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1. Introduction of the SBSSR Model.
2. Identifiability conditions. \,

3. Estimator, which SEparateS finite
Alphabet MixturEs (SESAME) and yields
confidence statements.

4. Applications and Simulations.
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Linear mixtures of finite alphabet step functions
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A = {a1,...,ax} finite alphabet, known
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Linear mixtures of finite alphabet step functions

g
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m m
g:Zw;fi, with Zw,-:land0<w,'<1.
i=1 i=1

Remark: Extensions to general w possible (not shown).



The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Linear mixtures of finite alphabet step functions
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Linear mixtures of finite alphabet step functions
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Example: m =3, 2 ={0,1,2}, w = (0.11,0.29,0.6)
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Linear mixtures of finite alphabet step functions

w
flo L fm — g
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source functions  linear mixing  mixture

Example: m =3, 2 ={0,1,2}, w = (0.11,0.29,0.6)

g = wlfl +w2f2 —{—W3f3




The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Linear mixtures of finite alphabet step functions

w
Lo fm — g + €
source functions  linear mixing  mixture

Example: m =3, 2 ={0,1,2}, w = (0.11,0.29,0.6)

Y:wlf1+W2f2+W3f3+6, ENN(O,Uz/)
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First Attempts

Idea 1. : Estimate the mixture and decompose afterwards.

e Small signal differences will be hard to recover
e Not every step function can be decomposed:
alphabet-specific restrictions on function values! 4

Y =wifl +wof? 4+ wsfd +e, e ~ N(0,0%1)
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Naive clustering approach (has been advocated in SP literature...)

Idea 2. : Pre-estimate the mixture function values.
Clustering of (at most) k™ modes is known to be a hard problem!

Y =wifl +wof? 4+ wsfd +e, e ~ N(0,021)
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Naive clustering approach (has been advocated in SP literature...)

Idea 2. : Pre-estimate the mixture function values.
Clustering of (at most) k™ modes is known to be a hard problem!

Y =wifl +wof? 4+ wsfd +e, e ~ N(0,021)
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SESAME avoids preclustering
— recovers all quantities based on mixture model & finite alphabet
— simultaneous multiscale inference
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Statistical Blind Source Separation Regression (SBSSR)

Y=Y wifl()+e¢j, e~ N(©O,0%), j=1...n
i=1
with f1... f™ e S(A) and w € Q(m), x; = j/n.

Mixing weights:
Q(m)={weR™:0<wy <..<wmand Y7 w =1}
Finite alphabet step functions:

3(91) = {E,K:O 9,‘]1[.,.[.,7#1) 0, e 0=1p<...<71k11=1,K € ]N}

Known are
1. the alphabet % = {ay,...,ax},
2. the number of source functions m € N, and

3. the (pre-estimated) standard deviation o.
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Statistical Blind Source Separation Regression (SBSSR)

Vi =Y wifilg) +g, e~ N(0.0%), j=1,....n
i=1
with f1... f™ e S(A) and w € Q(m), x; = j/n.

Mixing weights:
Q(m)={weR™:0<wy <..<wmand Y7 w =1}
Finite alphabet step functions:

S(Ql) = {E,Kzo 9,‘]1[.,.[.,7#1) 0, e 0=1p<...<71k11=1,K € ]N}

Unknowns are

1. the mixing weights w = (w1,...,wm) and
2. the source functions f1,... f™ ie.
2.1 their number of change-points K',
2.2 their change-point locations 7,..., 7k, and

2.3 their function values (0 € 21).
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A non-identifiable mixture
For m=2 and %A = {a1, a2, a3, a4} = {10, 13.75,20,25}:

O.lx%}J—F\—,_‘i‘ O.4x§:]J_L‘_I_r
+ O.QX%} ‘ + 0.6x§w

N/
L)

= Identifiability is a necessary assumption for valid signal recovery
in the SBSSR model!

a3, agay
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|dentifiability (for given 2 and m € N)

g is identifiable & 3 (w,f) € Qm) x S(A)" st. g =w'f.

