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Part III :Framework of Dirichlet spaces
(Th.Coulhon,P.Petrushev,G.K.)

Let (M, µ) be a connected, locally compact space with µ a borelian measure
with support M.
We will try to show that a positive self-adjoint operator rich enough would
help us to build a theory of regularity spaces on M . Let us first review some
fact on positive self-adjoint operators, closed quadratic forms, semigroup and
Markov semi-group.



Semi-group, positive operator and quadratic
form.

Let E = L(M, µ).
• Self-adjoint contraction semigroup:

∀t > 0, Pt = P ∗
t , Pt ◦ Ps = Pt+s, ∥Pt(f)∥ ≤ ∥f∥,

∀f ∈ E, lim
t"→0

∥Pt(f) − f∥ = 0

Then the infinitesimal generator A with domain

D(A) = {f ∈ E, lim
t"→0

Pt(f) − f

t
= A(f)} exists

then A = A∗, ∀f ∈ D(A), −⟨A(f), f⟩ ≥ 0.



• If A is a self-adjoint operator , with dense domain D(A), and

∀f ∈ D(A), −⟨A(f), f⟩ ≥ 0.

Then by Hille-Yoshida theorem A is the generator of a self-adjoint contraction
semigroup. There exists a spectral decomposition of identity associated to −A

Id =

∫ ∞

0
dEλ, −A =

∫ ∞

0
λdEλ

and Pt = etA =

∫ ∞

0
e−tλdEλ

• If −A is a positive self-adjoint operator , with dense domain D(A) then we
can define a quadratic form E(f, g):

D(E) = D(
√

−A), ∀f, g ∈ D(E), E(f, g) = ⟨
√

−A(f),
√

−A(g)⟩

then D(E) with norm ∥f∥2
E = ∥f∥2 + E(f, f) is complete. E is a closed

positive quadratic form.



From quadratic form to positive self adjoint
operator.

If E a closed positive quadratic form, with dense domain D(E) ⊂ E. Then
one can associate a positive self-adjoint operator L:

D(L) = {f ∈ D(E), ∃C < ∞ such that ∀g ∈ D(E), |E(f, g)| ≤ C∥g∥}

For such f one define L(f) as

∀g ∈ D(E), E(f, g) = ⟨L(f), g⟩

Then L is a positive self adjoint operator.



Practical definition of a positive self-adjoint
operator: Friedrich extension.

Actually what one has usually a positive symmetric operator with dense
domain : A, D(A). Not self-adjoint. Then this operator could always
extended to a positive self-adjoint operator

A = (A)∗, D(A) ⊂ D(A), A|D(A) = A

(Friedrich extension). This is due to the fact that the quadratic form:

D(E) = D(A), E(f, g) = ⟨A(f), g⟩

is actually closable to E , D(E) and one use the previous procedure to build a
self adjoint extension to A.



Beurling-Deny conditions and Markov
semi-group.

For a positive operator −A on L2(µ, M) with E and Pt the associate
quadratique form and semi-group we have the equivalence (Beurling-Deny
conditions ):

1. If u ∈ D(E) then,

(u ∧ 1)+ ∈ D(E), and E((u ∧ 1)+, (u ∧ 1)+) ≤ E(u, u)

2.
∀f ∈ D(A), (f − 1)+ ∈ D(A), ⟨A(f), (f − 1)+⟩ ≤ 0

3. Pt is a SUBMARKOVIAN operator :

0 ≤ f ≤ 1, f ∈ L
2 =⇒ 0 ≤ Ptf ≤ 1.



Then Pt could be extended as a semigroup on
Lp, 1 ≤ p ≤ ∞ (with some precautions for p = ∞) and Ll,
as the infinitesimal generator is defined for each p on some
dense domain D(L(p)) ⊂ Lp.



"Gradient".

Under some further regularity, we can define (under the hypothesis :

Γ(f, f) =
1

2
A(f2) − fA(f)

(for instance if A(f) = f” then Γ(f, f) = |f ′|2. (Γ(f, f) is the "square of the
gradient " of f, ) Γ(f, f) ≥ 0 and one can check :

∫

M
A(f)(x)f(x)dµ(x) = −

∫

M
Γ(f, f)(u)dµ(u)

(For a Laplacian on a Riemannian manifold : Γ(f, f) = |∇(f)|2)
Then we define

ρ(x, y) = sup
Γ(ψ,ψ)≤1

(ψ(x) − ψ(y)

We suppose that ρ is a complete metric compatible with the original topology.
In the case of Riemannian geometry,ρ(x, y) is the Riemannian distance.



