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Inverse problem model

Let H, K be Hilbert spaces.

Goal : inference on f ∈ H from noisy and indirect observations

Y = Af + εξ,

where A : H → K denotes a (compact) operator, ξ a Gaussian
white noise and ε > 0.

For all g ∈ K , we can observe

〈Y , g〉 = 〈Af , g〉+ ε〈ξ, g〉,

where 〈ξ, g〉 ∼ N (0, ‖g‖2).

In the case where the operator A is compact, the problem is
ill-posed.
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Non-parametric goodness-of-fit tests

Given a (known) benchmark function f0, the goal is to test

H0 : f = f0,

against
H1 : f ∈ F ,

where F denotes a function set (made precise next slide).

Several contributions in this setting and related domains :
• Ermakov (2006) - Ingster, Sapatinas and Suslina (2012) -
Laurent, Loubes and M. (2012)

• Butucea (2007)
• Bissantz, Claeskens, Holzmann and Munk (2009) - Ingster,
Sapatinas and Suslina (2011)
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Non-parametric goodness-of-fit tests

In our context, the alternative can be considered as follows

H1 : f − f0 ∈ Ea, ‖f − f0‖2 ≥ r2
ε ,

where
• f − f0 ∈ Ea denotes some constraints on the smoothness of
f − f0,

• ‖f − f0‖2 ≥ r2
ε denotes some ’energy’ condition between f and

f0. The term rε is called separation radius.

For a given constraint f ∈ Ea, the task is to determine the minimal
(achievable) radius rε for which H0 and H1 can be separated with
prescribed errors (Type I and Type II).



Non-parametric goodness-of-fit tests

Question : What happens when we have some uncertainty on the
operator A at hand ?

Several contributions in an estimation context (quantitative) :
Cavalier and Hengartner (2005) - Hoffmann and Reiss (2008) -
Johannes and Schwarz (2013) - Delattre, Hoffmann, Picard and
Vareschi (2012), ...

In this talk, we propose an attempt in a qualitative context
(investigation on the separation rates). This may provide outcome
for related models (IV regression, density model,...).



Singular value decomposition

Call (b2
k)k≥1 the eigenvalues of A?A and (φk)k≥1 the associated

eigenvectors. Let (ψk)k≥1 the basis verifying, for all k ∈ N :{
Aφk = bkψk ,
A?ψk = bkφk .

This leads to the sequence space model :

〈Y , ψk〉 = Yk = bkθk + εξk , k ∈ N,

with θk = 〈f , φk〉. The ξk are i.i.d. standard Gaussian random
variables.

When the operator A is compact, bk → 0 as k → +∞. Classical
settings

bk ∼ k−β or bk ∼ e−βk ∀k ∈ N.



Singular value decomposition

Call (b2
k)k≥1 the eigenvalues of A?A and (φk)k≥1 the associated

eigenvectors. Let (ψk)k≥1 the basis verifying, for all k ∈ N :{
Aφk = bkψk ,
A?ψk = bkφk .

This leads to the sequence space model :

〈Y , ψk〉 = Yk = bkθk + εξk , k ∈ N,

with θk = 〈f , φk〉. The ξk are i.i.d. standard Gaussian random
variables.

When the operator A is compact, bk → 0 as k → +∞. Classical
settings

bk ∼ k−β or bk ∼ e−βk ∀k ∈ N.



Singular value decomposition

Call (b2
k)k≥1 the eigenvalues of A?A and (φk)k≥1 the associated

eigenvectors. Let (ψk)k≥1 the basis verifying, for all k ∈ N :{
Aφk = bkψk ,
A?ψk = bkφk .

This leads to the sequence space model :

〈Y , ψk〉 = Yk = bkθk + εξk , k ∈ N,

with θk = 〈f , φk〉. The ξk are i.i.d. standard Gaussian random
variables.

When the operator A is compact, bk → 0 as k → +∞. Classical
settings

bk ∼ k−β or bk ∼ e−βk ∀k ∈ N.



The model

The following observations are available{
Yj = bjθj + ε ξj , j ∈ N,
Xj = bj + σ ηj , j ∈ N,

where ε, σ are known noise levels, ξj and ηj denotes i.i.d. standard
Gaussian random variables (independent of each other).

Given a fixed θ0 6= 0 and θ0 ∈ Ea, we want to test

H0 : θ = θ0,

against
H1 : θ − θ0 ∈ Ea, ‖θ − θ0‖2 ≥ r2

ε,σ.



The model

We want to test
H0 : θ = θ0,

against
H1 : θ − θ0 ∈ Ea, ‖θ − θ0‖2 ≥ r2

ε,σ,

where

Ea =

ν ∈ l2(N),
∑
j∈N

a2
j ν

2
j ≤ 1

 .

