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Problem formulation
We will prototypically discuss linear inverse problems in Hilbert space, given
as

yσ = Tx + σξ,

where

T : X → Y is a (compact) linear operator between (real) Hilbert
spaces X and Y ,

x is the (unknown) solution,
ξ represents Gaussian white noise, i.e., it is a (weak) Gaussian
element, with

I weak second moments E〈ξ, y〉2 <∞, and
I identity covariance E〈ξ, y1〉〈ξ, y2〉 = 〈y1, y2〉.

σ is the (known) noise level, and

yσ are the given observations.

Remark

Further restrictions will be imposed below.
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Challenges
Within the present context we face two major problems

The observations yσ do not belong to the space Y ;

The solution operator T−1 is not boundedly invertible.

Therefore we will discuss

how to precondition the equation in order to have data right, and

how to regularize the problem in order to obtain a stable
reconstruction of the solution.

Literature:

G. Blanchard, M., Discrepancy principle for statistical inverse problems
with application to conjugate gradient regularization,
Inverse Problems, 28(11):pp. 115011, 2012.

Q. Jin, M., Oracle inequality for a statistical Raus�Gfrerer�type rule,
SIAM/ASA J. on UQ, 1(1):386�407, 2013.

S. Lu, M., Discrepancy based model selection in statistical inverse
problems, J. Complexity, 30(3):290�308, 2014.
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Preconditioning

Preconditioning is achieved by smoothing the equation, i.e., by applying
some S : Y → X such that T ξ ∈ X (a.s.).

Theorem (Sazonov, 1958)

Sξ is an element in X if and only if the operator S has square summable
singular numbers.

De�nition (Hilbert�Schmidt operator)

A bounded operator S : Y → X in Hilbert space is called Hilbert�Schmidt
operator if tr[S∗S ] =

∑
sj>0 s

2
j <∞.

This can be used in two situations

smoothing S := T ∗ provided that T is Hilbert�Schmidt, or

discretization S := PnT
∗ : Y → X with Pn being �nite, otherwise.
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Regularization

In the following we do not consider discretization, instead we assume that
T is Hilbert�Schmidt, and we consider new data

zσ = T ∗yσ = T ∗Tx + σT ∗ξ = T ∗Tx + σζ

Now, the data zσ ∈ X are o.k., but, still the solution operator T ∗T is not
boundedly invertible. We con�ne our discussion to Tikhonov regularization:
We determine a parametric family

xα,σ := (T ∗T + αI )−1 T ∗yσ = (T ∗T + αI )−1 zσ, α > 0.

Problem

How to choose α?
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Bias-variance decomposition

The estimators are linear functions of the data zσ. In this case we have a
natural error decomposition.

Theorem

Let zσ → x̂(zσ) be any linear (Hilbert�Schmidt) estimator. Then

E‖x − x̂(zσ)‖2 = ‖x − x̂(Tx)‖2 + σ2E‖x̂(ξ)‖2

The quantity ‖x − x̂(Tx)‖ is called bias (regularization error).

The quantity σ2E‖x̂(ξ)‖2 = σ2 tr[(x̂)∗x̂ ] is the variance.

We shall ignore the bias, here. There are sharp bounds under natural
smoothness conditions.
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Controlling the variance: The e�ective dimension
We need to control the trace tr[(x̂)∗x̂ ]. The following function is important.

De�nition (e�ective dimension)

Let T be a Hilbert Schmidt operator. The function

N (t) := tr[(tI + T ∗T )−1 T ∗T ], t > 0,

is called e�ective dimension.

Lemma

Let T be a Hilbert�Schmidt operator with in�nite range. For Tikhonov
regularization xα,σ = (T ∗T + α)−1 zσ we have that

tr[(x̂)∗x̂ ] ≤ N (α)

α
, α > 0.

