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Problem formulation.

I (X (n),T(n), P(n)
f , f ∈ F) is the statistical experiment

generated by the observation X (n).

I A : F→ S and B : F→ S are two mappings to be
estimated and S is a set endowed with semi-metrics ` and ρ.

I For any X (n)-measurable S-valued map Q̃, f ∈ F, q ≥ 1

Rq
A

[
Q̃, f

]
= E(n)

f

[
`
(
Q̃,A(f )

)]q
Rq

B

[
Q̃, f

]
= E(n)

f

[
ρ
(
Q̃,B(f )

)]q
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Important! We will assume that X (n) =

(
X

(n)
1 ,X

(n)
2

)
, where

X
(n)
1 ,X

(n)
2 are independent random elements.

I P(n)
1,f and P(n)

2,f denote marginal laws of X
(n)
1 and X

(n)
2 ;

I E(n)
i ,f , i = 1, 2, – mathematical expectation w.r.t. P(n)

i ,f .
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Estimation of A. Hypotheses.

I H is a set, Hn ⊆ H, n ∈ N∗, are countable of subsets.

I {Âh, h ∈ H}, {Âh,η, h, η ∈ H} – X
(n)
1 -measurable S-valued;

I εn → 0, n →∞ be a given sequence.

Apermute. Âh,η ≡ Âη,h, for any η, h ∈ H.

Aupper. For any n ≥ 1

sup
f∈F

E(n)
1,f

(
sup
h∈Hn

[
`
(
Âh,Λh(f )

)
−∆n(h)

]q
+

)
≤ εqn ;

sup
f∈F

E(n)
1,f

(
sup

h,η∈Hn

[
`
(
Âh,η,Λh,η(f )

)
−
{

∆n(h) ∧∆n(η)
}]q

+

)
≤ εqn .

I {Λh(f ), h ∈ H}, {Λh,η(f ), h, η ∈ H} – S-valued;

I ∆n = {∆n(h), h ∈ H} – X
(n)
1 -measurable positive variables.

Oleg V. Lepski



(Ψn, `)-selection rule for estimating A.

I Fix Ψn ∈Mn, where

Mn =
{

∆′n : ∆n(·) ≤ ∆′n(·), ∆′n(·) is X
(n)
1 − measurable

}
� Define for any h ∈ Hn

R̂n(h) = supη∈Hn

[
`
(
Âh,η, Âη

)
− 2Ψn(η)

]
+

� Let ĥ(n) ∈ Hn be an arbitrary X
(n)
1 − measurable element:

R̂
(
ĥ(n)

)
+ 2Ψn

(
ĥ(n)

)
≤ infh∈Hn

{
R̂(h) + 2Ψn(h)

}
+ εn

I Set for any f ∈ F, h ∈ Hn and n ≥ 1

B(n)
A (f , h) = `

(
Λh(f ),A(f )

)
+ 2 supη∈Hn

`
(
Λh,η(f ),Λη(f )

)
ψn(f , h) =

[
E(n)

1,f

{
Ψq

n(h)
}] 1

q
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(Ψn, `)-selection rule for A. Oracle inequality

R̂n(h) = supη∈Hn

[
`
(
Âh,η, Âη

)
− 2Ψn(η)

]
+

R̂
(
ĥ(n)

)
+ 2Ψn

(
ĥ(n)

)
≤ infh∈Hn

{
R̂(h) + 2Ψn(h)

}
+ εn

Theorem 1. Let Apermute and Aupper be fulfilled.

Then, for any f ∈ F, n ≥ 1 and Ψn ∈Mn

RA

[
Âĥ(n), f

]
≤ inf

h∈Hn

{
B(n)
A (f , h) + 5ψn(f , h)

}
+ 6εn.

I B(n)
A (f , h) = `

(
Λh(f ),A(f )

)
+ 2 supη∈Hn

`
(
Λh,η(f ),Λη(f )

)
I ψn(f , h) =

[
E(n)

1,f

{
Ψq

n(h)
}] 1

q
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Estimation of B. Hypotheses.

I {B̂h, h ∈ H} – family of X
(n)
2 -measurable S-valued mappings;

Objective: To bound from above the risk of the ”plug-in”
estimator B̂ĥ(n).

I {Υh, h ∈ H} – a collection of S-valued functionals.

Bmain. ∃C` such that for any f ∈ F, n ≥ 1 and h ∈ Hn

ρ
(
Υh(f ),B(f )

)
≤ C` `

(
Λh(f ),A(f )

)
Bupper. Φn ∈Mn and for any n ≥ 1

sup
f∈F

E(n)
1,f

(
sup
h∈Hn

[
En(h, f )− Φn(h)

]q
+

)
≤ εqn ;

I En(h, f ) =
(
E(n)

2,f

{
ρq
(
B̂h,Υh(f )

)}) 1
q

;

I Φn = {Φn(h), h ∈ H} – X
(n)
1 -measurable positive variables.
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Estimation of B. Hypotheses.