In the sequel, define

Θa(rε,σ) =

{
ν = (νk)k s.t.

∑
k∈N?

a2
kν

2
k ≤ 1 and ‖ν‖2 ≥ r2

ε,σ

}
,



Notations

Let Ψα = Ψα(X ,Y ) ∈ {0, 1} a given level-α test.

Define

• Maximal Type II error probability

βε,σ(Θa(rε,σ),Ψα) := sup
θ: θ−θ0∈Θa(rε,σ)

Pθ,b(Ψα = 0).

• Separation radius of Ψα

rε,σ(Ea,Ψα, β) := inf
{
rε,σ > 0 : βε,σ(Θa(rε,σ),Ψα) ≤ β

}
,

• Minimax separation radius over Ea

r̃ε,σ := inf
Ψ̃α:αε,σ(Ψ̃α)≤α

rε,σ(Ea, Ψ̃α, β).
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Program

All along this talk, we will use the following guideline
• Propose a testing procedure.
• Control its Type I error.
• Compute the associated separation radius (non-asymptotic
point of view).

• Check the optimality of the procedure (lower bounds).

To conclude the talk, we present asymptotic separation rates in this
setting, for both mildly and severely ill-posed problems, and
ordinary and super smooth functions.
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A testing procedure

We use the following testing procedure

ΨD,M := 1{TD,M>t1−α,D(X )},

where

TD,M :=
D∑
j=1

(
Yj

bj
− θj ,0

)2

,

M denotes a random bandwidth (made precise later) and

t1−α,D(X ) = ε2
D∑
j=1

b−2
j + Cαε

2

√√√√ D∑
j=1

b−4
j .



A testing procedure

We use the following testing procedure

ΨD,M := 1{TD,M>t1−α,D(X )},

where

TD,M :=
D∧M∑
j=1

(
Yj

Xj
− θj ,0

)2

,

M denotes a random bandwidth (made precise later) and

t1−α,D(X ) = ε2
D∧M∑
j=1

X−2
j +Cαε

2

√√√√D∧M∑
j=1

X−4
j +Cα

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M

]
.



Remarks I

Some comments
• Many alternative ways to perform a test, e.g. based on the
direct data (Yk is compared to Xkθk,0) : see for instance
Laurent, Loubes, M. (2011).

• The constant Cα involved in the procedure is explicit.
• The bandwidth M is defined as

M := inf{j ∈ N : |Xj | ≤ σhj} − 1,

where hj ∼
√

ln(j/α). For all j ≤ M, Xj is a ’good’
approximation of bj with high probability.



Remarks II (Heuristic)

Under H0,

TD,M =
D∧M∑
j=1

(
Yj

Xj
− θj ,0

)2

,

=
D∧M∑
j=1

[(
bj
Xj
− 1
)
θj ,0 + εX−1

j ξj

]2

,

∼ σ2
D∧M∑
j=1

b−2
j θ2

j ,0η
2
j + ε2

D∧M∑
j=1

X−2
j ξ2j ,



Remarks II (Heuristic)

Under H0,

TD,M ∼ σ2
D∧M∑
j=1

b−2
j θ2

j ,0η
2
j + ε2

D∧M∑
j=1

X−2
j ξ2j ,

Two different situations may occur
• If supj b

−2
j a−2

j is bounded, we obtain a bound of order σ2 for
the first term (up to a log term).

• In the other case, we can prove that supj≤M σ2b−2
j η2

j is
bounded with high probability, which leads to the additional
term a−2

D∧M in the threshold.
This explain in some sense the presence of the term[
σ2 ln3/2(1/σ) ∨ a−2

D∧M

]
.



A non-asymptotic upper bound
Let

D† ∼ arg min
D∈N

ε2
√√√√D∧M∑

j=1

X−4
j +

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M

] .

Proposition
There exists σ0 ∈]0, 1[ such that, for all 0 < σ ≤ σ0 and for each
ε > 0,

r̃2
ε,σ ≤ r2

ε,σ(Ea,ΨD,M , β)

≤ Cα,β inf
D∈N

ε2
√√√√D∧M1∑

j=1

b−4
j +

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M0

] ,

This bound is non-asymptotic. No condition required on both
sequences (bj)j and (aj)j .



