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Inverse problem model

Let H, K be Hilbert spaces.

Goal : inference on f ∈ H from noisy and indirect observations

Y = Af + εξ,

where A : H → K denotes a (compact) operator, ξ a Gaussian
white noise and ε > 0.

For all g ∈ K , we can observe

〈Y , g〉 = 〈Af , g〉+ ε〈ξ, g〉,

where 〈ξ, g〉 ∼ N (0, ‖g‖2).

In the case where the operator A is compact, the problem is
ill-posed.
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Non-parametric goodness-of-fit tests

Given a (known) benchmark function f0, the goal is to test

H0 : f = f0,

against
H1 : f ∈ F ,

where F denotes a function set (made precise next slide).

Several contributions in this setting and related domains :
• Ermakov (2006) - Ingster, Sapatinas and Suslina (2012) -
Laurent, Loubes and M. (2012)

• Butucea (2007)
• Bissantz, Claeskens, Holzmann and Munk (2009) - Ingster,
Sapatinas and Suslina (2011)
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Non-parametric goodness-of-fit tests

In our context, the alternative can be considered as follows

H1 : f − f0 ∈ Ea, ‖f − f0‖2 ≥ r2
ε ,

where
• f − f0 ∈ Ea denotes some constraints on the smoothness of
f − f0,

• ‖f − f0‖2 ≥ r2
ε denotes some ’energy’ condition between f and

f0. The term rε is called separation radius.

For a given constraint f ∈ Ea, the task is to determine the minimal
(achievable) radius rε for which H0 and H1 can be separated with
prescribed errors (Type I and Type II).



Non-parametric goodness-of-fit tests

Question : What happens when we have some uncertainty on the
operator A at hand ?

Several contributions in an estimation context (quantitative) :
Cavalier and Hengartner (2005) - Hoffmann and Reiss (2008) -
Johannes and Schwarz (2013) - Delattre, Hoffmann, Picard and
Vareschi (2012), ...

In this talk, we propose an attempt in a qualitative context
(investigation on the separation rates). This may provide outcome
for related models (IV regression, density model,...).



Singular value decomposition

Call (b2
k)k≥1 the eigenvalues of A?A and (φk)k≥1 the associated

eigenvectors. Let (ψk)k≥1 the basis verifying, for all k ∈ N :{
Aφk = bkψk ,
A?ψk = bkφk .

This leads to the sequence space model :

〈Y , ψk〉 = Yk = bkθk + εξk , k ∈ N,

with θk = 〈f , φk〉. The ξk are i.i.d. standard Gaussian random
variables.

When the operator A is compact, bk → 0 as k → +∞. Classical
settings

bk ∼ k−β or bk ∼ e−βk ∀k ∈ N.
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The model

The following observations are available{
Yj = bjθj + ε ξj , j ∈ N,
Xj = bj + σ ηj , j ∈ N,

where ε, σ are known noise levels, ξj and ηj denotes i.i.d. standard
Gaussian random variables (independent of each other).

Given a fixed θ0 6= 0 and θ0 ∈ Ea, we want to test

H0 : θ = θ0,

against
H1 : θ − θ0 ∈ Ea, ‖θ − θ0‖2 ≥ r2

ε,σ.



The model

We want to test
H0 : θ = θ0,

against
H1 : θ − θ0 ∈ Ea, ‖θ − θ0‖2 ≥ r2

ε,σ,

where

Ea =

ν ∈ l2(N),
∑
j∈N

a2
j ν

2
j ≤ 1

 .

In the sequel, define

Θa(rε,σ) =

{
ν = (νk)k s.t.

∑
k∈N?

a2
kν

2
k ≤ 1 and ‖ν‖2 ≥ r2

ε,σ

}
,



Notations

Let Ψα = Ψα(X ,Y ) ∈ {0, 1} a given level-α test.

Define

• Maximal Type II error probability

βε,σ(Θa(rε,σ),Ψα) := sup
θ: θ−θ0∈Θa(rε,σ)

Pθ,b(Ψα = 0).

