \le r \le m$
 $\frac{a_2 + (m-1)a_1 - \sum_{k=1}^{r-1} \underline{b}_k}{m-r+1} \le \underline{b}_r$ or $\underline{b}_{r-1} \ge \overline{b}_r$, or
2. ...

 \rightarrow Exploring the structure of $\Omega(m)$, e.g., $\omega_{i-1} < \omega_i < (1 - \sum_{j=1}^{i-1} \omega_j)/(m-i+1)$, ..., together with the specific choice of the matrix A in **(VS)**. Construction of \mathfrak{B}^{\star}

Apply reduction rules R1. - R3. on \mathfrak{B}^m reducing it to a smaller set $\mathfrak{B}^\star \subset \mathfrak{B}^m$:

R 3. Delete $B \in \mathfrak{B}^m$, if there exists a $k \in \{1, \ldots, n\}$ such that for all $[i,j] \in \{[i,j] : k \in [i,j] \text{ and } B(i,j) \notin \mathfrak{B}_{nc}\}$

$$\Big[\max_{i\leq u\leq v\leq j}\underline{b}_{uv},\min_{i\leq u\leq v\leq j}\overline{b}_{uv}\Big]\cap \Big\{\widetilde{\omega}^{\top}a:a\in\mathfrak{A}^m \ \text{ and } \widetilde{\omega}\in A^{-1}B\Big\}$$

is empty, with $B(u,v) = [\underline{b}_{uv}, \overline{b}_{uv}] \in \mathfrak{B}$.

 $\begin{array}{l} \rightarrow \text{ Exploring the fact that } g = \omega^\top f \text{ maps to} \\ \{ \widetilde{\omega}^\top a : a \in \mathfrak{A}^m \text{ and } \widetilde{\omega} \in A^{-1}B^\star \} \text{ conditioned on } \{ T_n \leq q_n(\alpha) \}. \end{array}$

The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Diameter of $\mathcal{C}_{1-\alpha}$

Assume a minimal scale for jumps $\lambda>0$ and the identifiability conditions (ASB) and (VS), then

$$\mathsf{P}\left(\mathsf{dist}(\omega, \mathit{C}_{1-\alpha_n}(Y)) < \frac{c_2}{a_2-a_1}\frac{\mathsf{ln}(n)}{\sqrt{n}}\right) \geq 1 - \exp(-c_1 \mathsf{ln}^2(n))$$

for all $n \ge N^*$ and $\alpha_n := \exp(-c_1 \ln^2(n))$, with some constants $c_1 = c_1(\lambda, \delta), c_2 = c_2(\lambda, \delta)$ and some explicit $N^* \in \mathbb{N}$, with $\ln(N^*) > c(\mathfrak{A}, m)\sigma^2/(\lambda\delta^2)$, where $\operatorname{dist}(d, D) := \sup_{\tilde{d} \in D} \|d - \tilde{d}\|_{\infty}$.

Estimating the mixing weights

SESAME estimates ω by

$$\hat{\omega} \coloneqq rac{1}{\sum_{i=1}^m (\underline{\omega}_i + \overline{\omega}_i)} (\underline{\omega}_1 + \overline{\omega}_1, \dots, \underline{\omega}_m + \overline{\omega}_m),$$

with
$$\mathcal{C}_{1-\alpha} =: [\underline{\omega}_1, \overline{\omega}_1] \times \ldots \times [\underline{\omega}_m, \overline{\omega}_m].$$

 $\rightarrow \alpha$ can be seen as tuning parameter for $\hat{\omega}$.

 \Rightarrow Data driven selection method (MVT- and SST-method ³).

³[Behr et al., 2015]

Inferring the source functions f^1, \ldots, f^m

For $\hat{\omega} \in C_{1-\alpha}(Y)$ we estimate f^1, \ldots, f^m with a constrained maximum likelihood estimator⁴:

$$(\hat{f}^1, \dots, \hat{f}^m) := \operatorname{argmax}_{f \in \mathcal{H}(\beta)} L_Y(f),$$

with L being the likelihood function and
 $\mathcal{H}(\beta) := \{f \in \mathcal{S}(\mathfrak{A})^m : T_n(Y, \hat{\omega}^\top f) \le q_n(\beta) \text{ and } K(\hat{\omega}^\top f) = \hat{K}\}.$
and
 $\hat{K} := \inf_{f \in \mathcal{S}(\mathfrak{A})^m} K(\hat{\omega}^\top f) \quad \text{s.t.} \quad T_n(Y, \hat{\omega}^\top f) \le q_n(\beta).$
 $(K(g) \text{ denotes the number of change-points of } g)$