The following two conditions ensure identifiability: 1

1. Alphabet separation boundary for w (ASB) ]
&
[ 2. Variability of sources  (VS) ]

= Identifiability

![Diamantaras, 2006, Behr and Munk, 2015]
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Necessary identifiability condition

1. (Necessary) condition on the weights w for the source functions
f1,...,f™ to be identifiable:

Example: m = 2, 2 = {10, 20,30}, and (w1, ws) = (3, 3):

1
a2 as

dz2 azay

a2 azay
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Necessary identifiability condition

1. (Necessary) condition on the weights w for the source functions
f1,...,f™ to be identifiable:

Finite alphabet separation boundary:

wTa — wTa'

0<d:= min
a#a' eAm

Example: m = 2, 2 = {10, 20,30}, and (w1, ws) = (3, 3):

1
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Sufficient identifiability condition

2. (Sufficient) condition on the source functions 1, ... f™ for the
weights w to be identifiable:

Example: If fL = ... =™, then g =Y. w;f’ = f1 irrespective
ofw = fl, ..., f™ must differ sufficiently much.



Identifiability

Sufficient identifiability condition

2. (Sufficient) condition on the source functions 1, ... f™ for the
weights w to be identifiable:

Variability of source function:
For all r =1, ..., m exists a sampling point x, such that

F1x), o, (%)) = (a1, ..., a1, ,a1, ..., VS
(F"(x) (x)) = (a1, -y, @ a1,..,a1)  (VS)
rth position

Example: If fL = ... =™, then g =Y. w;f’ = f1 irrespective
ofw = fl, ..., f™ must differ sufficiently much.



The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Sufficient identifiability condition

2. (Sufficient) condition on the source functions 1, ... f™ for the
weights w to be identifiable:

Variability of source function:
For all r =1, ..., m exists a sampling point x, such that

F1x), o, (%)) = (a1, ..., a1, ,a1, ..., VS
(F"(x) (x)) = (a1, -y, @ a1,..,a1)  (VS)
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Identifiability

Stable recovery of weights and sources

let g=w'f,§ =& f be two mixtures, both satisfying the
identifiability conditions 1. and 2. (for the same ASB §). Let € be
such that 0 < e < d(a2 — a1)/(2m(ax — a1)). If

sup [g(x) — £(x)] < e
x€[0,1)

1. then the weights satisfy the stable approximate

recovery (SAR) property
maxj=1,..m|wi — @i < €/(a2 — ar) and

2. the sources satisfy the stable exact recovery
(SER) property f = f.
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SESAME (SEparateS finite Alphabet MixturEs)

1. Construct a confidence region C1_, for the mixing weights w
(characterized by acceptance region of a multiscale test),
— with diameter In(n)/+/n.

2. Estimate & € C1_o(Y).

3. Estimate fl, cee fm as a constrained maximum likelihood
estimator (With the same multiscale constraint as for C1_,,
but with a possibly different level (3)

4. This yields asymptotically uniform multivariate (honest)
confidence bands H(pB) for f1, ..., f™.



The SBSSR model Identifiability SESAME Example SESAME in cancer genetics Summary/Discussion Bibliography

Inferring the mixing weights w
For w and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

= exact recovery algorithm for w, O(k™).
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Inferring the mixing weights w
For w and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

= exact recovery algorithm for w, O(k™).

Example: m =3, 2 ={0,1}
w10+ w0+ w30=0
w1l + w20+ w30 =0.11
w10 + wol + w30 =0.29

w=1(0.11,0.29,0.6) = wil+wl+w30=0.4
w10+ w0+ w31 =0.6
w1l + w0+ w3l =0.71
w10 + wol + w31 =0.89
wil+wl+wzl=1
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Inferring the mixing weights w
For w and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
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Inferring the mixing weights w
For w and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

= exact recovery algorithm for w, O(k™).
Example: m=3, 2 ={0,1}:
w10+ w0 +w30=0
w1l + w20+ w30 =0.11 = w;
w10 + wol + w30 =0.29
w=0(0.11,0.20,0.6) < il +wyl +ws0 =04
w10 4+ w0+ w31 = 0.6
w1l + w20+ w3l =0.71
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Inferring the mixing weights w
For w and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

= exact recovery algorithm for w, O(k™).
Example: m=3, 2 ={0,1}:
w10+ w0 +w30=0
w1l + w20+ w30 =0.11 = w;
w10 + wol + w30 =0.29 = w»H
w=0(0.11,0.20,0.6) < il +wyl +ws0 =04
w10 4+ w20+ w31 =0.6
w1l + w20+ w3l =0.71
w10 + wol + w3l =0.89
wil +wol +w3zl=1



SESAME

Inferring the mixing weights w

For w and f satisfying the identifiability conditions (ASB) and (VS):

The mixing weights are in one-to-one correspondence to the
mixture function values.