Bmain. ∃C` such that for any f ∈ F, n ≥ 1 and h ∈ Hn

ρ
(
Υh(f ),B(f )

)
≤ C` `

(
Λh(f ),A(f )

)
Bupper. Φn ∈Mn and for any n ≥ 1

sup
f∈F

E(n)
1,f

(
sup
h∈Hn

[
En(h, f )− Φn(h)

]q
+

)
≤ εqn ;

I En(h, f ) =
(
E(n)

2,f

{
ρq
(
B̂h,Υh(f )

)}) 1
q

;

I Φn = {Φn(h), h ∈ H} – X
(n)
1 -measurable positive variables.

Remark. Set En(h) = supf∈F En(h, f ) and note that if
En ∈Mn the hypothesis Bupper is obviously fulfilled with
Φn = En. This choice of Φn is reasonable for the statistical models
in which En(h, f ) is independent or depends ”weakly” on f .
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First procedure and oracle inequality.

Bmain. ∃C` such that for any f ∈ F, n ≥ 1 and h ∈ Hn

ρ
(
Υh(f ),B(f )

)
≤ C` `

(
Λh(f ),A(f )

)
Bupper. Φn ∈Mn and for any n ≥ 1

sup
f∈F

E(n)
1,f

(
sup
h∈Hn

[
En(h, f )− Φn(h)

]q
+

)
≤ εqn ;

Theorem 2. Let Apermute, Aupper, Bmain and Bupper be fulfilled.

Let ĥ(n) is obtained by (Φn, `)-selection rule. Then, for any
f ∈ F and n ≥ 1

RB

[
B̂ĥ(n), f

]
≤ C1 inf

h∈Hn

{
B(n)
A (f , h) + φn(f , h)

}
+ C2εn.

I φn(f , h) =
[
E(n)

1,f

{
Φq
n(h)

}] 1
q

, C1 = 7C` + 2, C2 = 10C` + 4.
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Second procedure and oracle inequality.

Problem. We note that the use (Φn, `)-selection rule if Φn 6= Ψn

does not allow to solve the problems of estimating A(·) and B(·)
simultaneously, i.e. by use of the same (Ψn, `)-selection rule in
both problems.

Objective. To prove an analog of Theorem 2 when ĥ(n) is
obtained by (Ψn, `)-selection rule with Ψn ∈Mn(δn).

• δn → 0, n →∞ - given sequence and

Mn(δn) :=
{

Ψn ∈Mn : infh∈Hn Ψn(h) ≥ δn
}

Remark. Mn(δn) ⊃
{

Ψ∗n : Ψ∗n ≡ Ψn + δn, Ψn ∈Mn

}
.

Notations. τn(f ) =
[
E(n)

1,f

{
suph∈Hn(f ) Φq

n(h)
}] 1

q
+ rn(f )

Hn(f ) =
{
h ∈ Hn : Ψn(h) < 2 infh∈Hn

[
B(n)
A (f , h) + 2Ψn(h)

]}
• rn(f ) =

[
E(n)

1,f

{
suph∈Hn

Φ2q
n (h)

}] 1
2q (

8εn/δn)
1
2
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n(h)
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q
+ rn(f )

Hn(f ) =
{
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suph∈Hn
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n (h)
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2

Theorem 3. Let Apermute, Aupper, Bmain and Bupper be fulfilled.

Let ĥ(n) is obtained by (Ψn, `)-selection rule. Then, for any
f ∈ F, n ≥ 1 and Ψn ∈Mn(δn)

RB

[
B̂ĥ(n), f

]
≤ C3 inf

h∈Hn

{
B(n)
A (f , h) + ψn(f , h)

}
+ τn(f ) + C4εn

• C3 = 7C` + 1, C4 = 10C` + 1.
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Adaptive estimation of B.

Problem. We would like to emphasize that the hypothesis Bmain is
quite restrictive since it can be checked for any f ∈ F.

Objective. To weaken Bmain in the case of adaptive estimation.

I Let
{
Fα, α ∈ A

}
be a given collection of subsets of F.

Badap. ∀α ∈ A ∃πα : R+ → R+, nondecreasing, concave
and such that for any f ∈ Fα, n ≥ 1 and h ∈ Hn

ρq
(
Υh(f ),B(f )

)
≤ πα

(
`q
(
Λh(f ),A(f )

))
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Adaptive estimation of B.

