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Problem formulation

We will prototypically discuss linear inverse problems in Hilbert space, given
as

y? = Tx + g€,
where

@ T: X — Yisa (compact) linear operator between (real) Hilbert
spaces X and Y,
@ x is the (unknown) solution,

o ¢ represents Gaussian white noise, i.e., it is a (weak) Gaussian
element, with

» weak second moments E(¢, y)? < oo, and
> identity covariance E(¢, y1)(§, y2) = (y1,¥2)-
@ o is the (known) noise level, and

e y7 are the given observations.

Remark

Further restrictions will be imposed below. J
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Challenges
Within the present context we face two major problems
@ The observations y? do not belong to the space Y;

@ The solution operator T~ is not boundedly invertible.
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Challenges
Within the present context we face two major problems
@ The observations y? do not belong to the space Y;
@ The solution operator T~ is not boundedly invertible.
Therefore we will discuss
@ how to precondition the equation in order to have data right, and

@ how to regularize the problem in order to obtain a stable
reconstruction of the solution.
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@ how to regularize the problem in order to obtain a stable
reconstruction of the solution.
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Preconditioning

Preconditioning is achieved by smoothing the equation, i.e., by applying
some S: Y — X such that T¢ € X (a.s.).

Theorem (Sazonov, 1958)

5S¢ is an element in X if and only if the operator S has square summable
singular numbers.

Definition (Hilbert-Schmidt operator)

A bounded operator S: Y — X in Hilbert space is called Hilbert-Schmidt
operator if tr[S*S]| = Zsj>0 sj? < 0.
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Preconditioning

Preconditioning is achieved by smoothing the equation, i.e., by applying
some S: Y — X such that T¢ € X (a.s.).

Theorem (Sazonov, 1958)

5S¢ is an element in X if and only if the operator S has square summable
singular numbers.

Definition (Hilbert-Schmidt operator)

A bounded operator S: Y — X in Hilbert space is called Hilbert-Schmidt
operator if tr[S*S] = Zsj>0 5}.2 < 0.

This can be used in two situations
smoothing S := T* provided that T is Hilbert-Schmidt, or
discretization S := P,T*: Y — X with P, being finite, otherwise.
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Regularization

In the following we do not consider discretization, instead we assume that
T is Hilbert—-Schmidt, and we consider new data

22 =Ty =T"Tx+oT*¢=T"Tx+o(
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Regularization

In the following we do not consider discretization, instead we assume that
T is Hilbert—-Schmidt, and we consider new data

22 =Ty =T"Tx+0oT*¢=T"Tx+ o

Now, the data z° € X are o.k., but, still the solution operator T*T is not

boundedly invertible. We confine our discussion to Tikhonov regularization:
We determine a parametric family

Xa,o = (T*T+0zl)71 T y? = (T*T+o¢l)71 z7, a>0.
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Regularization

In the following we do not consider discretization, instead we assume that
T is Hilbert—-Schmidt, and we consider new data

22 =Ty =T"Tx+0oT*¢=T"Tx+ o

Now, the data z° € X are o.k., but, still the solution operator T*T is not

boundedly invertible. We confine our discussion to Tikhonov regularization:
We determine a parametric family

Xa,o = (T*T+o¢l)71 T y? = (T*T+o¢l)71 z7, a>0.

Problem
How to choose o? J
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Bias-variance decomposition

The estimators are linear functions of the data z°. In this case we have a
natural error decomposition.

Theorem
Let z7 — X(z7) be any linear (Hilbert-Schmidt) estimator. Then

Elx — 2(27)|* = [|x = (Tx)||* + o*E[|2(¢)|

@ The quantity |[x — X(Tx)|| is called bias (regularization error).
e The quantity o?E[[%(¢)[|? = o2 tr[(%X)*X] is the variance.

We shall ignore the bias, here. There are sharp bounds under natural
smoothness conditions.
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Controlling the variance: The effective dimension

We need to control the trace tr[(X)*X]. The following function is important.

