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Regression

(Xi ,Yi ) ∈ Rd × R n pairs of observations

Yi = m(Xi ) + εi

Y = m + ε.

Aim : estimation of m the unknown function.
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Smoothing

We estimate m np (smoothing) :

m̂ = SλY

where
• Sλ is the smoothing matrix
• λ is the smoothing parameter (bandwidth, penalty coefficient,
number of neighboors...).



CIRM 2016

Introduction Iterative bias reduction Admissibility Kernel K -nn type estimators Conclusions

Classical smoother

• moving average Sij = 1/ number of X in the neighborhood

• binning Sij = 1/ number of X in the bin

• kernel Sij = Kh(Xi − Xj)/
∑

l Kh(Xi − Xl)

• regression spline S = B(B ′B)−1B ′

• smoothing spline S = N(N ′N + λΩN)−1N ′

• kppv and mutual mkppv
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Main idea

Assume λ big, so that the initial smoother is very smooth ; then

• estimate the bias
• correct the previous smoother

and iterate.
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Procedure

• choose a smooth pilot S1 and get m̂1 = S1Y .

• evaluate the conditionnal bias B(m̂1) = (S1 − I )m

• estimate it by for example (S1 − I )S1Y

• correct m̂1 and get

m̂2 = S1Y − (S1 − I )S1Y = [I − (I − S)2]Y

• Iterate

m̂k = [I − (I − S)k ]Y .
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Bias correction

The behaviour of m̂k is related to the spectrum of I − S .

Smoothing Spline, Duchon spline, Thin plate spline... OK

If the kernel is not positive definite as for example Epanechnikov,
uniform, S admits negative eigen values.

What is a meaning of a smoother with negative eigen values ?
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Admissibility

Consider linear estimator m̂ = MY and quadratic risk

R(m̂,m) = E(m̂ −m)′(m̂ −m)

= σ2tr(M ′M) + m′(I −M)′(I −M)m.

Cohen (1966) showed that a linear estimator m̂ = MY is admissible
among all linear estimator iff
• M is symmetric
• the eigenvalues of M are in [0, 1]

Most of the smoother are not symmetric, in this talk we propose a
procedure which suitably modify the initial smoother.
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Symmetrisation

σ2tr(S ′S) + m′(I − S)′(I − S)m.

1. arithmetic mean Sa = (S + S ′)/2
2. geometric mean Sg = (S ′S)1/2 which conserves the variance
3. conserving the bias (Cohen) SC = I − [(I − S)′(I − S)]1/2

4. ... with a step factor (Zhao) SZ = I − ρ[(I − S)′(I − S)]1/2

5. if S could be written as WA with W a diagonal matrix of
positive weights and A symmetric, define Sw = W 1/2AW 1/2

6. ...
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Averaging is not a good idea

If the initial smoother is row stochastic than the maximum
eigen value of Sa or Sg is strictly bigger than 1.

Idea of the proof, using Rayleigh coefficient and find a vector u
such that u′Su > u′u.
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Negative eigen values

If the initial smoother has negative eigen values, Sc and Sw
are not admissible. For SZ it will depend on the choice of ρ.
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Kernel smoother

Recall that Sij = Kh(Xi − Xj)/
∑

l Kh(Xi − Xl)

If the initial smoother uses a positive definite kernel
(Gaussian), Sc , SZ and Sw are admissible.

However if one wants a smoother which could be evaluated at any
points, we recommand to use SW so m̂ = W 1/2KW 1/2
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Interpretation and evaluation at any x

m̂NW (x) =
1

n̂hfn(x)

∑
i

Kh(Xj − Xi )Yi

m̂MM(x) =
∑
i

Kh(Xj − Xi )
Yi

n̂hfn(Xi )

The new estimator is a mixture of the classical NW estimator and
the intern estimator (Mack and Müller 1989) :

m̂W (x) =
1√

nhf̂n(x)

n∑
i=1

Kh(x − Xi )
Yi√

nhf̂n(Xi )
.