⁴[Frick et al., 2014]

Exact recovery of the source functions f^1, \ldots, f^m

Assuming a minimal scale for jumps $\lambda > 0$, the identifiability condition (ASB) and (VS) and choosing

$$\alpha_n, \beta_n = \exp(-C_* \ln^2(n)),$$

then for $n \geq N^{\star}$ with probability at least $1 - \alpha_n$ the estimator $\hat{f}^1, \ldots, \hat{f}^m$

- 1. estimates the number of change-points of f^i correctly for i = 1, ..., m,
- 2. estimates the change-point locations with rate $\frac{|n^2(n)|}{n}$, and
- estimates the function values of f¹,..., f^m exactly (up to the uncertainty in the change point location).

Confidence bands

Let \tilde{T}_n be as T_n , but with penalty term increased by $\left(\frac{(a_2-a_1)\ln(n)}{m} + \sqrt{\frac{8\sigma^2\ln(e/\lambda)}{\lambda}}\right)\sqrt{\frac{j-i+1}{n}}$, and let $\tilde{\mathcal{H}}$ be as \mathcal{H} but with T_n replaced by \tilde{T}_n . Assume the identifiability conditions (ASB) and (VS), then for $\hat{\omega} = \hat{\omega}(\alpha_n)$ in $\tilde{\mathcal{H}}(\beta)$

$$\lim_{n\to\infty}\inf_{g}\mathsf{P}((f^1,...,f^m)\in\tilde{\mathcal{H}}(\beta))\geq 1-\beta.$$

SESAME's rates of convergence

1. SESAME recovers the change point locations of f^i in probability with rate $\ln^2(n)/n$.

 \rightarrow Estimation rate is bounded from below by the sampling rate $1/n \Rightarrow$ optimal rate up to a $\ln^2(n)$ factor.

⁵[Dümbgen and Walther, 2008, Frick et al., 2014]

SESAME's rates of convergence

1. SESAME recovers the change point locations of f^i in probability with rate $\ln^2(n)/n$.

 \rightarrow Estimation rate is bounded from below by the sampling rate $1/n \Rightarrow$ optimal rate up to a $\ln^2(n)$ factor.

2. The minimal scale λ may depend on n. If $\lambda_n^{-1} \in o(\ln(n))$ SESAME's estimates remain consistent.

 \rightarrow No method can recover finer details of the mixture g below its detection boundary which is of the same order⁵.

^₅[Dümbgen and Walther, 2008, Frick et al., 2014]

SESAME's rates of convergence

1. SESAME recovers the change point locations of f^i in probability with rate $\ln^2(n)/n$.

 \rightarrow Estimation rate is bounded from below by the sampling rate $1/n \Rightarrow$ optimal rate up to a $\ln^2(n)$ factor.

2. The minimal scale λ may depend on n. If $\lambda_n^{-1} \in o(\ln(n))$ SESAME's estimates remain consistent.

 \rightarrow No method can recover finer details of the mixture g below its detection boundary which is of the same order⁵.

3. The weights' estimation rate $\ln(n)/\sqrt{n}$, arises from the box height with $q_n(\alpha_n) \in \mathcal{O}(\ln(n))$ and attains the optimal rate $\mathcal{O}(1/\sqrt{n})$ up to a $\ln(n)$ term.

^₅[Dümbgen and Walther, 2008, Frick et al., 2014]

The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Example

m = 3, $\mathfrak{A} = \{0, 1, 2\}$, $\sigma = 0.22$, and n = 7680, with $\omega = (0.11, 0.29, 0.6)$. We estimated $\hat{\omega} = (0.11, 0.26, 0.63)$ (with $C_{0.9} = [0.00, 0.33] \times [0.07, 0.41] \times [0.39, 0.71]$).

- 1. (ASB) condition violated, i.e., $\delta = 0$:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.

- 1. (ASB) condition violated, i.e., $\delta=$ 0:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.

Local finite alphabet separation boundary:

$$0 < \delta(x) \coloneqq \min_{a \neq f(x) \in \mathfrak{A}^m} \left| \omega^\top a - \omega^\top f(x) \right|$$

- 1. (ASB) condition violated, i.e., $\delta=$ 0:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.