I Let
{
Fα, α ∈ A

}
be a given collection of subsets of F.

Badap. ∀α ∈ A ∃πα : R+ → R+, nondecreasing, concave
and such that for any f ∈ Fα, n ≥ 1 and h ∈ Hn

ρq
(
Υh(f ),B(f )

)
≤ πα

(
`q
(
Λh(f ),A(f )

))
Theorem 4. Let Apermute, Aupper, Badap and Bupper be fulfilled.

Let ĥ(n) is obtained by (Ψn, `)-selection rule. Then, for any
α ∈ A, n ≥ 1 and Ψn ∈Mn(δn)

sup
f∈Fα
RB

[
B̂ĥ(n), f

]
≤ π1/q

α

([
ϕn

(
Fα
)

+ 10εn
]q)

+ ϕ∗n
(
Fα
)

+ εn

I ϕn

(
Fα
)

= sup
f∈Fα

[
inf

h∈Hn

{
B(n)
A (f , h) + ψn(f , h)

}]
.

I ϕ∗n
(
Fα
)

= supf∈Fα τn(f ).
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Examples ρ = `. Generalized deconvolution model.

I Observation Z (n) = (Z1, . . . ,Zn)

Zi = Xi + εiYi , i = 1, . . . , n

I Xi ∈ Rd , i = 1, . . . , n are i.i.d. random vectors with common
density f to be estimated;

I The noise variables Yi ∈ Rd , i = 1, . . . , n, are i.i.d. random
vectors with known common density g ;

I εi ∈ {0, 1}, i = 1, . . . , n, are i.i.d. Bernoulli random variables
with P(ε1 = 1) = α, α ∈ [0, 1] is supposed to be known;

I The sequences {Xi , i = 1, . . . , n}, {Yi , i = 1, . . . , n} and
{εi , i = 1, . . . , n} are supposed to be mutually independent.

Goal: estimation of B(f ) = f under Lp-loss, i.e

`(·) = ‖ · ‖p, 1 ≤ p ≤ ∞.
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Examples. Generalized deconvolution model.

I For any ~h ∈ Hd let M
(
·, ~h
)

satisfy the operator equation

K~h(·) = (1− α)M
(
·, ~h
)

+ α
∫
Rd g(t − ·)M

(
t, ~h

)
dt

• Hd is the diadic grid in (0,∞)d ;

• K~h(y) =
[∏d

j=1 h
−1
j

]
K(y1/h1, . . . , yd/hd ), y ∈ Rd

I Estimator for B(f ) = f

B̂~h(x) = n−1
∑n

i=1 M
(
Zi − x, ~h

)
Objective: to propose a data-driven selection rule from the family

F
(
Hd
)

=
{
B̂~h(·), ~h ∈ Hd

}
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Examples. Generalized deconvolution model.

Idea: to estimate first A(f ) = g ? f which is the density of Z1

using the selection rule from the family of usual kernel estimators

Â~h(x) = n−1
∑n

i=1 K~h
(
Zi − x

)
, ~h ∈ Hd

and then to use the estimator B̂~h, where ~h is the selected
multi-bandwidth.

I If p = 2 the hypothesis Bmain is verified for any α ∈ (0, 1)
with C` = ν−1 under the following assumption

There exists ν > 0 :
∣∣1− α + αǧ(t)

∣∣ ≥ ν, ∀t ∈ Rd

I If p 6= 2 the hypothesis Bmain is verified for all
α ∈ (1/2, 1) with C` = (2α− 1)−1 without any assumption
imposed on g .
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Examples. Adaptive estimation of derivatives.

I Xi ∈ R, i = 1, . . . , n are i.i.d. random variables with common
density f to be estimated;

Goal: estimation of B(f ) = f (m),m ∈ N∗ under Lp-loss, i.e

`(·) = ‖ · ‖p, 1 ≤ p ≤ ∞.

I Fα = W k
s (L), α = (k, L), k > m, L > 0, where

W k
s (L) =

{
w : R→ R : ‖w‖s + ‖w (k)‖s ≤ L

}
Idea: to estimate first A(f ) = f using the selection rule from the
family of usual kernel estimators

Âh(x) = n−1
∑n

i=1 Kh

(
Xi − x

)
, h ∈ H

and then to use the estimator B̂h = Â
(m)
h , where h is the selected

bandwidth.
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bandwidth.

I Hypothesis Badap is verified if s ≤ p with

πα(z) = κL
m

k−1/s+1/p z
k−m−1/s+1/p
k−1/s+1/p , α = (k, L)

• κ is the universal constant appeared in Kolmogorov inequality.
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