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Inverse problem model
Let H, K be Hilbert spaces.
Goal : inference on f € H from noisy and indirect observations
Y = Af 4+ €,

where A: H — K denotes a (compact) operator, £ a Gaussian
white noise and € > 0.



Inverse problem model
Let H, K be Hilbert spaces.
Goal : inference on f € H from noisy and indirect observations
Y = Af 4+ €,

where A: H — K denotes a (compact) operator, £ a Gaussian
white noise and € > 0.

For all g € K, we can observe

(Y,g) = (Af,g) + €, 8),
where (¢, g) ~ N(0,]1g]?).

In the case where the operator A is compact, the problem is
ill-posed.
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Non-parametric goodness-of-fit tests

Given a (known) benchmark function fy, the goal is to test
Ho: f = ﬁ)?

against
Hy: ferF,

where F denotes a function set (made precise next slide).

Several contributions in this setting and related domains :

e Ermakov (2006) - Ingster, Sapatinas and Suslina (2012) -
Laurent, Loubes and M. (2012)

e Butucea (2007)

e Bissantz, Claeskens, Holzmann and Munk (2009) - Ingster,
Sapatinas and Suslina (2011)



Non-parametric goodness-of-fit tests

In our context, the alternative can be considered as follows
Hi:f —fo €&, |If —fl> > 12,

where

e f — fy € £, denotes some constraints on the smoothness of
f—fo,

o ||f — fo||> > r? denotes some 'energy’ condition between f and
fo. The term r. is called separation radius.

For a given constraint f € &,, the task is to determine the minimal
(achievable) radius r. for which Hy and H; can be separated with
prescribed errors (Type | and Type II).



Non-parametric goodness-of-fit tests

Question : What happens when we have some uncertainty on the
operator A at hand?

Several contributions in an estimation context (quantitative) :
Cavalier and Hengartner (2005) - Hoffmann and Reiss (2008) -
Johannes and Schwarz (2013) - Delattre, Hoffmann, Picard and
Vareschi (2012), ...

In this talk, we propose an attempt in a qualitative context
(investigation on the separation rates). This may provide outcome
for related models (IV regression, density model,...).



Singular value decomposition

Call (b2)k>1 the eigenvalues of A*A and (¢ )k>1 the associated
eigenvectors. Let (¢4 )k>1 the basis verifying, for all k € N :

{ Ady = by,
A%ty = bry.
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Singular value decomposition

Call (b2)k>1 the eigenvalues of A*A and (¢ )k>1 the associated
eigenvectors. Let (¢4 )k>1 the basis verifying, for all k € N :

{ Ady = by,
A%ty = bry.

This leads to the sequence space model :

<Y7¢k> = Yk = bkek +€£k7 k € N7

with 0, = (f, ¢x). The & are i.i.d. standard Gaussian random
variables.

When the operator A is compact, b, — 0 as k — +o0. Classical
settings
by ~ k™ or by ~ePkVkeN.



The model

The following observations are available

Yi=bjt0j+e¢&, jeN,
Xj = bj +onj, jeN,

where €, 0 are known noise levels, &; and 7; denotes i.i.d. standard
Gaussian random variables (independent of each other).

Given a fixed 89 # 0 and 6 € £,, we want to test
Ho 10 = 90,

against
Hi:0—06y € gaa ||9 - 00”2 > rez,a'



We want to test

against
fﬁ 10

where

&=

In the sequel, define

Oi(feo) = {1/ = (vx)

— 0 € &, |10 — Ool)* > 12

The model

Fb 10 ::90,

v € I*(N), Za}ujz <1
JjeN

Kk S.t. Z a2 <1 and |Jv|®>
keN*

2
Q¢7}‘
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Notations

Let W, = W, (X,Y) € {0,1} a given level-« test. Define
e Maximal Type Il error probability

IBE,U(ea(rE,O')7 Wa) = sup ]P)a,b(wa = 0)
0:0—00€0©,(rz,0)

e Separation radius of W,

re 0(537 WV, ) = inf {rsa >0: :85 +(© (rz-:,cr)7wa) < ﬁ} )

e Minimax separation radius over &,

Foo = inf rsyo(Sa,ﬁla,ﬁ).
v, cxsg(\lo' )<a



Program

All along this talk, we will use the following guideline

e Propose a testing procedure.