Definition (effective dimension)

Let T be a Hilbert Schmidt operator. The function
N(@t) =t|(tl + T*T) ' T*T], t>0,

is called effective dimension.

Lemma

Let T be a Hilbert-Schmidt operator with infinite range. For Tikhonov
regularization xo,. = (T*T + @)1 27 we have that

tr[(R)*%] < Ng)‘), a>0.

Goal

Find a discrepancy which takes N into account!

4
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Previous approaches

@ Observation:
E|| (M + T*T) 2 T2 = N(N)
Thus, as in [1] we might consider the weighted discrepancy

M+ T T) V2 (T Txao — 29|12 < 7o/ N(N)

@ Observation: The best a priori choice of A coincides with the best a
priori choice of a!

Peter Mathé (Weierstrass Institute) Statistical inverse problems Luminy, Feb. 11, 2016 9 /24



Previous approaches

@ Observation:

E|| (M + T*T) 2 T2 = N(N)
Thus, as in [1] we might consider the weighted discrepancy
[N+ T*T) V2 (T T, — 2%)|P < To /N ()

@ Observation: The best a priori choice of A coincides with the best a
priori choice of a!

@ Thus, as in [6] we let A = « in above formula and we consider

| (af + T*T) V2 (T* Txtgo — 2°)| < 70/ N(@)!
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Varying discrepancy principle
We choose « from a grid

A={ay>a; :=qag>>ap:=q"ay>--->0},
for a pre-specified value 0 < g < 1.

Definition (varying discrepancy principle, cf. Lu/M. [6], 2014)

Given positive constants 7 > 1, n > 0 and k > 0 the parameter aypp is
chosen as the largest o € A for which either

| (e + T T)fl/2 (27 = T Txa,0) || < 7( o N(a) (regular stop), d

Vaa< n(l+ k)o/N(«) (emergency stop )

Remark

This parameter choice works, however it suffers from early saturation/
The emergency stop prevents outliers/

<

v
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Oracle inequalities

There are many variants for formulating oracle-type inequalities. Here we
shall focus on one based on the error decomposition from before.

Definition (generic oracle inequality, quasi-optimality)

Let X, be any regularization scheme, and let o, be chosen according to
some parameter choice. This choice allows for an oracle inequality, if

T 0<a<oo

(Ellx = Xa..o(2)?) < inf {lIx = Xao(T)] +0 A;(a
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Oracle inequalities

There are many variants for formulating oracle-type inequalities. Here we
shall focus on one based on the error decomposition from before.

Definition (generic oracle inequality, quasi-optimality)

Let X, be any regularization scheme, and let o, be chosen according to
some parameter choice. This choice allows for an oracle inequality, if

(Bllx = %o (2)P) < inf_{x = xao(TX)] +0

Aa
(6

Remark

If the regularization has certain qualification, then we obtain the best
possible error bound for this regularization. So, necessarily the parameter
choice cannot have early saturation/

The varying discrepancy principle does not allow for an oracle inequality.
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Statistical Raus—Gfrerer rule

Definition (statistical RG-rule, cf. Jin/M. [4], 2013)
Givent>1>n>0,and k> 0.

Let agg € A be the largest parameter for which either

(reg. stop): || (al + T*T) " (T* Txos
or

7)< (1 + K)o/ N (),

(emergency stop): \/qa< 1(1 + k)o\/N(«)

NV
o 5 = E 9DAC¢
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Statistical Raus—Gfrerer rule

Definition (statistical RG-rule, cf. Jin/M. [4], 2013)

Givent >1>n>0, and k > 0.
Let agg € A be the largest parameter for which either

(reg. stop): || (ol + T*T) H (T* Tx.e — 27)|| < 7(1 + K)o /N (),
or

(emergency stop): \/qa< n(1 + r)o/N(a).

