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Problem formulation.

> (X, ‘Z(”),]P’fr"), f € [F) is the statistical experiment
generated by the observation X (7).

» A:F — & and B: F — & are two mappings to be
estimated and & is a set endowed with semi-metrics £ and p.

» For any X("-measurable &-valued map Q. fE€F, qg>1
~ n ~ q
R3[Q. f] = E{”[£(Q, A(f))]

R3(Q.f] =5 [p(Q,B())]’
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Problem formulation.

> (X("),T("),Pfr"), f € ) is the statistical experiment
generated by the observation X (™).

» A:F — & and B: F — & are two mappings to be
estimated and & is a set endowed with semi-metrics £ and p

» For any X("_measurable G-valued map 6 FeF, qg>1
~ ~ q ~ ~ q
R4[Q. ] =B [(Q, A(F))| ", RE[Q. f] =E{” |p(Q, B(f))]

Important! We will assume that X" = (Xl("), Xz(")), where

Xl(") X( ) are independent random elements.

> Pg"} and ]P’g’) denote marginal laws of X( ) and Xz(");

> E("),: = 1, 2, — mathematical expectation w.r.t. IP( ).
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Estimation of A. Hypotheses.

> $is aset, H, C $H,n € N* are countable of subsets.

» {Ap, b € H}, {Z\\h,,,, h,me H} - Xl(")-measurable S-valued;
» &, = 0,n — oo be a given sequence.

Apermute, Z\hm = Z\n,h' for any n,h € $.

A"PP¢". For any n > 1

n ~ q
supE§}< sup [E(A;,,/\,,(f)) - A,,(f))} > < &g,
fer hENn +

~ q
supEg'j}( sup [z(Ah,n,Ab,n(f))—{An(h)/\A,,(n)}} )gsg.
fer h,NENn +

> {A‘J(f)a [) € S‘:)}, {Ab,n(f), [),7’] € 5’:)} - 6-va|ued;
» A, ={An(b), h € H}- Xl(")—measurable positive variables.
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(W,, £)-selection rule for estimating A.

» Fix W, € <Mt,;, where
M, = {A; : An(r) AL, AL() s Xl(") — measurable}

B Define for any h € $H,
Ra(b) = supyes, [€(Ay.0, Ay) — 20a(m)| |
B Let H(™ € §,, be an arbitrary X( ") _ measurable element:
R(H™) + 2w, (5() <infyes, {R(D) + 2Wa(h)} + €n
> Setforany f €F,h € Handn>1
BI(F, ) = £(Ay(F); A(F)) + 2 5P, £(R,n(F)s An(F))

ba(F.) = [EHwa(0))]"
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(W,, £)-selection rule for A. Oracle inequality

Ra(b) = supyes, [£(An s An) —20a(n)] |

(5 + 2w, (H™) < infyes, {R(H) + 2Wa(h)} + en

Theorem 1. Let APe™Ute gpnd AUPPEY pe fulfilled

Then, forany f € F,n > 1 and V,, € M

Rl f] < inf {BE(F,b) + 5un(F b) | + be,
» BY(F,5) = £(Ny(F), A(F)

) + 2supyeg, £(Ao,q (F), Ay (F))
> va(f,b) = [EXH{wi(H)}]°
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Estimation of B. Hypotheses.

> {E;,, h € H} — family of Xz(")—measurable S-valued mappings;

Objective: To bound from above the risk of the ” plug-in”
estimator Bg,.

» {Ty, b € H} — a collection of S-valued functionals.

B™2",  3C, such that forany f € F, n > 1and h € §,
p(Ty(f), B(f)) < Co £(Ny(F), A(f))

BUPPeT. @, € M1, and for any n > 1

n q
supE&,)( sup |Eq(h, ) — ®u(b)] ) < el
fer HENA +

1

> Ealh, ) = (ES}{p(By, Ty(F))})":
> &, ={d,(h), h € H} - Xl(")—measurable positive variables.
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Estimation of B. Hypotheses.