Sketch of the proof
Remark that, for any fixed D, conditionally to X

Pθ(ΨD,M = 0/X ) = P(TD,M ≤ t1−α,D(X )/X ),

≤ β

2
+ 1t1−α,D(X )>tβ/2,D(θ,X ),

where tβ/2,D(θ,X ) denotes the β/2 quantile of TD,M when θ 6= θ0.

t1−α,D(X )0

α

tβ,D(θ,X )

β
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Sketch of the proof

In order to conclude the proof, we have to check that

t1−α,D(X ) > tβ/2,D(θ,X ),

occurs with probability bounded by β/2. This occurs as soon as

‖θ − θ0‖2 & ε2

√√√√D∧M1∑
j=1

b−4
j +

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M0

]
.

Then, prove that similar properties hold as soon as D is allowed to
depend on X .
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A non-asymptotic lower bound

Proposition
For every ε > 0 and σ > 0,

r̃ε,σ ≥ max(r̃0,σ, r̃ε,0). (1)

In particular, there exists Cα,β and a bandwidth M2 (made precise
latter on) such that

r̃2
ε,σ ≥ Cα,β

{
σ2 max

1≤D≤M2
[b−2

D a−2
D ]

}
∨

 sup
D∈N

ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

 .

Similar arguments are proposed in, e.g., Delattre, Hoffmann, Picard
and Vareschi (2012).



A non-asymptotic lower bound

{
Yj = bjθj + ε ξj , j ∈ N,
Xj = bj + σ ηj , j ∈ N,

In some sense, we address separately the testing problem in the
’extreme’ cases ε = 0, σ 6= 0 and ε 6= 0, σ = 0. Two different
questions are at hand :

• What can be done when the operator is completely known ?
(already addressed in the literature)

• Can we trust the observations on the operator ?



Lower bound when σ = 0

We deal with
Yj = bjθj + ε ξj , j ∈ N.

Theorem (Laurent, Loubes, M. (2012)
There exists a constant Cα,β such that

r̃2
ε,0 ≥ Cα,β sup

D∈N

ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

 .
The proof uses an (appropriate) uniform a priori on θ.



Lower bound when ε = 0

We deal with {
Yj = bjθj , j ∈ N,
Xj = bj + σ ηj , j ∈ N,

Theorem (M. and Sapatinas (2015))
There exists a constant Cα,β such that

r̃2
0,σ ≥ Cα,β

{
σ2 max

1≤D≤M2
[b−2

D a−2
D ]

}
,

where
M2 = sup

{
D ∈ N : b2

D ≥ Cσ2} ,
for some (explicit) constant C.



Remarks

Some comments
• The proof is uses a Bayesian a priori on the sequence of
eigenvalues, which makes the vecteur Y and X dependent.

• This lower bound is of the same order of the one proposed for
an estimation task.

• The term M2 is the deterministic analogue of the bandwidth
M introduced for the upper bound.
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Considered setting

We are interested in the behavior of the rates in terms of the values
of ε, σ.

Concerning the operator, we alternatively consider mildly and
severely ill-posed problems, namely

bk ∼ k−t or bk ∼ e−kt k ∈ N,

Different kind of smoothness are displayed

ak ∼ ks or ak ∼ eks k ∈ N.

We compute the separation rates in terms of the noise levels ε and
σ for each sub-case.



Separation rates : ordinary-smooth
functions

Upper bounds

Goodness-of-Fit ordinary-smooth
Testing Problem aj ∼ j s

mildly ill-posed ε4s/(2s+2t+1/2) ∨ [σ ln3/4(1/σ)]2[(s/t)∧1]

bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ ln−1/2(1/σ))]−2s

bj ∼ exp{−jt}

Lower bounds

Goodness-of-Fit ordinary-smooth
Testing Problem aj ∼ j s

mildly ill-posed ε4s/(2s+2t+1/2) ∨ σ2[(s/t)∧1]

bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ)]−2s

bj ∼ exp{−jt}



Separation rates : super-smooth functions

Upper bounds

Goodness-of-Fit super-smooth
Testing Problem aj ∼ e js

mildly ill-posed ε2(ln(1/ε))2t+1/2 ∨ σ2 ln3/2(1/σ)
bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ ln−1/2(1/σ))]−2s

bj ∼ exp{−jt}

Lower bounds

Goodness-of-Fit super-smooth
Testing Problem aj ∼ e js

mildly ill-posed ε2(ln(1/ε))2t+1/2 ∨ σ2

bj ∼ j−t

severely ill-posed ε2s/(s+t) ∨ σ2[(s/t)∧1]

bj ∼ exp{−jt}



Conclusion

Perspectives and related topics :
• Deal with the case θ0 = 0 (or more generally ‖θ0‖ ≤ ρ).
• Adadaption to the smoothness,
• Find the optimal constants.
• Related models (density, IV regression, ...)
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