Main hypothesis.

We will assume the following properties

1. We suppose that (M, ρ, µ) has the doubling property :
∃d > 0 (which plays the role of an upper dimension)
such that:

∀x ∈ M, r > 0, 0 < |B(x, 2r)| ≤ 2d|B(x, r)| < ∞

2. POINCARE INEQUALITY : ∃C such that, ∀ B(x, r) :
∫

B(x,r)
|f(u)−fB(x,r)|2dµ(u) ≤ Cr2

∫

B(x,2r)
Γ(f, f)(u)dµ(u)

(fB(x,r) = 1
|B(x,r)|

∫

B(x,r) f(x)dµ(x))



Heat kernel bounds.

These two previous properties are equivalent to the following
one :
The semi-group Pt is a positive symmetric kernel operator

Pt(f)(x) =

∫

M
Pt(x, y)f(y)dµ(y)

and we have : ∃C1 > 0, C2 > 0, c1 > 0, c2 > 0, such that
∀(x, y) ∈ M × M, ∀0 < t ≤ 1,

C1e−c1
ρ2(x,y)

t

√

|B(x,
√

t)||B(y,
√

t))
≤ Pt(x, y) ≤ C2e−c2

ρ2(x,y)
t

√

|B(x,
√

t)||B(y,
√

t)|

Moreover ∃ 0 < α ≤ 1 such that (x, y) 2→ Pt(x, y) is lip-α.



Exemples

Compact Riemannian manifold
Riemannian manifold with Positive Ricci curvature....
Nilpotent Lie Group, compact Lie group,homogeneous
spaces G/K, associated to sublaplacian.



Exemple :Jacobi

M = [−1, 1]; dµ(x) = (1 − x)α(1 + x)βdx = W (x)dx,

with 1 < α,β . Let P the vector space of polynomials restricted to [−1, 1].
This vector space is dense in L2(M, µ). Let us define ∀f ∈ P,

L(f) =
1

W (x)

d

dx
((1 − x2)W (x)

d

dx
(f))

= (1 − x2)f” + [β − α− (2 + β − α)x]f ′

∫

L(f)(x)f(x)W (x)dx = −
∫

(1 − x2)|f ′(x)|2W (x)dx ≤ 0

E(f, g) =

∫

(1 − x2)f ′(x)g′(x)W (x)dx

So : Γ(f, f) = (1 − x2)|f ′(x)|2 =
1

2
{L(f2) − 2fL(f)}



On can verify the Beurling-Deny conditions so that etL is a subMarkovian
semigroup.

Moreover L(1) = 0 so Pt(1) = 1.

So Pt is Markovian. Moreover the other regularity could be checked and :

ρ(x, y) = arccos(x.y +
√

1 − x2
√

1 − y2) = | arccos x − arccos y|

=

∫ y

x

du√
1 − u2

Then we have the following behavior of the balls :

µ(B(x, r)) ∼ r(r2 + 1 − x)α+ 1
2 (r2 + 1 + x)β+ 1

2

So the measure of the balls is not the same when x is close to 0 or close to
the boundary 1, −1. Moreover

µ(B(x, 2r))

µ(B(x, r))
≤ 3.

So the doubling property is verified.



The eigenvectors are the Jacobi polynomials Pα,β
k (x) ∈ P.

A(Pα,β
k ) = −k(k + α+ β + 1)Pα,β

k = λkpk

So if qk = qα,β
k are the normalized Jacobi polynomials, one can see that the

operator is closable in the following way :

D(L) = {f =
∑

αkqk,
∑

|αk|2λ2
k < ∞}

L(f) =
∑

λkαkqk

One can check that L is selfadjoint, so in this case the Friedrich extension is
the closure of the operator ( L us essentially self-adjoint. In the general case
it could happen that there is different non comparable self-adjoint extensions.
The semigroup Pt is actually a kernel operator with a positive kernel:

Pt(x, y) =
∑

k

e−λktqk(x)qk(y)

(As it is written it is not obvious that it positive.)



With some work one can verify the Poincare inequality.
So we have the Gaussian behavior of the heat kernel.

Pt(x, y) ≤ C
1

√

µ(B(x,
√

t)µ(B(y,
√

t)
e−c d(x,y)2

t

Pt(x, y) ≥ C ′ 1
√

µ(B(x,
√

t)µ(B(y,
√

t)
e−c′ d(x,y)2

t

with the previous distance and measure of the balls.