= exact recovery algorithm for w, O(k™).

e Recovery of the weights relies on a good estimate of the
function values of g = w' f taking into account the specific
structure of underlying step functions ' € S(21).

e Estimation of f is not required.

e From this one can construct a honest confidence set for w



SESAME

Multiscale statistic

As the jump locations may occur at any place, a natural way for
inferring the function values of g is to use local log-likelihood ratio
test statistics in a multiscale fashion2. For the local test problem

Ho : gl =& Vs Hi:glpgx) Z &

we employ the test statistic

( Jl.:i Yi— gij)2
2(j—i+1)

9

in a multiscale fashion

_ 1S Y — & en
T.(Y = == [ 2In[ —— ).
n(Y.8) = max = "ot

&lli/nj/m=E&ij

2[Siegmund and Yakir, 2000, Diimbgen and Spokoiny, 2001,
Davies and Kovac, 2001, Diimbgen and Walther, 2008]



SESAME

Geometric interpretation of the statistic T,

To(Y,8) < q © &j € B(i,j) V1 < i <j < nwith &lji/nj/n = &ij»
for g € R, with intervals

q+pen(j—i+1)—1: g+ pen(j —i+1)
Vi—i+1ec 7' Vi—-i+1/o

From simulations one obtains g,(«), o € (0,1), the 1 — « quantile
of Tp = Tup(Y,0), ie,

infP(To(Y,g) < qn(a)) >1-a.
g
Hence, for B(i,j) with g = gn(«),

inf P(gjj € B(i,j) V1 < i <j<nwith glj/nj/m = &j) > 1— .
g



SESAME

Confidence boxes

Let B = {B(/, J) 1 <i<j<n} with g = gn(«) and assume
B* = B(if,j7) X ... x B(i}x,Jjx) € B™ has been constructed, such
that

Fliiz ey = 1Al (1)

with A as in (VS). Then

{w € Ale*} D ﬂ {gl[;;jr*] = WT[A]r € B(’:J:)}

1<r<m
and
Tv.g)<am@t= () {e<BG.0)
1<i<j<n
glli/nj/n=8ij

which implies

fwe ABY S {Tu(Y.g) < nl()}
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Confidence boxes

One cannot obtain B* directly as f*,..., f™ are unknown. %

= Construct B* C B™, with P (B* € B*|T, < gn(a)) =1 and
define

Cl_g = U AlB.
Bes*

P(weCi-a)
=P (w € C1—a| Tn < qn(@)) P (Tn < gn(a))

=P <w e | A'B

Be®B*
>P (we AT B[ Ty < ga(@)) P(Ta < gn(e))
>1 —a.

T, < qn(a)> P(Ta < gn(a))



SESAME

Construction of B8*

Apply reduction rules R1. - R3. on 8™ reducing it to a smaller set
B* CB™

R 1. Delete B € 8™ if there exists an r € {1,..., m}, s.t.
proj.(B) €

{B(i,j) € B :3[s, t],[u,v] C [i,j] with B(s,t) N B(u,v) = 0}.
All boxes, s.t. & € M satisfies MS constraint, cannot be constant
on [i, ]

— Exploring the fact that f = (f;,...,f™)" is constant on [i*, ],
with B* := B(if, ji) % ... x B(i%,j%), conditioned on
{Th < gn()}.



SESAME

Construction of B8*

Apply reduction rules R1. - R3. on 8™ reducing it to a smaller set
B C B

R 2. Delete B € 8™, with [b,, b,] := proj,(B),
1. forany2<r<m

a+(m—1)a; —

I’*lb o
— k=LZK < b, or b,y > by or
m-—r

— Exploring the structure of Q(m), e.g.,
wis1 <wj < (1-— ZJ’;} wj)/(m—i+1), ..., together with the
specific choice of the matrix A in (VS).