- 1. (ASB) condition violated, i.e., $\delta=$ 0:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.
- (VS) condition violated, i.e., too little variation of f¹, ..., f^m:
 2.1 Big influence on ŵ.
 2.2 Big influence on f¹, ..., f^m as estimate is based on ŵ.
 - \longrightarrow Simulation study (Behr et al.'15)

When f comes from a Markov chain, probability that variation is rich enough converges exponentially fast to 1.

The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Inferring intra-tumor heterogeneity ⁶

CNVs := Copy-number variations

⁶[Beroukhim et al., 2010, Greaves and Maley, 2012, Shah et al., 2012]

Inferring intra-tumor heterogeneity ⁶

 $f^1, \ldots, f^m \sim$ CNVs of tumor-clones / normal contamination. $\omega \sim$ proportion of the clone in the tumor.

⁶[Beroukhim et al., 2010, Greaves and Maley, 2012, Shah et al., 2012]

Generating test data for CNV characterization ⁷

⁷Sequencing was done through a collaboration of Complete Genomics with the Welcome Trust Center for Human Genetics at the University of Oxford.

Characterizing CNVs in tumors

For $(\omega_{\text{Normal}}, \omega_{\text{Clone 1}}, \omega_{\text{Clone 2}}) = (0.2, 0.35, 0.45)$ SESAME estimated $(\hat{\omega}_{\text{Normal}}, \hat{\omega}_{\text{Clone 1}}, \hat{\omega}_{\text{Clone 2}}) = (0.12, 0.35, 0.53).$

Summary

- Statistical Blind Source Separation Regression (SBSSR) model ¹.
- 2. Complete (not shown) characterization of identifiability².
- 3. SESAME:
 - Optimal estimators (up to log-factors) for the mixing weights and the source functions under very weak identifiability conditions.
 - Honest confidence statements¹ for all quantities.
 - Algorithms¹ for efficient computations (DP based, not shown).

¹Behr, M., Holmes, C., and Munk, A., Multiscale blind source separation, prepint 2015

²Behr, M. and Munk, A. (2015). Identifiability for blind separation of multiple finite alphabet linear mixtures, arXiv:1505.05272.

The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Discussion

- 'Objective' parameter choice for α, β.
 Data driven choices targeting minimizing risk possible (not shown)
- Simulations studies show stability in choice of confidence parameters α and β and reasonable robustness against normality and heteroscedasticity¹.

Discussion

• How big is the set $ASB(\omega) \ge \delta$?

Discussion/Outlook

linear model

$$Y = F\omega + \epsilon$$
, $F = (f^i(x_j))_{1 \le i \le m, 1 \le j \le n}$

compressive sensing: F known, ω sparse matrix completion: here we sample from one linear functional (mixture), no low rank assumption, rather large rank is beneficial \rightarrow identifiablity, finite alphabet is crucial

- nonnegative matrix factorization $F, \omega \ge 0$, (Donoho/Stodden'03) simpliciality condition \leftrightarrow ASB-condition, M > 1, finite alphabet is crucial again.
- Open issue: unknown *m* (number of mixture components), unknown alphabet

- Behr, M., Holmes, C., and Munk, A. (2015).
 Blind multiscale demixing of step functions.
 In preparation.
 - Behr, M. and Munk, A. (2015). Identifiability for blind source separation of multiple finite alphabet linear mixtures. *arXiv preprint arXiv:1505.05272.*
- Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J. S., Dobson, J., Urashima, M., et al. (2010). The landscape of somatic copy-number alteration across human cancers.

Nature, 463(7283):899-905.

Davies, P. and Kovac, A. (2001).

Local extremes, runs, strings and multiresolution. *Annals of Statistics*, 29(1):1–65.

Diamantaras, K. I. (2006).

A clustering approach for the blind separation of multiple finite alphabet sequences from a single linear mixture. *Signal Processing*, 86(4):877–891.

- Dümbgen, L. and Spokoiny, V. (2001).
 Multiscale testing of qualitative hypotheses.
 The Annals of Statistics, 29(1):124-152.
- Dümbgen, L. and Walther, G. (2008).
 Multiscale inference about a density.
 The Annals of Statistics, 36(4):1758–1785.
- Frick, K., Munk, A., and Sieling, H. (2014).
 Multiscale change point inference.
 Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(3):495–580.
 With discussion and rejoinder.