Goal

Find a discrepancy which takes N into account!
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Previous approaches

Observation:

E‖ (λI + T ∗T )−1/2 T ∗ξ‖2 = N (λ)

Thus, as in [1] we might consider the weighted discrepancy

‖ (λI + T ∗T )−1/2 (T ∗Txα,σ − zσ)‖2 ≤ τσ
√
N (λ)

Observation: The best a priori choice of λ coincides with the best a
priori choice of α!

Thus, as in [6] we let λ = α in above formula and we consider

‖ (αI + T ∗T )−1/2 (T ∗Txα,σ − zσ)‖2 ≤ τσ
√
N (α)!
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Varying discrepancy principle

We choose α from a grid

∆ := {α0 > α1 := qα0 > · · · > αn := qnα0 > · · · > 0} ,

for a pre-speci�ed value 0 < q < 1.

De�nition (varying discrepancy principle, cf. Lu/M. [6], 2014)

Given positive constants τ > 1, η > 0 and κ > 0 the parameter αVDP is
chosen as the largest α ∈ ∆ for which either

‖ (αI + T ∗T )−1/2 (zσ − T ∗Txα,σ)‖≤ τ(1 + κ)σ
√
N (α) (regular stop), or

√
qα≤ η(1 + κ)σ

√
N (α) (emergency stop).

Remark

This parameter choice works, however it su�ers from early saturation!
The emergency stop prevents outliers!
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Oracle inequalities

There are many variants for formulating oracle-type inequalities. Here we
shall focus on one based on the error decomposition from before.

De�nition (generic oracle inequality, quasi-optimality)

Let xα,σ be any regularization scheme, and let α∗ be chosen according to
some parameter choice. This choice allows for an oracle inequality, if

(
E‖x − xα∗,σ(zσ)‖2

)
≤ inf

0<α<∞

{
‖x − xα,σ(Tx)‖ + σ

√
N (α

α

}

Remark

If the regularization has certain quali�cation, then we obtain the best
possible error bound for this regularization. So, necessarily the parameter
choice cannot have early saturation!
The varying discrepancy principle does not allow for an oracle inequality.
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Statistical Raus�Gfrerer rule

De�nition (statistical RG-rule, cf. Jin/M. [4], 2013)

Given τ > 1 > η > 0, and κ ≥ 0.
Let αRG ∈ ∆ be the largest parameter for which either

(reg. stop): ‖ (αI + T ∗T )−1 (T ∗Txα,σ − zσ)‖≤ τ(1 + κ)σ
√
N (α),

or

(emergency stop):
√
qα≤ η(1 + κ)σ

√
N (α).

Remark

This approach goes back to Raus/Gfrerer [8, 3], 1984/87.
It resolves the early saturation of the discrepancy principle.
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Main result for the statistical RG-rule

Theorem (Jin/M. [4], 2013)

If αRG ≤ α0 is chosen according to statistical RG-rule with
κ =

√
8(1 + |log(1/σ)|)/N (α0), then

(
E‖x − xδααRG

‖2
)1/2

≤ C inf
0<α≤α0

{
‖x − xα‖ + σ

√
|log 1/σ|

√
N (α

α

}
,

provided that Assumption 2 holds.

Remark

Under smoothness in terms of general source conditions this gives the
optimal order of reconstruction up to the log-factor

√
|log 1/σ|!
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General proof strategy

We consider the set
Zκ,α =

{
ζ : ‖ (αI + T ∗T )−1/2 ζ‖ ≤ (1 + κ)

√
αN (α)

}
. Then

(
E‖x − xα,σ‖2

)1/2≤ sup
ζ∈Zκ,α

‖x − xα,σ(ζ)‖ +
(
E‖x − xα,σ‖4

)1/4 P [ZC
κ,α

]1/4
.

The set Zκ,α of noise realizations is designed such that

The 4th moment is bounded (emergency stop),

the set Zκ,α has (exponentially) small probability (concentration),

we can control the parameter choice on ζ ∈ Zκ,α (crucial part!).