Remark

This approach goes back to Raus/Gfrerer [8, 3], 1984/87.
It resolves the early saturation of the discrepancy principle.
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Main result for the statistical RG-rule

Theorem (Jin/M. [4], 2013)

If are < ayg is chosen according to statistical RG-rule with

k= /8(1+ |log(1/a)|)/N (), then

(Blx =, B) " < € nf {ux —all + o/ Tlog 1/ Na‘“}

provided that Assumption 2 holds.
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Main result for the statistical RG-rule

Theorem (Jin/M. [4], 2013)

If are < ayg is chosen according to statistical RG-rule with

k= /8(1+ |log(1/a)|)/N (), then

1/2 . IN(«
0 2
_ < _ .~
(EHX Xt pe I ) C0<g1ia0 {Hx Xo|| + 04/ |logl/0]| },

provided that Assumption 2 holds.

Remark

Under smoothness in terms of general source conditions this gives the
optimal order of reconstruction up to the log-factor \/|log1/c|/
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General proof strategy
We consider the set

Zoo = {c: [(al + T*T)"Y2¢|| < (1 + x) aN(a)}. Then

]Ex—xagzl/2§ sup [|x — xa.o (O] + ]Ex—xag41/4IP’ z¢ 1/4.
) ¢ ) ) K,Q

et
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General proof strategy

We consider the set
Ly = {C N (ad + THT)Y2¢] < (14 k) a/\/(a)}. Then

1/2 1/4 1/4
(5l = 50 7)< sup lx = oo (O + (Blx = xaal) P [2E]

The set Z, ., of noise realizations is designed such that
@ The 4th moment is bounded (emergency stop),

o the set Z. , has (exponentially) small probability (concentration),

@ we can control the parameter choice on ¢ € Z, o (crucial part!).
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General proof strategy

We consider the set
Ly = {C N (ad + THT)Y2¢] < (14 k) a/\/(a)}. Then

1/2 1/4 1/4
(5l = 50 7)< sup lx = oo (O + (Blx = xaal) P [2E]

The set Z, ., of noise realizations is designed such that

@ The 4th moment is bounded (emergency stop),

o the set Z. , has (exponentially) small probability (concentration),

@ we can control the parameter choice on ¢ € Z, o (crucial part!).
Goal

Analyze ill-posed problem under general noise assumption/
Such analysis was initiated by P. Eggermont et al. [2], 2009/
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General noise

Assumption

There is a function a — §(cv) > 0 that is non-decreasing, while
a — 0(a)/+/a is non-increasing such that the noise ¢ obeys

S| (af + TT)2¢| < 6(0), a<ach,,

where & € Ay is the largest parameter such that & < nd(&) with n > 0

being a given small number.
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General noise

Assumption

There is a function a — §(cv) > 0 that is non-decreasing, while
a — 0(a)/+/a is non-increasing such that the noise ¢ obeys

S (al + T*T)M2¢| < d(a), a<acly,

where & € Ay is the largest parameter such that & < nd(&) with n > 0
being a given small number.

Remark
There are interesting special cases.

o If||(T*T) Y2¢|| = ||€||< 1 then usual noise assumption &(at) = 4,
o if||¢|| = ||T*¢|| <1 then large noise §(ar) = 6/+/a!
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o > QRG:

Lemma

Under the noise assumption 1 we have the following natural error
decomposition
6(c)
—

[x — Xa,o|l < [x = Xall + cx
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o > QRG:

Lemma

Under the noise assumption 1 we have the following natural error
decomposition
6(c)
—

X = Xaoll < lIx = Xall + e

Lemma

If @ > agg then
0() 1
—= <
a —17-—1

[1Xa = x][-

Thus the bias dominates the noise term!

Therefore we need to consider the case o < agg!
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Bounding the bias: Qinian’s inequality

Lemma (Q. Jin, 2009/10)

For 0 < a < 3 we have

1% = xall < (1 + %J\/EH T2 (84 T) V2 (x = x3)]|.

Remark

This allows to establish an oracle inequality for the RG-rule under classical
noise assumptions, Q. Jin, unpublished.
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Bounding the bias: Qinian’s inequality

Lemma (Q. Jin, 2009/10)

For 0 < a < 3 we have

1% = xall < (1 + %)\/EH T2 (84 T) V2 (x = x3)]|.