- Greaves, M. and Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381):306-313.
- 📓 Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., Turashvili, G., Ding, J., Tse, K., Haffari, G., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403):395-399.

Siegmund, D. and Yakir, B. (2000). Tail probabilities for the null distribution of scanning statistics. Bernoulli, 6(2):191.

Technical Material

Multiscale statistic

As the jump locations may occur at any place, a natural way for inferring the function values of g is to use local log-likelihood ratio test statistics in a multiscale fashion⁸. For the local test problem

$$H_0: g|_{[x_i,x_j]} \equiv g_{ij}$$
 vs. $H_1: g|_{[x_i,x_j]} \not\equiv g_{ij}$

we employ the test statistic

$$T_i^j(Y_i,\ldots,Y_j,g_{ij})=\frac{(\sum_{l=i}^j Y_l-g_{ij})^2}{\sigma^2(j-i+1)},$$

in a multiscale fashion

$$T_n(Y, \tilde{g}) \coloneqq \max_{\substack{1 \leq i \leq j \leq n \\ \tilde{g}|_{[i/n,j/n]} \equiv \tilde{g}_{ij}}} \frac{|\sum_{l=i}^j Y_l - \tilde{g}_{ij}|}{\sigma \sqrt{j-i+1}} - \sqrt{2 \ln\left(\frac{en}{j-i+1}\right)}.$$

⁸[Siegmund and Yakir, 2000, Dümbgen and Spokoiny, 2001, Davies and Kovac, 2001, Dümbgen and Walther, 2008]

Geometric interpretation of the statistic T_n

$$\mathcal{T}_n(Y, \widetilde{g}) \leq q \ \Leftrightarrow \widetilde{g}_{ij} \in \mathcal{B}(i,j) \ \forall 1 \leq i \leq j \leq n \ \text{with} \ \widetilde{g}|_{[i/n,j/n]} \equiv \widetilde{g}_{ij},$$

for $q \in {\rm I\!R}$, with intervals

$$B(i,j) := \left[\overline{Y}_i^j - \frac{q + pen(j-i+1)}{\sqrt{j-i+1}/\sigma}, \overline{Y}_i^j + \frac{q + pen(j-i+1)}{\sqrt{j-i+1}/\sigma}\right].$$

From simulations one obtains $q_n(\alpha)$, $\alpha \in (0, 1)$, the $1 - \alpha$ quantile of $T_n = T_n(Y, 0)$, i.e.,

$$\inf_{g} \mathbf{P}(T_n(Y,g) \leq q_n(\alpha)) \geq 1 - \alpha.$$

Hence, for B(i,j) with $q = q_n(\alpha)$,

$$\inf_{g} \mathbf{P}(g_{ij} \in B(i,j) \ \forall 1 \leq i \leq j \leq n \text{ with } g|_{[i/n,j/n]} \equiv g_{ij}) \geq 1 - \alpha.$$

Confidence boxes

Let $\mathfrak{B} = \{B(i,j) : 1 \leq i \leq j \leq n\}$ with $q = q_n(\alpha)$ and assume $B^* := B(i_1^*, j_1^*) \times \ldots \times B(i_m^*, j_m^*) \in \mathfrak{B}^m$ has been constructed, such that

$$f|_{[i_r^\star, j_r^\star]} \equiv [A]_r, \tag{2}$$

with A as in (VS). Then

$$\{\omega \in A^{-1}B^{\star}\} \supset \bigcap_{1 \le r \le m} \{g|_{[i_r^{\star}j_r^{\star}]} \equiv \omega^{\top}[A]_r \in B(i_r^{\star}, j_r^{\star})\}$$

and

$$\{T_n(Y,g) \le q_n(\alpha)\} = \bigcap_{\substack{1 \le i \le j \le n \\ g \mid_{[i/n,j/n]} \equiv g_{ij}}} \{g_{ij} \in B(i,j)\}$$

which implies

$$\{\omega \in A^{-1}B^{\star}\} \supset \{T_n(Y,g) \leq q_n(\alpha)\}$$

Confidence boxes

One cannot obtain B^* directly as f^1, \ldots, f^m are unknown. 4

 \Rightarrow Construct $\mathfrak{B}^* \subset \mathfrak{B}^m$, with $\mathsf{P}(B^* \in \mathfrak{B}^* | T_n \leq q_n(\alpha)) = 1$ and define