Main result : Functional calculus.

Let Θ be an even function in D(R) , and δ > 0, the operator:

Θ(δ
√

L) =

∫ ∞

0
Θ(δ

√
λ)dEλ

is actually a kernel operator, and the kernel Θ(δ
√

L)(x, y) verifies
REGULARITY property:

•(x, y) ∈ M × M 2→ Θ(δ
√

L)(x, y) is Lip − α

CONCENTRATION on the diagonal properties :

• ∀s > 0, δ > 0, |Θ(δ
√

L)(x, y)| ≤ C(Θ, s)
1

√

|B(x, δ)||B(y, δ)|
1

(1 + ρ(x,y)
δ )s

As a consequence, by Young Lemma :

•∃C, ∀δ > 0, ∀f ∈ L
p, ∥Θ(δ

√
L)f∥p ≤ C∥f∥p



Spectral decomposition, Spectral space.

Let

L =

∫ ∞

0
λdEλ;

√
L =

∫ ∞

0
λdFλ; Fλ = Eλ2

The operator Fλ is a kernel operator, with a real symetric
non negative kernel, but NOT localised. Let us define :

Σλ = {f ∈ L
2, Fλ(f) = f}

And more we can extend this definition and we can define
Σp
λ, 1 ≤ p ≤ ∞ and

1 ≤ p ≤ q ≤ ∞ =⇒ Σ1
λ ⊂ Σp

λ ⊂ Σq
λ ⊂ Σ∞

λ ;

These are the "low frequencies" spaces or Shannon spaces.



Σp
λ as a space of analytic vectors.

We have the following equivalence :

1. f ∈ Σp
λ

2. f ∈ ∩∞
k=1D(Lk

(p)) and

∀ν > λ, ∃Cν > 0, ∀k ∈ N, ∥Lk(f)∥p ≤ Cνν
2k∥f∥p

(z ∈ C 2→ e−zL(f) =
∑

k∈N(−1)k zkLk(f)
k! is a (Lp value)

entire funtion of type exponential 2λ.)



Definition of spaces of distribution

Let us fix some a ∈ M.

S(M) = {φ ∈ ∩mD(Lm);

∀l, n ∈ N, Pl,n(φ) = sup
x∈M

(1 + ρ(x, a))l|Ln(φ)(x)| < ∞}

(This coincides, in the Rd case with the usual definition)
One can see :

∀f ∈ D(R), f even, ∀y ∈ M, x 2→ f(
√

L)(x, y) ∈ S.

The dual of S is the space of distribution S ′.



Littlewood-Paley decomposition

Let us define, for 1 < b < ∞ the b- Littlewood-Paley
functions :

Φ0 ≥ 0, Φ0 ∈ D(R), Φ even

|u| ≤ 1 =⇒ Φ0(u) = 1, supp(Φ0 ⊂ {|u| ≤ b}.

Moreover let us take Φ non increasing on R+.

∀j ≥ 1, Φj(u) = Φ0(
u

bj
) − Φ0(

u

bj−1
) = Φ1(

u

bj−1
).

So

Φj ≥ 0, Φj ∈ D(R), supp(Φj ⊂ {bj−1 ≤ |u| ≤ bj+1}.



1 =
∑

j

Φj(u)

Then, due to the concentration properties :

∀f ∈ S ′, f =
∞
∑

j=0

Φj(
√

L)f

The convergence is in the Lp sense if 1 ≤ p < ∞ if f ∈ Lp

and uniform if f is unformly continuous and bounded
(U.C.B.)



Spaces of low-frequency approximation.

For f ∈ Lp(M), 1 ≤ p ≤ ∞, we define:

σ(t, f, p) = inf
g∈Σp

t

∥f − g∥p

Then for 1 ≤ p ≤ ∞, 0 < q ≤ ∞, 0 < s < ∞,

∥f∥Bs
p,q

∼ ∥f∥p + (

∫ ∞

1
(tsσ(t, f, p))q dt

t
)1/q < ∞}

Clearly, for b > 1, fixed, we have the discretized
caracterisation :

∥f∥Bs
p,q

∼ ∥f∥p + ∥b−jsσ(bj, f, p)∥lq(j)



Littlewood-Paley definition of Besov and
Triebel-Lizorkin spaces

Let Φj be a b−Littlewood Paley family of functions, and f ∈ S ′. Let
s ∈ R, 0 < q, p ≤ ∞ :

f ∈ Bs
p,q : {f ∈ S ′, (

∑

j

(bjs∥Φj(
√

L)f∥p)q)1/q = ∥f∥Bs
p,q

< ∞}

(usual modification for q = ∞) This is due to

∃C, ∀1 ≤ p ≤ ∞, ∀δ > 0, ∥Φ(δ
√

L)f∥p ≤ C∥f∥p



Triebel-Lizorkin spaces.