Goal

Analyze ill-posed problem under general noise assumption!
Such analysis was initiated by P. Eggermont et al. [2], 2009!
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General noise

Assumption

There is a function α→ δ(α) > 0 that is non-decreasing, while
α→ δ(α)/

√
α is non-increasing such that the noise ζ obeys

δ‖ (αI + T ∗T )−1/2 ζ‖ ≤ δ(α), α̂ ≤ α ∈ ∆q,

where α̂ ∈ ∆q is the largest parameter such that α̂ ≤ ηδ(α̂) with η > 0
being a given small number.

Remark

There are interesting special cases.

If ‖ (T ∗T )−1/2 ζ‖ = ‖ξ‖≤ 1 then usual noise assumption δ(α) = δ,

if ‖ζ‖ = ‖T ∗ξ‖ ≤ 1 then large noise δ(α) = δ/
√
α!
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α > αRG :

Lemma

Under the noise assumption 1 we have the following natural error
decomposition

‖x − xα,σ‖ ≤ ‖x − xα‖ + c∗
δ(α)

α
.

Lemma

If α > αRG then
δ(α)

α
≤ 1

τ − 1
‖xα − x‖.

Thus the bias dominates the noise term!

Therefore we need to consider the case α ≤ αRG !
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Bounding the bias: Qinian's inequality

Lemma (Q. Jin, 2009/10)

For 0 < α ≤ β we have

‖xβ − xα‖ ≤ (1 + γ∗)

√
β

α
‖T 1/2 (β + T )−1/2 (x − xβ)‖.

Remark

This allows to establish an oracle inequality for the RG-rule under classical
noise assumptions, Q. Jin, unpublished.

In our setup we need to lift the norm on the right as

‖T 1/2 (β + T )−1/2 (x − xβ)‖ ≤ C‖ (β + T )−1 T (x − xβ)‖.

The latter bound can be controlled by the RG-rule!
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Lifting: The Kindermann�Neubauer condition

Assumption (Ass. 2, Kindermann/Neubauer [5], 2008)

There exist c1 > 1, 0 < c2 < 1 and 0 < t0 < ‖T ∗T‖ such that∫ α

0

d‖Etx‖2 ≤ c21

∫ ∞
c2α

r2α(t) d‖Etx‖2

for all 0 < α ≤ t0.

Lemma

Under Assumption 2 there is a constant C such that

‖T 1/2 (β + T )−1/2 (x − xβ)‖ ≤ C‖ (β + T )−1 T (x − xβ)‖.

Consequently, we have that

‖xβ − xα‖ ≤ C

√
β

α
‖ (β + T )−1 T (x − xβ)‖.
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Deterministic oracle inequality

Theorem (Jin/M., 2013, [4])

For the general noise model, and under Assumption 2 there is a constant
such that the following holds.
If αRG is the parameter chosen according to the RG-rule then

‖x − xδαRG
‖ ≤ C inf

0<α≤α0

{
‖x − xα‖ +

δ(α)

α

}
.

Goal

When does the Kindermann�Neubauer Assumption 2 hold?
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The Kindermann�Neubauer Assumption

We did not talk about smoothness so far.
In order to understand the validity of the KN-assumption we introduce
source sets.

De�nition (source set)

For a non-decreasing continuous function ψ : (0,∞)→ R+, ψ(0+) = 0 we
measure smoothness of an element x ∈ X by assuming that

x ∈ Hψ := {x , x = ψ(T ∗T )v , ‖v‖ ≤ 1} ⊂ Xψ.

Theorem (Lu/M., 2014)

The set of x ∈ X for which Assumption 2 holds true is everywhere dense in
every source set Hψ (in Xψ).
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Summary

We discussed linear statistical ill-posed problems in Hilbert
space yσ = Tx + δξ under Gaussian white noise.

We indicated the optimal order of reconstruction.

The error can be expressed in terms of the e�ective dimension N .

We discussed the statistical RG-rule.

We highlighted the importance of the Kindermann�Neubauer type
assumptions.
Under this assumption an oracle-type bound for the reconstruction
error can be proven both

I for general noise assumptions, and
I for regularization under Gaussian white noise.

Thank you for the attention!
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