Theoretical properties in progress.
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K -nn, 1950

Sn = {X1, · · · ,Xn} Ni = {Xj ∈ Sn|Xj is K -nn of Xi}

SKnn
ij =

{ 1
k if Xj ∈ Ni

0 otherwise
.

The adjacency matrix associated to the K -nn direct graph is M.∑n
j=1 Mij = k .

Hj =
∑n

i=1 Mij which counts the number of neighboor Xj belongs
to, is a random variable, if Hj is bigger than k , Xj is called a hub.
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Mutual k-nn, 1978

Mi = {Xj ∈ Sn|Xj ∈ Ni and Xi ∈ Nj}

The adjacency matrix associated is

M̃ij =

{
1 if Xj ∈Mi

0 otherwise

The number of mk-nn of Xi , Ki =
∑n

j=1 M̃ij is bounded by k .

SMnn = WM̃

W = diag(. . .
1∑n

j=1 M̃ij

. . . )



CIRM 2016

Introduction Iterative bias reduction Admissibility Kernel K -nn type estimators Conclusions

Mutual

Since we could write SMnn as WM̃, we could symmetrise by

SW = W 1/2M̃W 1/2

Let us consider the quadratic form associated to M̃.
Consider M̃ with k ≥ 3. If among Sn there is 3 points (A, B, C) st
(A,B) and (B,C) are mutual and (A,C) are not than

λmin(M̃) < 0

Proof : take the vector u which is 0 everywhere except at position A
(resp B and C) with values -1 (resp 2 et -1) than the quadratic form

utM̃u = −2 < 0
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Connexion with graphs

Consider the graph with 3 nodes and 2 edges, the matrix is 1 1 0
1 1 1
0 1 1


and the eigen value is 1−

√
2 ( (1 + 2cos(kπ/(n + 1)).

The eigen values are not negative if all the subgraphs are complete.
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For K -nn ?

Since M the adjacency matrix is not symmetric, one has to work
with Cohen or Zhao estimator.

We cand proove that the max eigen value of (I − S)(I − S)t is
strictly bigger than 1 so SC is not admissible and for SZ it depends
again of the choice of ρ.

When smoother admits negative eigen values, Zhao proposed to
replace the negative values by 0 or by its absolute values. Let us
propose a general simple procedure.
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General procedure

Start with the adjacency matrix A (or a smoother)
1. evaluate N1 = AA′ or N2 = A′A.

2. find Wi such that WiNi is row stochastic
W = diag(. . . 1∑n

j=1 Nij
. . . )

3. evaluate Si = W
1/2
i NiW

1/2
i .

This estimator is admissible because
(1) it is symmetric
(2) the eigen values are in [−1, 1] because it is row stochastic
(3) the eigen values are in [0, 1] because it is positive definite.
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Interpretation and evaluation at any point

(AA′)ij # of points belonging to Ni and Nj , and is bounded by k .

(A′A)ij # of points which have both Xi and Xj in their K -nn.

Denote by lj the row sum of AA′ or A′A

m̂(Xj) =
1√
lj

n∑
i=1

cji
Yi√
li
.

This estimator could be evaluated at any point :

m̂(x) =
1√
lx

n∑
i=1

cxi
Yi√
li
.

Same spirit as the new kernel estimator.
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Conclusions

We propose a new kernel estimator

m̂W (x) =
nh√
f̂n(x)

n∑
i=1

Kh(x − Xi )
Yi√
f̂n(Xi )

.

We propose a simple procedure which transform a smoother into an
admissible one and for which it is possible to evaluate at any points
as for K -nn type smoother

m̂(x) =
1√
lx

n∑
i=1

cxi
Yi√
li
.

It is possible to iterate such new smoother (ibr) and it is
computationnally interesting via the eigen decomposition.
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