Let us define now:
Triebel-Lizorkin F s

p,q: Let s ∈ R, 0 < q ≤ ∞, 0 < p < ∞ :

f ∈ F s
p,q : {f ∈ S ′, ∥(

∑

j

|bjsΦj(
√

L)f(x)|q)1/q∥p = ∥f∥F s
p,q

< ∞

(usual modification for q = ∞)
These definitions are independant of b > 1 and any related Littlewood-Paley
family. All the related norms are equivalent.



Sobolev and Triebel-Lizorkin spaces F s
p,q

Let us recall the definition of Sobolev space :
s ∈ R, 1 ≤ p ≤ ∞ :

∥f∥Hp
s

= ∥(Id + L)s/2(f)∥p

Then
∀s ∈ R, ∀1 < p < ∞, Hs

p = F s
p,2

For s = 0, ∀1 < p < ∞, Hs
0 = L

p = F 0
p,2



Besov Spaces as interpolation spaces..

Let 1 ≤ p ≤ ∞, and 0 < s < k ∈ N

∥f∥Hk
p

= ∥f∥p + ∥Lk/2
(p) (f)∥p

Bs
p,q = [Lp, Hk

p ]θ,q, s = θk

∥f∥[Lp,D(Lk
(p))]θ,q

∼ ∥f∥p + (

∫ 1

0
(t−θk∥(tL)ketL(f)∥p)

q dt

t
)1/q

(Jackson and Bernstein properties)



Injections

1.
∀s ∈ R, ∀q ≤ p, Bs

p,q ⊂ F s
p,q

∀s ∈ R, ∀p ≤ q, F s
p,q ⊂ Bs

p,q

2. ∀s ∈ R, ∀1 ≤ p ≤ p′ ≤ ∞,

Bs
p,q ⊂ Bs′

p′,q, s − d

p
= s′ − d

p′ .



Bs
∞,∞ and Lipschitz spaces

Let us recall : ∀s > 0,

Lip(s) = {f, ∥f∥∞ +sup
x≠y

|f(x) − f(y)|
ρ(x, y)s

= ∥f∥Lip(s) < ∞}

Then:

∀0 < s < α, Lip(s) = Bs
∞,∞



Semi-group caracterization

1. Let 1 ≤ p ≤ ∞, 0 < s < ∞. Let m ∈ N such that
0 < s < m. Then

∥f∥Bs
p,q

∼ ∥f∥p + (

∫ 1

0
[t−s/2∥(tL)me−tLf∥p]

q dt

t
)1/q

2. Let 1 < p < ∞, 0 < s < ∞. Let m ∈ N such that
0 < s < m. Then

∥f∥F s
p,q

∼ ∥f∥p + ∥(

∫ 1

0
[t−s/2|(tL)me−tLf(x)|]q dt

t
)1/q∥Lp

With the usual modification for q = ∞.



Spectral space and sampling

δ−net.

Let us recall that a δ−net of a metric space (M, ρ) is a set
A ⊂ M such that ∀x ̸= y, x, y ∈ A, we have ρ(x, y) ≥ δ.

Maximal δ−net. Let A be a δ-net . If there is no δ-net
B, B ≠ A, A ⊂ B then A is said maximal δ-net.
If A is a maximal δ-net, then :

∪x∈AB(x, δ) = M ;

x, y ∈ A, x ̸= y =⇒ B(x, δ/2) ∩ B(y, δ/2) = ∅.



Sampling theorem

THEOREM :There exists γ > 0, only depending of the
structural constant, such that ∀λ > 0 and and for any Aδ, a
maximal δ−net with δ = γ

λ, we have :

∀1 ≤ p ≤ ∞, ∀f ∈ Σp
λ,

(
∑

ξ∈Aδ

|f(ξ)|p|B(ξ, δ|)1/p ≃ ∥f∥p

(usual modification for p = ∞.)



Spectral spaces and cubature formula.