$$\mathcal{C}_{1-lpha}\coloneqq igcup_{B\in\mathfrak{B}^{\star}} A^{-1}B.$$

$$\begin{split} & \mathbf{P}\left(\omega \in \mathcal{C}_{1-\alpha}\right) \\ \geq & \mathbf{P}\left(\omega \in \mathcal{C}_{1-\alpha} | \mathcal{T}_n \leq q_n(\alpha)\right) \mathbf{P}\left(\mathcal{T}_n \leq q_n(\alpha)\right) \\ = & \mathbf{P}\left(\omega \in \bigcup_{B \in \mathfrak{B}^{\star}} A^{-1}B \middle| \mathcal{T}_n \leq q_n(\alpha)\right) \mathbf{P}\left(\mathcal{T}_n \leq q_n(\alpha)\right) \\ \geq & \mathbf{P}\left(\omega \in A^{-1}B^{\star} \middle| \mathcal{T}_n \leq q_n(\alpha)\right) \mathbf{P}\left(\mathcal{T}_n \leq q_n(\alpha)\right) \\ \geq & 1 - \alpha. \end{split}$$
Construction of \mathfrak{B}^{\star}

Apply reduction rules R1. - R3. on \mathfrak{B}^m reducing it to a smaller set $\mathfrak{B}^\star \subset \mathfrak{B}^m$:

R 4. Delete $B \in \mathfrak{B}^m$ if there exists an $r \in \{1, \ldots, m\}$, s.t. proj_r $(B) \in$

 $\mathfrak{B}_{\mathsf{nc}} \coloneqq \{B(i,j) \in \mathfrak{B} : \exists [s,t], [u,v] \subset [i,j] \text{ with } B(s,t) \cap B(u,v) = \emptyset\}.$

 \rightarrow Exploring the fact that $f = (f_1, \dots, f^m)^{\top}$ is constant on $[i_r^{\star}, j_r^{\star}]$, with $B^{\star} := B(i_1^{\star}, j_1^{\star}) \times \dots \times B(i_m^{\star}, j_m^{\star})$, conditioned on $\{T_n \leq q_n(\alpha)\}$.

Construction of \mathfrak{B}^{\star}

Apply reduction rules R1. - R3. on \mathfrak{B}^m reducing it to a smaller set $\mathfrak{B}^* \subset \mathfrak{B}^m$:

R 5. Delete
$$B \in \mathfrak{B}^m$$
, with $[\underline{b}_r, b_r] := \operatorname{proj}_r(B)$,
1. for any $2 \le r \le m$

$$\frac{a_2 + (m-1)a_1 - \sum_{k=1}^{r-1} \underline{b}_k}{m-r+1} \le \underline{b}_r \quad \text{or} \quad \underline{b}_{r-1} \ge \overline{b}_r, \text{ or}$$
2. ...

 \rightarrow Exploring the structure of $\Omega(m)$, e.g., $\omega_{i-1} < \omega_i < (1 - \sum_{j=1}^{i-1} \omega_j)/(m-i+1)$, ..., together with the specific choice of the matrix A in **(VS)**. Construction of \mathfrak{B}^{\star}

Apply reduction rules R1. - R3. on \mathfrak{B}^m reducing it to a smaller set $\mathfrak{B}^\star \subset \mathfrak{B}^m$:

R 6. Delete $B \in \mathfrak{B}^m$, if there exists a $k \in \{1, ..., n\}$ such that for all $[i, j] \in \{[i, j] : k \in [i, j] \text{ and } B(i, j) \notin \mathfrak{B}_{nc}\}$

$$\Big[\max_{i\leq u\leq v\leq j}\underline{b}_{uv},\min_{i\leq u\leq v\leq j}\overline{b}_{uv}\Big]\cap \Big\{\widetilde{\omega}^{\top}a:a\in\mathfrak{A}^m \ \text{ and } \widetilde{\omega}\in A^{-1}B\Big\}$$

is empty, with $B(u,v) = [\underline{b}_{uv}, \overline{b}_{uv}] \in \mathfrak{B}$.