Control its Type | error.

Compute the associated separation radius (non-asymptotic
point of view).

Check the optimality of the procedure (lower bounds).

To conclude the talk, we present asymptotic separation rates in this
setting, for both mildly and severely ill-posed problems, and
ordinary and super smooth functions.
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A testing procedure

We use the following testing procedure

WDJV’ = l{TD,M>t1—a,D Iz

where

D /v 2
Tom =) (bj - j,o) ;
)

j=1

D
hoap =Y b2+ Cu’
j=1




A testing procedure

We use the following testing procedure

WDJV’ = l{TD,M>t17a,D(X)}’
where
DAM /v, 2
Tpm = zz: ()é—'9L0> ;
j=t

M denotes a random bandwidth (made precise later) and

D/\M D/\M
fiap(X) =€ ) X +Gae? | D X H+Ca [02 In%/2(1/5) v aBiM]
Jj=1 ji=1




Remarks |

Some comments

e Many alternative ways to perform a test, e.g. based on the
direct data (Y is compared to Xy ) : see for instance
Laurent, Loubes, M. (2011).

e The constant C, involved in the procedure is explicit.
e The bandwidth M is defined as

M :=inf{j e N: |X;| < ohj} —1,

where h;j ~ y/In(j /). For all j < M, X is a 'good’
approximation of b; with high probability.



Under Hy,
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Remarks Il (Heuristic)

jo) -

2
- — ) 0j0+eX; 1@] ,
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Remarks Il (Heuristic)

Under Hy,
DAM DAM
Tow ~ 03 bR X7
j=1 j=1

Two different situations may occur
o If sup; bfzafz is bounded, we obtain a bound of order o for
the first term (up to a log term).

e In the other case, we can prove that sup;y 0’2bj_277j2 is
bounded with high probability, which leads to the additional
term ‘953\/\/1 in the threshold.

This explain in some sense the presence of the term

[02 In%2(1/c) v apaml-



A non-asymptotic upper bound

Let
DAM
D' ~ arg Bngi% £2 Z Xj_4 + [02 |n3/2(1/0) v aBiM} :
j=1
Proposition

There exists o €]0, 1] such that, for all 0 < o < g and for each
>0,

F62,0 < rez,a(gau \UD,M>6)

DAM;
: 2 —4 2 3/2 —2
< Ca,ﬁfl)féfN € 21 b; Jr{U In (1/0)\/3D/\M0} :
=

This bound is non-asymptotic. No condition required on both
sequences (b;); and (aj);.



Sketch of the proof

Remark that, for any fixed D, conditionally to X
]P’g(wDyM = O/X) = ]P)(TD,M < tlfa,D(X)/X)a
B

< 5 + ltl—a,D(X)>tB/2,D(07X)’

where t3/5 p(6, X) denotes the 3/2 quantile of Tp p when 6 # 6.

T/




Sketch of the proof

Remark that, for any fixed D, conditionally to X
]P’g(wDyM = O/X) = ]P)(TD,M < tlfa,D(X)/X)a
B

< 5 + ltl—a,D(X)>tB/2,D(07X)’

where t3/5 p(6, X) denotes the 3/2 quantile of Tp p when 6 # 6.

/.