SESAME

Construction of B8*

Apply reduction rules R1. - R3. on 8™ reducing it to a smaller set
B C B

R 3. Delete B € 8™, if there exists a k € {1,..., n} such that for
all [I>J] € {[Iv./] LS [I7J] and B(Ia./) ¢ sBT'IC}

[.<m<ax<.buv, _<m<in<.5uv] N {(DTa cacA™ and & € A_lB}
i<u<v i<u<v

is empty, with B(u, v) = [b,,, bu/] € B.

— Exploring the fact that g = w ' f maps to
{©Ta:aecA™and & € A~1B*} conditioned on {T, < g,(a)}.



SESAME

Diameter of C;_,

Assume a minimal scale for jumps A > 0 and the identifiability
conditions (ASB) and (VS), then

e In(n)

ar — a ﬁ

P <dist(w, G_a,(Y)) < > > 1 — exp(—c In?(n))

for all n > N* and «,, := exp(—c1 In?(n)), with some constants
a = ca(A9), = (A, ) and some explicit N* € N, with )
In(N*) > c(A, m)o?/(A62), where dist(d, D) := supg.p ||d — dl|oc-



SESAME

Estimating the mixing weights

SESAME estimates w by

1
= e (wy + W1, W+ D),
ST (@) & m )

with C1_o = [wy,w1] X ... X [W,, W]

— « can be seen as tuning parameter for @.

= Data driven selection method (MVT- and SST-method 3).

3[Behr et al., 2015]



SESAME

Inferring the source functions f*,... f™

For & € C1_o(Y) we estimate f1,... f™ with a constrained
maximum likelihood estimator*:

(F',... F™) = argmaxseyys) Ly (f),

with L being the likelihood function and

H(B) = {f e SEA)™: T, (Y,@Tf) < gn(B) and K (aﬁf) = R}
and

o - . AT AT <
K : fejsrg[)mK(w f) st. To(Y,0'f) < qn(B).

(K(g) denotes the number of change-points of g)

4[Frick et al., 2014]



SESAME

Exact recovery of the source functions f, ... f™
Assuming a minimal scale for jumps A > 0, the identifiability
condition (ASB) and (VS) and choosing

atn, B = exp(—C.In*(n)),
tAPIen forAn > N* with probability at least 1 — «, the estimator
Lo fm

1. estimates the number of change-points of f/ correctly for
i=1...,m,

2
2. estimates the change-point locations with rate In ,5"), and

3. estimates the function values of f1,... f™ exactly (up to the
uncertainty in the change point location).



SESAME

Confidence bands

Let T, be as T,, but with penalty term increased by
<(32_a,;)ln(n) + \/802 ITe/A)> \/j_ffl, and let H be as H but with

T, replaced by T,.
Assume the identifiability conditions (ASB) and (VS), then for
O = d(ap) in H(B)

lim inf P((f',....,f™) € H#(B)) > 1 - 6.

n—s00 g




SESAME

SESAME's rates of convergence

1. SESAME recovers the change point locations of f' in
probability with rate In?(n)/n.
— Estimation rate is bounded from below by the sampling
rate 1/n = optimal rate up to a In?(n) factor.

®[Diimbgen and Walther, 2008, Frick et al., 2014]



SESAME

SESAME's rates of convergence

1. SESAME recovers the change point locations of f' in
probability with rate In?(n)/n.
— Estimation rate is bounded from below by the sampling
rate 1/n = optimal rate up to a In?(n) factor.

2. The minimal scale A\ may depend on n. If A\,! € o(In(n))
SESAME’s estimates remain consistent.
— No method can recover finer details of the mixture g below
its detection boundary which is of the same order®.

®[Diimbgen and Walther, 2008, Frick et al., 2014]



SESAME

SESAME's rates of convergence

1. SESAME recovers the change point locations of f' in
probability with rate In?(n)/n.
— Estimation rate is bounded from below by the sampling
rate 1/n = optimal rate up to a In?(n) factor.

2. The minimal scale A\ may depend on n. If A\,! € o(In(n))
SESAME’s estimates remain consistent.
— No method can recover finer details of the mixture g below
its detection boundary which is of the same order®.