 $\begin{array}{l} \rightarrow \text{ Exploring the fact that } g = \omega^{\top} f \text{ maps to} \\ \{ \widetilde{\omega}^{\top} a : a \in \mathfrak{A}^m \text{ and } \widetilde{\omega} \in A^{-1} B^{\star} \} \text{ conditioned on } \{ T_n \leq q_n(\alpha) \}. \end{array}$

Example

m = 3, $\mathfrak{A} = \{0, 1, 2\}$, $\sigma = 0.22$, and n = 7680, with $\omega = (0.11, 0.29, 0.6)$. We estimated $\hat{\omega} = (0.11, 0.26, 0.63)$ (with $C_{0.9} = [0.00, 0.33] \times [0.07, 0.41] \times [0.39, 0.71]$).

- 1. (ASB) condition violated, i.e., $\delta = 0$:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.

- 1. (ASB) condition violated, i.e., $\delta=$ 0:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.

Local finite alphabet separation boundary:

$$0 < \delta(x) \coloneqq \min_{a \neq f(x) \in \mathfrak{A}^m} \left| \omega^\top a - \omega^\top f(x) \right|$$

For f as in our example, but ω choose randomly, uniformly distributed on $\Omega(3)$, we compute 10.000 realizations of $\hat{\omega}$, $C_{1-\alpha}$, $\hat{f}^1, \ldots, \hat{f}^3$, and $\tilde{\mathcal{H}}(\beta)$, for $\sigma = 0.05$, n = 1280, and $\alpha = \beta = 0.1$. Consequently, for each run we get a different ω and δ , respectively.

$\delta \in$	$MAE(\hat{\omega}) [10^{-3}]$	$dist(\omega,\mathcal{C}_{1-lpha})$ [10 ⁻³]	
[0,0.0001]	(6, 4, 5)	29	
[0.0001, 0.01]	(7, 4, 7)	34	
[0.01, 0.02]	(4, 4, 4)	30	
[0.02, 0.03]	(4, 4, 4)	29	
[0.03, 0.04]	(4, 3, 4)	31	
[0.04, 0.05]	(4, 3, 4)	31	
[0.05, 0.06]	(4, 3, 5)	31	
[0.06, 0.07]	(3, 3, 4)	31	

 \to SESAME's performance of $\hat{\omega}$ and $\mathcal{C}_{1-\alpha},$ respectively, is not much influenced by the ASB δ

For f as in our example, but ω choose randomly, uniformly distributed on $\Omega(3)$, we compute 10.000 realizations of $\hat{\omega}$, $C_{1-\alpha}$, $\hat{f}^1, \ldots, \hat{f}^3$, and $\tilde{\mathcal{H}}(\beta)$, for $\sigma = 0.05$, n = 1280, and $\alpha = \beta = 0.1$. Consequently, for each run we get a different ω and δ , respectively.

$\delta \in$	$MIAE(\hat{f}^{i}) [10^{-4}]$	$med(ilde{\mathcal{H}}_x(0.1))$	$\delta(x) \in$
[0,0.0001]	(1916, 1067, 483)	3	[0,0.001]
[0.0001, 0.01]	(1536, 923, 354)	3	[0.001, 0.01]
[0.01, 0.02]	(671, 474, 147)	3	[0.01, 0.02]
[0.02, 0.03]	(236, 164, 40)	3	[0.02, 0.03]
[0.03, 0.04]	(96, 37, 7)	2	[0.03, 0.04]
[0.04, 0.05]	(100, 7, 2)	2	[0.04, 0.05]
[0.05, 0.06]	(42, 1, 0)	2	[0.05, 0.1]
[0.06, 0.07]	(16, 4, 0)	1	[0.1, 0.33]

\rightarrow Uncertainty is captured in the confidence bands.

- 1. (ASB) condition violated, i.e., $\delta=$ 0:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.
- (VS) condition violated, i.e., too little variation of f¹, ..., f^m:
 2.1 Big influence on ŵ.
 2.2 Big influence on f¹, ..., f^m as estimate is based on ŵ.

- 1. (ASB) condition violated, i.e., $\delta=$ 0:
 - 1.1 Little influence on $\hat{\omega}$.
 - 1.2 Big influence on $\hat{f}^1, \ldots, \hat{f}^m$, but uncertainty is captured in confidence bands.
- (VS) condition violated, i.e., too little variation of f¹, ..., f^m:
 2.1 Big influence on ŵ.
 2.2 Big influence on f¹, ..., f^m as estimate is based on ŵ.

When f comes from a Markov chain, probability that variation is rich enough converges exponentially fast to 1.9

⁹[Behr and Munk, 2015]