0 tl—a,D(X) - tﬂyp(e,X)




Sketch of the proof

In order to conclude the proof, we have to check that

t1-a,0(X) > tg)2,p(0, X),

occurs with probability bounded by 3/2. This occurs as soon as

DAM;y

> bt [02|n3/2(1/0) Vapiml -
j=1

16— 6ol* 2 €

Then, prove that similar properties hold as soon as D is allowed to
depend on X.
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A non-asymptotic lower bound

Proposition
For every e > 0 and o > 0,

F&g 2 max(FO,g, F&o). (1)

In particular, there exists C, g and a bandwidth M, (made precise
latter on) such that

=2 2 —2_-2 2
> C o° max [b5°a V< sup |e
e,0 = Oéﬂ{ 1§D§M2[ D “D ]} DGIEI

Similar arguments are proposed in, e.g., Delattre, Hoffmann, Picard
and Vareschi (2012).



A non-asymptotic lower bound

Yi=bjtj +e¢&, jeN,
)<J:b1+o-njv JEN,

In some sense, we address separately the testing problem in the
'extreme’ cases € = 0,0 # 0 and € # 0,0 = 0. Two different
questions are at hand :

e What can be done when the operator is completely known ?
(already addressed in the literature)

e Can we trust the observations on the operator?



Lower bound when o =0

We deal with
Yi=bi0j+c&, jeN

Theorem (Laurent, Loubes, M. (2012)

There exists a constant C, g such that

) 2
feo > Capsup |€

D
4, 2
> btnap
DeN =

The proof uses an (appropriate) uniform a priori on 6.



Lower bound when € =0

We deal with
Yj = bjb;, Jj€N,
)<J:bj+o-nja JEN,

Theorem (M. and Sapatinas (2015))

There exists a constant C, g such that

rOchCﬂ{ 1<rBaX [b D2]}7

where
I\/Igzsup{DEN:sz 2&72},

for some (explicit) constant C.




Remarks

Some comments
e The proof is uses a Bayesian a priori on the sequence of
eigenvalues, which makes the vecteur Y and X dependent.

e This lower bound is of the same order of the one proposed for
an estimation task.

e The term M, is the deterministic analogue of the bandwidth
M introduced for the upper bound.
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Considered setting

We are interested in the behavior of the rates in terms of the values
of €,0.

Concerning the operator, we alternatively consider mildly and
severely ill-posed problems, namely

b~ k™t or bg~e K keN,

Different kind of smoothness are displayed

ax~ k% or ax~eée keNl.

We compute the separation rates in terms of the noise levels € and
o for each sub-case.



Separation rates : ordinary-smooth

Upper bounds

functions

Goodness-of-Fit
Testing Problem

ordinary-smooth
aj~J°

b;

mildly ill-posed

—t

~J

Z:_45/(25+21.‘+1/2) v [0_ |n3 4(1/0_)]2[(5/t)/\1]

severe
bj ~

ly ill-posed
exp{—jt}

(In(1/€))~2 v [In(1/o In"3(1/0))] 2

Lower bounds

Goodness-of-Fit
Testing Problem

ordinary-smooth
aj~j°

mildly ill-posed
bj~j*

545 (2s+2t+1/2) V; 0_2[(5 t)A1]

severely ill-posed
bj ~ exp{—jt}

(In(1/2))™ VIn(1/o)] 7>




Separation rates : super-smooth functions

Upper bounds

Goodness-of-Fit super-smooth
Testing Problem aj ~ €*
mildly ill-posed e2(In(1/))*/2 v 62 In*/2(1/0)
bj~j*
severely ill-posed | (In(1/€))™% V [In(1/c In"3(1/0))] 2
bj ~ exp{—jt}

Lower bounds

Goodness-of-Fit super-smooth
Testing Problem aj ~ €
mildly ill-posed | €2(In(1/¢))**"/2 v o2
bj~j "
severely ill-posed | £2/CT0 v g27OAT]
bj ~ exp{—jt}




Conclusion

Perspectives and related topics :

Deal with the case 6 = 0 (or more generally ||6o] < p).

Adadaption to the smoothness,

Find the optimal constants.

Related models (density, IV regression, ...)
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