Remark

This allows to establish an oracle inequality for the RG-rule under classical
noise assumptions, Q. Jin, unpublished.

In our setup we need to /ift the norm on the right as

IT2 (B4 T) 2 (x = xp)ll < CIH(B+ T) ™ T(x = x)ll-

The latter bound can be controlled by the RG-rule!
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Lifting: The Kindermann—Neubauer condition
Assumption (Ass. 2, Kindermann/Neubauer [5], 2008)

There exist c; > 1,0 < cp <1and 0 <ty < | T*T| such that

/ d|Ex|? < & / 2(8) d| Exx?
0 c

2

forall 0 < o < 1.
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Lifting: The Kindermann—Neubauer condition
Assumption (Ass. 2, Kindermann/Neubauer [5], 2008)

There exist c; > 1,0 < cp <1and 0 <ty < | T*T| such that

(07 o0
/ d|Ex|? < &2 / 2(t) d|| Ecx]?
0 c

20

forall 0 < o < 1.

Lemma

Under Assumption 2 there is a constant C such that

ITY2 (8 4+ T) 72 (x = xg)ll < CIH(B+ T) 7" T(x = x)ll-

Consequently, we have that

%6 — xall < C\/EH (B+T)7 Tlx—xs)ll.

v
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Deterministic oracle inequality

Theorem (Jin/M., 2013, [4])

For the general noise model, and under Assumption 2 there is a constant
such that the following holds.

If agg is the parameter chosen according to the RG-rule then

: 0()
50 _
Il < € ik, {lx—xall+ 22,
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Deterministic oracle inequality

Theorem (Jin/M., 2013, [4])

For the general noise model, and under Assumption 2 there is a constant
such that the following holds.
If agg is the parameter chosen according to the RG-rule then

: 0()
—x9 _ i Sads
Il < € ik, {lx—xall+ 22,

Goal
When does the Kindermann—Neubauer Assumption 2 hold?
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The Kindermann—Neubauer Assumption

We did not talk about smoothness so far.

In order to understand the validity of the KN-assumption we introduce
source sets.

Definition (source set)
For a non-decreasing continuous function ¢ (0,00) — R*, 4 (0+) = 0 we

measure smoothness of an element x € X by assuming that

x € Hy:={x, x=9(T*T)v, |v|| <1} C Xy.
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The Kindermann—Neubauer Assumption

We did not talk about smoothness so far.

In order to understand the validity of the KN-assumption we introduce
source sets.

Definition (source set)
For a non-decreasing continuous function ¢ (0,00) — R*, 4 (0+) = 0 we

measure smoothness of an element x € X by assuming that

x € Hy:={x, x=9(T*T)v, |v|| <1} C Xy.

Theorem (Lu/M., 2014)

The set of x € X for which Assumption 2 holds true is everywhere dense in
every source set Hy, (in Xy ).

4
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Summary

o We discussed linear statistical ill-posed problems in Hilbert
space y? = Tx + 0& under Gaussian white noise.

o We indicated the optimal order of reconstruction.

@ The error can be expressed in terms of the effective dimension N
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Summary

We discussed linear statistical ill-posed problems in Hilbert
space y? = Tx + 0& under Gaussian white noise.

We indicated the optimal order of reconstruction.
The error can be expressed in terms of the effective dimension N\ .
We discussed the statistical RG-rule.

We highlighted the importance of the Kindermann—Neubauer type
assumptions.

Under this assumption an oracle-type bound for the reconstruction
error can be proven both

» for general noise assumptions, and
» for regularization under Gaussian white noise.
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Summary

We discussed linear statistical ill-posed problems in Hilbert
space y? = Tx + 0& under Gaussian white noise.

We indicated the optimal order of reconstruction.
The error can be expressed in terms of the effective dimension N\ .
We discussed the statistical RG-rule.

We highlighted the importance of the Kindermann—Neubauer type
assumptions.

Under this assumption an oracle-type bound for the reconstruction
error can be proven both

» for general noise assumptions, and
» for regularization under Gaussian white noise.

Thank you for the attention!
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