3. The weights’ estimation rate In(n)//n, arises from the box
height with g,(an) € O(In(n)) and attains the optimal rate
O(1/+/n) up to a In(n) term.

®[Diimbgen and Walther, 2008, Frick et al., 2014]
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Example

m=3,A={0,1,2}, o = 0.22, and n = 7680, with w = (0.11,0.29,0.6). We
estimated & = (0.11,0.26,0.63) (with Co.o = [0.00,0.33] x [0.07,0.41] x [0.39,0.71]).

ﬁ

3]
= o

1
)
i

0 500 1500 2500 3500 4500 5500 6500 7500

‘ Color code: deviation with confidence{0,1,”} ‘
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Violation of identifiability

1. (ASB) condition violated, i.e., 6 = 0:
1.1 Little influence on &.
1.2 Big influence on Fro . fm but uncertainty is captured in
confidence bands.
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Violation of identifiability

1. (ASB) condition violated, i.e., 6 = 0:
1.1 Little influence on &.
1.2 Big influence on Fro . fm but uncertainty is captured in
confidence bands.

Local finite alphabet separation boundary:

0<d(x) = #fr&i)nemm wha—w'f(x)
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Violation of identifiability
1. (ASB) condition violated, i.e., 6 = 0:

1.1 Little influence on &.
1.2 Big influence on f,... f™, but uncertainty is captured in
confidence bands.

3(x)

8 | L — L =

Y

< —

&




Example

Violation of identifiability

1. (ASB) condition violated, i.e., 6 = 0:

1.1 Little influence on &.
1.2 Big influence on f1,... f™, but uncertainty is captured in
confidence bands.

2. (VS) condition violated, i.e., too little variation of Lo fm

2.1 Big influence on &. A
2.2 Big influence on f1,...,f™ as estimate is based on .

— Simulation study (Behr et al.’15)

When f comes from a Markov chain, probability
that variation is rich enough converges exponenti-
ally fast to 1.
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Inferring intra-tumor heterogeneity °

Tumor
\ CNVs:

CNVs := Copy-number variations

®[Beroukhim et al., 2010, Greaves and Maley, 2012, Shah et al., 2012]
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&
&

Inferring intra-tumor heterogeneity °

Normal
contamination
CN=2

sy

el

Tumor - Clones
(with different CNVs)
CN e {1,2,..,8} I

fl,...,f™~ CNVs of tumor-clones / normal contamination.

w ~ proportion of the clone in the tumor.

®[Beroukhim et al., 2010, Greaves and Maley, 2012, Shah et al., 2012]
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Generating test data for CNV characterization ’

.

W X & W, X wsxP
&
e

1.2 3 4

"Sequencing was done through a collaboration of Complete Genomics with
the Welcome Trust Center for Human Genetics at the University of Oxford.
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Characterizing CNVs in tumors

For (WNormals Wclone 15 Wclone 2) = (0.2,0.35,0.45) SESAME estimated
((:)Normaly ajClone 1, U’:)Clone 2) = (012, 0357 053)

Normal Mixture

Clone1

Clone2




Summary/Discussion

Summary

1. Statistical Blind Source Separation Regression
(SBSSR) model .

2. Complete (not shown) characterization of identifiability>.

3. SESAME:

e Optimal estimators (up to log-factors) for the mixing weights
and the source functions under very weak identifiability
conditions.

o Honest confidence statements! for all quantities.

e Algorithms! for efficient computations (DP based, not shown).

1Behr, M_, Holmes, C., and Munk, A., Multiscale blind source separation,
prepint 2015

2Behr, M. and Munk, A. (2015). Identifiability for blind separation of
multiple finite alphabet linear mixtures, arXiv:1505.05272.



Summary/Discussion

Discussion

e 'Objective’ parameter choice for a, 3.
Data driven choices targeting minimizing risk possible (not
shown)

e Simulations studies show stability in choice of confidence
parameters o and (3 and reasonable robustness against
normality and heteroscedasticity®.