B™a", 3C, such that forany f € F, n>1and h € H,
p(Ty(f), B(f)) < Co £(Ny(F), A(f))
BUPPe". ®,, € M, and for any n > 1

supE&,Z(sup [£a(0, ) — @a(0)] )Sez:
felr hE€EHn

> a0, F) = (ESH{0"(By, T(F))})
> &, ={d,(h), h € H} - Xl(")—measurable positive variables.

Remark. Set £,(h) = supscp En(h, f) and note that if

En € M, the hypothesis BUPPE" is obviously fulfilled with

®,, = &,. This choice of ®,, is reasonable for the statistical models
in which &,(h, f) is independent or depends " weakly” on f.
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First procedure and oracle inequality.

B3, 3C, such that forany f € F, n > 1and h € H,
p(Ty(F), B(F)) < Co £(Ny(f), A(f))
BUPPe", @, € M, and for any n > 1

q
supEf)( sup |£q(h, F) — ®u(b)] ) < el
feF HENA +

Theorem 2. Let APermute  Aupper Bmain gnd BUPPer he fylfilled.

Let (") is obtained by (®,, £)-selection rule. Then, for any

feFandn>1
B. : (m)
Re[Bjn:f] < Ci inf {BE(F,5) + 6u(f.b) | + Cocn

4.

=] =

> pn(F, ) = [E§j'){¢g(f,)}] TG =7C+2, C=10C, +
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Second procedure and oracle inequality.

Problem. We note that the use (®,, £)-selection rule if ®, # W,
does not allow to solve the problems of estimating A(-) and B(-)
simultaneously, i.e. by use of the same (W,,, £)-selection rule in
both problems.

Objective. To prove an analog of Theorem 2 when 6(") is
obtained by (W, £)-selection rule with W,, € M,(d,).

e 6, — 0,n — oo - given sequence and
931,,(6,,) = {lll,, € M, : il’lfheﬁ" \IJ,,(E)) > 6,,}
Remark. 9Mt,(d,) D {lll;“, W=V, +6,, W, € 931,,}.
1
Notations. 7, (f) = {Eg’:){ SUPh e 6.(F) tbg(h)H "+ va(f)

9n(f) = {b € Ha : Wa(h) < 2infres, [BY(F, ) +2Wa(h)] }

* ta(f) = []Ef){ SuPycs, ¢§"(h)}] “ (8en/ )}

Oleg V. Lepski



Second procedure and oracle inequality.

1
Notations. 7,(f) = [El',',{ SUPy c ,(F) ¢g(h)H "+ va(F)

9a(F) = {b € 9a : Wa(h) < 2infoes, [BY(F,h) +2Wa(b)] |
o ta(f) = {Eﬁﬂ{ supycs, ¢$ﬂ(h)}] “ (8cn/6n)}

Theorem 3. Let APermute aupper Bmain 5,4 BUPPer he fylfilled.

Let §(") is obtained by (W, £)-selection rule. Then, for any
feF,n>1and ¥V, € M,(5,)

Re[Byw, f] < Cs,inf {BE(F,0) + a(F, 5)} + Ta(F) + Cacn

e C3=7Cp+1, C4 =10C, + 1.
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Adaptive estimation of B.

Problem. We would like to emphasize that the hypothesis B™" is
quite restrictive since it can be checked for any f € F.

Objective. To weaken B™" in the case of adaptive estimation.
> Let {Fa, o€ 2(} be a given collection of subsets of F.

B2¥P. Vo € A Im, : Ry — R4, nondecreasing, concave
and such that for any f ¢ F,, n>1and h € 9,

p?(Ty(F), B(F)) < ma(£9(Ny(F), A(F)))
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Adaptive estimation of B.

> Let {Fq,a € 2A} be a given collection of subsets of F.