• Separation radius of Ψα

rε,σ(Ea,Ψα, β) := inf
{
rε,σ > 0 : βε,σ(Θa(rε,σ),Ψα) ≤ β

}
,

• Minimax separation radius over Ea

r̃ε,σ := inf
Ψ̃α:αε,σ(Ψ̃α)≤α

rε,σ(Ea, Ψ̃α, β).
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Program

All along this talk, we will use the following guideline
• Propose a testing procedure.
• Control its Type I error.
• Compute the associated separation radius (non-asymptotic
point of view).

• Check the optimality of the procedure (lower bounds).

To conclude the talk, we present asymptotic separation rates in this
setting, for both mildly and severely ill-posed problems, and
ordinary and super smooth functions.
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A testing procedure

We use the following testing procedure

ΨD,M := 1{TD,M>t1−α,D(X )},

where

TD,M :=
D∑
j=1

(
Yj

bj
− θj ,0

)2

,

M denotes a random bandwidth (made precise later) and

t1−α,D(X ) = ε2
D∑
j=1

b−2
j + Cαε

2

√√√√ D∑
j=1

b−4
j .



A testing procedure

We use the following testing procedure

ΨD,M := 1{TD,M>t1−α,D(X )},

where

TD,M :=
D∧M∑
j=1

(
Yj

Xj
− θj ,0

)2

,

M denotes a random bandwidth (made precise later) and

t1−α,D(X ) = ε2
D∧M∑
j=1

X−2
j +Cαε

2

√√√√D∧M∑
j=1

X−4
j +Cα

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M

]
.



Remarks I

Some comments
• Many alternative ways to perform a test, e.g. based on the
direct data (Yk is compared to Xkθk,0) : see for instance
Laurent, Loubes, M. (2011).

• The constant Cα involved in the procedure is explicit.
• The bandwidth M is defined as

M := inf{j ∈ N : |Xj | ≤ σhj} − 1,

where hj ∼
√

ln(j/α). For all j ≤ M, Xj is a ’good’
approximation of bj with high probability.



Remarks II (Heuristic)

Under H0,

TD,M =
D∧M∑
j=1

(
Yj

Xj
− θj ,0

)2

,

=
D∧M∑
j=1

[(
bj
Xj
− 1
)
θj ,0 + εX−1

j ξj

]2

,

∼ σ2
D∧M∑
j=1

b−2
j θ2

j ,0η
2
j + ε2

D∧M∑
j=1

X−2
j ξ2j ,



Remarks II (Heuristic)

Under H0,

TD,M ∼ σ2
D∧M∑
j=1

b−2
j θ2

j ,0η
2
j + ε2

D∧M∑
j=1

X−2
j ξ2j ,

Two different situations may occur
• If supj b

−2
j a−2

j is bounded, we obtain a bound of order σ2 for
the first term (up to a log term).

• In the other case, we can prove that supj≤M σ2b−2
j η2

j is
bounded with high probability, which leads to the additional
term a−2

D∧M in the threshold.
This explain in some sense the presence of the term[
σ2 ln3/2(1/σ) ∨ a−2

D∧M

]
.



A non-asymptotic upper bound
Let

D† ∼ arg min
D∈N

ε2
√√√√D∧M∑

j=1

X−4
j +

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M

] .

Proposition
There exists σ0 ∈]0, 1[ such that, for all 0 < σ ≤ σ0 and for each
ε > 0,

r̃2
ε,σ ≤ r2

ε,σ(Ea,ΨD,M , β)

≤ Cα,β inf
D∈N

ε2
√√√√D∧M1∑

j=1

b−4
j +

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M0

] ,

This bound is non-asymptotic. No condition required on both
sequences (bj)j and (aj)j .



Sketch of the proof
Remark that, for any fixed D, conditionally to X

Pθ(ΨD,M = 0/X ) = P(TD,M ≤ t1−α,D(X )/X ),

≤ β

2
+ 1t1−α,D(X )>tβ/2,D(θ,X ),

where tβ/2,D(θ,X ) denotes the β/2 quantile of TD,M when θ 6= θ0.

t1−α,D(X )0

α

tβ,D(θ,X )

β
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Sketch of the proof

In order to conclude the proof, we have to check that

t1−α,D(X ) > tβ/2,D(θ,X ),

occurs with probability bounded by β/2. This occurs as soon as

‖θ − θ0‖2 & ε2

√√√√D∧M1∑
j=1

b−4
j +

[
σ2 ln3/2(1/σ) ∨ a−2

D∧M0

]
.