Discussion

e How big is the set ASB(w) > 47

Summary/Discussion

Finite alphabet separation boundary:

min |w'a—w'd
aFaeAm

0<d:=

(ASB)

| |
I 1
(1-6)/2 172

We can show:
P(w identifiable) =1 — O(9)

I 3>
e 13 212




Summary/Discussion

Discussion/Outlook

e linear model

Y=Fw+e F

I
—~
Th
—~~
X
~—
~—
fhry
4
A
3
[y
)
IN
S

compressive sensing: F known, w sparse

matrix completion: here we sample from one linear functional
(mixture), no low rank assumption, rather large rank is
beneficial — identifiablity, finite alphabet is crucial

e nonnegative matrix factorization F,w > 0,
(Donoho/Stodden’03) simpliciality condition <>
ASB-condition, M > 1, finite alphabet is crucial again.

e Open issue: unknown m (number of mixture components),
unknown alphabet
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Technical Material



Multiscale statistic

As the jump locations may occur at any place, a natural way for
inferring the function values of g is to use local log-likelihood ratio
test statistics in a multiscale fashion®. For the local test problem

Ho : gl =& Vs Hi:glpgx) Z &

we employ the test statistic

( Jl.:i Yi— gij)2
2(j—i+1)

9

in a multiscale fashion

_ 1S Y — & en
T.(Y = == [ 2In[ —— ).
n(Y.8) = max = "ot

&lli/nj/m=E&ij

8[Siegmund and Yakir, 2000, Diimbgen and Spokoiny, 2001,
Davies and Kovac, 2001, Diimbgen and Walther, 2008]



Geometric interpretation of the statistic T,

To(Y,8) < q © &j € B(i,j) V1 < i <j < nwith &lji/nj/n = &ij»
for g € R, with intervals

q+pen(j—i+1)—1: g+ pen(j —i+1)
Vi—i+1ec 7' Vi—-i+1/o

From simulations one obtains g,(«), o € (0,1), the 1 — « quantile
of Tp = Tup(Y,0), ie,

infP(To(Y,g) < qn(a)) >1-a.
g
Hence, for B(i,j) with g = gn(«),

inf P(gjj € B(i,j) V1 < i <j<nwith glj/nj/m = &j) > 1— .
g



Confidence boxes

Let B = {B(/, J) 1 <i<j<n} with g = gn(«) and assume
B* = B(if,j7) X ... x B(i}x,Jjx) € B™ has been constructed, such
that

Fliiz ey = 1Al (2)

with A as in (VS). Then

{w € Ale*} D ﬂ {gl[;;jr*] = WT[A]r € B(’:J:)}

1<r<m
and
Tv.g)<am@t= () {e<BG.0)
1<i<j<n
glli/nj/n=8ij

which implies

fwe ABY S {Tu(Y.g) < nl()}
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Confidence boxes

One cannot obtain B* directly as f*,..., f™ are unknown. %

= Construct B* C B™, with P (B* € B*|T, < gn(a)) =1 and
define

Cl_g = U AlB.
Bes*

P(weCi_q)
>P (W € Cl—a’Tn < qn(a)) P(Tn < qn(a))

=P <w e | A'B

Be®B*
>P (we AT B[ Ty < ga(@)) P(Ta < gn(e))
>1 —a.

T, < qn(a)> P(Ta < gn(a))



Construction of B8*

Apply reduction rules R1. - R3. on 8™ reducing it to a smaller set
B C B

R 4. Delete B € B™ if there exists an r € {1,..., m}, s.t.
proj,(B) €

Boe == {B(i,j) € B : J[s, t], [, v] C [i,j] with B(s, t) N B(u,v) = 0}.

— Exploring the fact that f = (f;,...,f™)" is constant on [i*, ],
with B* := B(if, ji) % ... x B(i},j%), conditioned on
{Th < an(a)}.



Construction of B8*

Apply reduction rules R1. - R3. on 8™ reducing it to a smaller set
B C B

R 5. Delete B € 8™, with [b,, b,] := proj,(B),
1. forany2<r<m

a+(m—1)a; —

I’*lb o
— k=LZK < b, or b,y > by or
m-—r

— Exploring the structure of Q(m), e.g.,
wis1 <wj < (1-— ZJ’;} wj)/(m—i+1), ..., together with the
specific choice of the matrix A in (VS).