B2¥P. Va € A 3m, : Ry — R4, nondecreasing, concave
and such that forany f € F,, n > 1and h € H,

pI(Ty(F), BF)) < ma (€9 (Ny(F), A(F)) )

Theorem 4. Let APermute aupper Badap 5,4 BUPPer he fylfilled.

Let (") is obtained by (W,, £)-selection rule. Then, for any
aceA,n>1and ¥, € M,(9,)

sup R [By, ] < ¥/ ([on(Fa) +102a)7) + @5 (Fa) + n
€Fa

> ¢n(Fa) = sup [inf {B(F,0) + ya(f,5)}]

> ¢p(Fa) = supsep, Ta(f).
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Examples p = £. Generalized deconvolution model.

» Observation Z(" = (Z,..., Z,)
Z;i=X;+¢Y;, i=1,...,n
» X; €R?,i=1,...,n arei.i.d. random vectors with common

density f to be estimated,

» The noise variables Y; € R, i =1,...,n, are i.i.d. random
vectors with known common density g;

» ¢; €{0,1},i=1,...,n, arei.i.d. Bernoulli random variables
with P(e1 = 1) = o, a € [0, 1] is supposed to be known;

» The sequences {X;,i =1,...,n},{Y;,i=1,...,n} and
{ei,i =1,...,n} are supposed to be mutually independent.

Goal: estimation of B(f) = f under Ly-loss, i.e
()=l lIp1<p< oo
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Examples. Generalized deconvolution model.

» Forany h € HY let M-, 17) satisfy the operator equation

Ki() = (1 — a)M(-, h) +a [ag(t — -)M(t, h)dt

o M9 is the diadic grid in (0, 00)9;
o Ki(y) = [TILi b 1K (n1/b1, - ya/ha), y € R
» Estimator for B(f) = f

Bi(x) = n 'S0, M(Z; — x, h)

Objective: to propose a data-driven selection rule from the family

F(HY) = {B;(-), h e H'}
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Examples. Generalized deconvolution model.

Idea: to estimate first A(f) = g % f which is the density of Z;
using the selection rule from the family of usual kernel estimators

Z\r’(x) =n1Y0 Kp(Zi — x), hen

and then to use the estimator §E, where H is the selected
multi-bandwidth.

» If p = 2 the hypothesis B™" is verified for any o € (0, 1)
with C; = v~ under the following assumption

There exists v > 0: |1 — a + ag(t)| > v, Vt € R

» If p # 2 the hypothesis B™" is verified for all
a € (1/2,1) with C, = (2a — 1)~ without any assumption
imposed on g.
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Examples. Adaptive estimation of derivatives.

» X; e R,i=1,...,n arei.i.d. random variables with common
density f to be estimated;

Goal: estimation of B(f) = f(™ m € N* under Lp-loss, i.e
() =1-llps1 < p < oo
» Fo = WK(L),ao = (k, L),k > m, L > 0, where
Wh(L) = {w:R - R: |lwlls + [lw®, < L}

Idea: to estimate first A(f) = f using the selection rule from the
family of usual kernel estimators

An(x) = n=' S0 Kn(Xi — x), he A

and then to use the estimator g;, = [\E)m)

bandwidth.

, Where b is the selected
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Examples. Adaptive estimation of derivatives.

Goal: estimation of B(f) = f(™ m € N* under LL,-loss.
> Fo = WK(L),ao = (k, L),k > m, L > 0, where
Wh(L) = {w:R = R: |lw|ls + [lw®|, < L

Idea: to estimate first A(f) = f using the selection rule from the
family of usual kernel estimators

/A\h(x) =n1 E?:l K,,(X,- — X), he*H

and then to use the estimator §h = [‘gm)

bandwidth.

, Where b is the selected

» Hypothesis B292P is verified if s < p with

k—m—1/s4+1/p
Tal(2) = KLFT/5775 2 #1741/, o = (k, L)

e x is the universal constant appeared in Kolmogorov inequality.
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