THEOREM : There exists γ > 0, only depending of the structural constant,
such that ∀λ > 0 and Aδ, a maximal δ−net with λδ = γ, it exist (µλξ )ξ∈Aδ

positive weights such that :

∀f ∈ Σ1
λ,

∫

M
f(x)dx =

∑

ξ∈Aδ

µλξ f(ξ)

2

3
|Aξ| ≤ µλξ ≤ 2|Aξ|

Where Aξ is a partition associated to Aδ.



Frame

As
1

2
≤

∑

j≥0

Φ2
j (x) ≤ 1

by spectral theorem

1

2
∥f∥2

2 ≤
∑

j≥0

∥Φj(
√

L)(f)∥2
2 ≤ ∥f∥2

2

So using the sampling theorem, we get , for Aj = Aγb−j ,

1

4
∥f∥2 ≤

∑

j

∑

Aj

|⟨f,ψj,ξ⟩|2 ≤ 2∥f∥2
2

where : ψj,ξ(x) =
√

|B(ξ, b−j)|Φj(
√

L)(x, ξ).

The previous result means exactly that : (φj,ξ)j∈N,ξ∈Aj
is a frame



Properties of ψj,ξ(x).
For a suitable choice of Φ and b :

1. Lp−norm control : ∀0 < p ≤ ∞, ∀j ∈ N, ∀ξ ∈ Aj,

∥ψj,ξ∥p ≃ |B(ξ, b−j)|
1
p − 1

2

2. ψj,ξ is "almost" supported by B(ξ, b−j) :

For 0 < β < 1 ∃C,κ > 0, such that ∀j ∈ N, ξ ∈ Aj

|ψj,ξ(x)| ≤ C
1

√

|B(ξ, b−j)|
e−κ(bjρ(x,ξ))β

(Exponential concentration).

3. Spectral localisation : ψj,ξ ∈ Σbj−1,bj+1



Second main result :Existence of a good
dual frame

One can built a family (ψ̃j,ξ)ξ∈Aj
, which is a dual frame (not

THE dual frame! ) to the previous one, with the same
properties:
• Splitting property: ∀j ∈ N,

Φj(
√

L)(x, y) =
∑

Aj

ψj,ξ(y)ψ̃j,ξ(x) =
∑

Aj

ψj,ξ(x)ψ̃j,ξ(y))

• ∥ψ̃j,ξ∥p ≃ |B(ξ, 2−j)|
1
p
− 1

2

• |ψ̃j,ξ(x)| ≤ C
1

√

|B(ξ, b−j)|
e−κ(bjρ(x,ξ))β

• Spectral localisation ψ̃j,ξ ∈ Σbj−2,bj+2



Frame characterization of Besov and Triebel
spaces.

Let b suitably choosen.

• Littlewood-Paley .

∀f ∈ S ′, f =
∞
∑

j=0

Φj(
√

L)f

• Frame decomposition

f =
∑

j

∑

ξ∈Aj

⟨f,ψj,ξ⟩ψ̃j,ξ(x)

We can exchange ψ and ψ̃



Concentration property.

Due to the concentration properties of the ψj,ξ and ψ̃j,ξ we
have :

∃C < ∞, ∀j ∈ N,
∑

ξ∈Aj

∥ψj,ξ∥1|ψ̃j,ξ(y)| ≤ C

We can exchange ψ and ψ̃



Sparse caracterization of Besov space.

So: using

• ∀s ∈ R, 0 < p, q ≤ ∞

[
∑

j

(bjs(
∑

ξ∈Aj

|⟨f,ψj,ξ⟩|p∥ψ̃j,ξ∥p
p)

1
p )q]1/q ∼ ∥f∥Bs

p,q

We can exchange ψ and ψ̃
•
Caracterization of F s

p,q. ∀s ∈ R, 0 < q ≤ ∞, 0 < p < ∞ :

∥{
∑

j

[bjs
∑

ξ∈Aj

|⟨f,ψj,ξ⟩||ψ̃j,ξ(x)|]q}1/q∥p ∼ ∥f∥F s
p,q

We can exchange ψ and ψ̃



Compact case.