Construction of B8*

Apply reduction rules R1. - R3. on 8™ reducing it to a smaller set
B C B

R 6. Delete B € B™, if there exists a k € {1,..., n} such that for
all [I>J] € {[Iv./] LS [I7J] and B(Ia./) ¢ sBT'IC}

[.<m<ax<.buv, _<m<in<.5uv] N {(DTa cacA™ and & € A_lB}
i<u<v i<u<v

is empty, with B(u, v) = [b,,, bu/] € B.

— Exploring the fact that g = w ' f maps to
{©Ta:aecA™and & € A~1B*} conditioned on {T, < g,(a)}.
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Example

m=3,A={0,1,2}, o = 0.22, and n = 7680, with w = (0.11,0.29,0.6). We
estimated & = (0.11,0.26,0.63) (with Co.o = [0.00,0.33] x [0.07,0.41] x [0.39,0.71]).
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Violation of identifiability

1. (ASB) condition violated, i.e., 6 = 0:
1.1 Little influence on &.
1.2 Big influence on Fro . fm but uncertainty is captured in
confidence bands.
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Violation of identifiability

1. (ASB) condition violated, i.e., 6 = 0:
1.1 Little influence on &.
1.2 Big influence on Fro . fm but uncertainty is captured in
confidence bands.

Local finite alphabet separation boundary:

0<d(x) = #fr&i)nemm wha—w'f(x)
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Violation of identifiability
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Violation of identifiability

For f as in our example, but w choose randomly, uniformly
distributed on Q(3), we compute 10.000 realizations of @, C1_q,
f1,...,f3 and H(B), for 0 = 0.05, n = 1280, and o = § = 0.1.
Consequently, for each run we get a different w and §, respectively.

§€ MAE(®) [1073] | dist(w,C1_o) [1077]
[0,0.0001] (6,4,5) 29
[0.0001,0.01] (7,4,7) 34
[0.01,0.02] (4,4,4) 30
[0.02,0.03] (4,4,4) 29
[0.03,0.04] (4,3,4) 31
[0.04,0.05] (4,3,4) 31
[0.05,0.06] (4,3,5) 31
[0.06,0.07] (3,3,4) 31

— SESAME's performance of & and C;_,, respectively, is not
much influenced by the ASB §



Violation of identifiability

For f as in our example, but w choose randomly, uniformly
distributed on Q(3), we compute 10.000 realizations of @, C1_q,
f1,...,f3 and H(B), for 0 = 0.05, n = 1280, and o = § = 0.1.
Consequently, for each run we get a different w and §, respectively.

§€ MIAE(f7) [1074] | med(|Hx(0.1)]) 5(x) €
[0,0.0001] | (1916,1067,483) 3 [0,0.001]
[0.0001,0.01] | (1536, 923,354) 3 [0.001,0.01]
[0.01,0.02] | (671,474,147) 3 [0.01,0.02]
[0.02,0.03] (236, 164, 40) 3 [0.02,0.03]
[0.03,0.04] (96,37,7) 2 [0.03,0.04]
[0.04,0.05] (100,7,2) 2 [0.04,0.05]
[0.05,0.06] (42,1,0) 2 [0.05,0.1]
[0.06,0.07] (16,4,0) 1 [0.1,0.33]

— Uncertainty is captured in the confidence bands.
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Violation of identifiability

1. (ASB) condition violated, i.e., 6 = 0:

1.1 Little influence on &.
1.2 Big influence on f1,... f™, but uncertainty is captured in
confidence bands.

2. (VS) condition violated, i.e., too little variation of Lo fm

2.1 Big influence on &. A
2.2 Big influence on f1,...,f™ as estimate is based on .



Violation of identifiability

1. (ASB) condition violated, i.e., 6 = 0:

1.1 Little influence on &.
1.2 Big influence on f1,... f™, but uncertainty is captured in
confidence bands.

2. (VS) condition violated, i.e., too little variation of Lo fm

2.1 Big influence on &. A
2.2 Big influence on f1,...,f™ as estimate is based on .

When f comes from a Markov chain, probability
that variation is rich enough converges exponenti-
ally fast to 1.°

9[Behr and Munk, 2015]
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