Then, prove that similar properties hold as soon as D is allowed to
depend on X .
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A non-asymptotic lower bound

Proposition
For every ε > 0 and σ > 0,

r̃ε,σ ≥ max(r̃0,σ, r̃ε,0). (1)

In particular, there exists Cα,β and a bandwidth M2 (made precise
latter on) such that

r̃2
ε,σ ≥ Cα,β

{
σ2 max

1≤D≤M2
[b−2

D a−2
D ]

}
∨

 sup
D∈N

ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

 .

Similar arguments are proposed in, e.g., Delattre, Hoffmann, Picard
and Vareschi (2012).



A non-asymptotic lower bound

{
Yj = bjθj + ε ξj , j ∈ N,
Xj = bj + σ ηj , j ∈ N,

In some sense, we address separately the testing problem in the
’extreme’ cases ε = 0, σ 6= 0 and ε 6= 0, σ = 0. Two different
questions are at hand :

• What can be done when the operator is completely known ?
(already addressed in the literature)

• Can we trust the observations on the operator ?



Lower bound when σ = 0

We deal with
Yj = bjθj + ε ξj , j ∈ N.

Theorem (Laurent, Loubes, M. (2012)
There exists a constant Cα,β such that

r̃2
ε,0 ≥ Cα,β sup

D∈N

ε2
√√√√ D∑

j=1

b−4
j ∧ a−2

D

 .
The proof uses an (appropriate) uniform a priori on θ.



Lower bound when ε = 0

We deal with {
Yj = bjθj , j ∈ N,
Xj = bj + σ ηj , j ∈ N,

Theorem (M. and Sapatinas (2015))
There exists a constant Cα,β such that

r̃2
0,σ ≥ Cα,β

{
σ2 max

1≤D≤M2
[b−2

D a−2
D ]

}
,

where
M2 = sup

{
D ∈ N : b2

D ≥ Cσ2} ,
for some (explicit) constant C.



Remarks

Some comments
• The proof is uses a Bayesian a priori on the sequence of
eigenvalues, which makes the vecteur Y and X dependent.

• This lower bound is of the same order of the one proposed for
an estimation task.

• The term M2 is the deterministic analogue of the bandwidth
M introduced for the upper bound.



Outline

1 Introduction

2 A non-asymptotic upper bound

3 Lower bound

4 Separation rates



Considered setting

We are interested in the behavior of the rates in terms of the values
of ε, σ.

Concerning the operator, we alternatively consider mildly and
severely ill-posed problems, namely

bk ∼ k−t or bk ∼ e−kt k ∈ N,

Different kind of smoothness are displayed

ak ∼ ks or ak ∼ eks k ∈ N.

We compute the separation rates in terms of the noise levels ε and
σ for each sub-case.



Separation rates : ordinary-smooth
functions

Upper bounds

Goodness-of-Fit ordinary-smooth
Testing Problem aj ∼ j s

mildly ill-posed ε4s/(2s+2t+1/2) ∨ [σ ln3/4(1/σ)]2[(s/t)∧1]

bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ ln−1/2(1/σ))]−2s

bj ∼ exp{−jt}

Lower bounds

Goodness-of-Fit ordinary-smooth
Testing Problem aj ∼ j s

mildly ill-posed ε4s/(2s+2t+1/2) ∨ σ2[(s/t)∧1]

bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ)]−2s

bj ∼ exp{−jt}



Separation rates : super-smooth functions

Upper bounds

Goodness-of-Fit super-smooth
Testing Problem aj ∼ e js

mildly ill-posed ε2(ln(1/ε))2t+1/2 ∨ σ2 ln3/2(1/σ)
bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ ln−1/2(1/σ))]−2s

bj ∼ exp{−jt}

Lower bounds

Goodness-of-Fit super-smooth
Testing Problem aj ∼ e js

mildly ill-posed ε2(ln(1/ε))2t+1/2 ∨ σ2

bj ∼ j−t

severely ill-posed ε2s/(s+t) ∨ σ2[(s/t)∧1]

bj ∼ exp{−jt}



Conclusion

Perspectives and related topics :
• Deal with the case θ0 = 0 (or more generally ‖θ0‖ ≤ ρ).
• Adadaption to the smoothness,
• Find the optimal constants.
• Related models (density, IV regression, ...)
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