The following properties are equivalent :

• Diam(M) < ∞ (⇐⇒ µ(M) < ∞ ⇐⇒ M is compact)

• L
2(M) =

⊕

k

Hλk
, Hλk

= ker(L−λkId); dim(Hλk
) < ∞

• ∀r > 0

∫

1

|(B(x, r)|dµ(x) < ∞

•∀λ > 0, ∀1 ≤ p ≤ ∞ Σ1
λ = Σp

λ = Σ∞
λ =

⊕

√
λk≤λ

Hλk

•∀t > 0, e−tL is an Hilber-Schmidt operator

•∀t > 0, e−tL is a trace class operator



If this is realized , and if N(δ, M) is the covering number of M (or the
cardinal of a maximal δ−net):

dim(
⊕

λk≤t−1

Hλk
) = dim(Σ 1√

t

) ∼
∫

1

|B(x,
√

t)|
dµ(x) ∼ N(

√
t, M)

∼
∫

M
Pt(x, x)dµ(x) =

∫

M

∫

M
Pt/2(x, y)2dµ(x)dµ(y)

=
∑

k

e−λktdim(Hλk
) = Tr(e−tL) = ∥e−t/2L∥2

HS

In particular, in the compact Riemannian case of dim n, without boundary :

dim(
⊕

√
λk≤λ

Hλk
) ∼

∫

1

|B(x,λ−1)|
dµ(x) ∼ N(λ−1, M) ∼ λn
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Gaussian process.

Let (M, d) a compact metric space.
Let (Ω, P ) a probability space.
(Zx(ω))x∈X a centered Gaussian process:

∀x1, .., xn ∈ X; λ1, ..,λn ∈ R,
∑

λiZxi
(ω) ∼ N(0,

∑

i,j

λiλjK(xi, xj))

where K(x, y) = E(ZxZy) is the covariance kernel

K(x, y) is a real, positive definite function. i.e.

K(x, y) = K(y, x) ∈ R, and

∀x1, .., xn ∈ X; λ1, ..,λn ∈ R,
∑

i,j

λiλjK(xi, xj) ≥ 0



Reciprocally, if K(x, y) is real continuous, positive definite :

K(x, y) =
∑

k

νkφk(x)φk(y)

where

∫

K(x, y)φk(y)dµ(y) = νkφk(x)

Then : Zx(ω) =
∑

k

√
νkφk(x)Bk(ω)

where Bk is sequence of iid N(01) R.V.. Then Zx(ω) is
Gaussian Process with covariance K.



Question : How one can decide the kind of regularity of the
"trajectory: x !→ Zx(ω) for almost all ω at least for a
suitable version of Zx(ω) ?
Let us recall the famous result of Kolmogoroff :



THEOREM: The process Zx(ω) had a continuous
modification if it exists 0 < p, ψ : R+ !→ R+,ψ(0) = 0
continuous non decreasing, and f : R+ !→ R+ such that :

E|Zx−Zy|p ≤ ψ(d(x, y)), and if D(t, X)is the covering number

∫ 1

0

D(t, X)ψ(2t)

f(t)p
dt < ∞,

∫ 1

0

f(x)

x
dx < ∞.

Actually we want to describe the regularity of the process
Zx(ω) directly from the covariance function K(x, y)



Random field and geometry.

We suppose that we are in the previous framework.
•(X, µ, d) is a compact metric space, and we suppose that the regularity
spaces : Sobolev, Besov, Lipschitz are related to some Positive operator L
with all the properties:

• : L is a positive self-adjoint operator determine associate to a regular, and
local Dirichlet space with an associated "gradient square"
Γ(f, g) : ∀f, g ∈ D(L)

∫

L(f)gdµ =
∫

Γ(f, g)dµ.

• : d(x, y) = supΓ(f,f)≤1 ψ(x) − ψ(y)

• Doubling condition: µ(B(x, 2r)) ≤ 2dµ(B(x, r)).

• Poincare Inequality :

inf
λ

∫

B(x,r)
(f − λ)2dµ ≤ Cr2

∫

B(x,r)
Γ(f, f)dµ



Compact case.

The following properties are equivalent :

• Diam(M) < ∞ (⇐⇒ µ(M) < ∞ ⇐⇒ M is compact)

• L
2(M) =

⊕

k

Hλk
, Hλk

= ker(L−λkId); dim(Hλk
) < ∞

•∀λ > 0, ∀1 ≤ p ≤ ∞ Σ1
λ = Σp

λ = Σ∞
λ =

⊕

√
λk≤λ

Hλk

•If, N(δ, M) is the covering number of M (or the cardinal
of a maximal δ−net): (Peter-Weyl type result)

dim(
⊕

λk≤t−1

Hλk
) ∼

∫

dµ(x)

|B(x,
√

t)|
∼ N(

√
t, M) ! t

d
2



L
2 =

⊕

Hλk
, Pt(x, y) =

∑

k

e−λktPλk
(x, y).

Pλk
(x, y) =

dim(Hλk
)

∑

i=1

ek
i (x)ek

i (y),

Pt(x, y) has a Gaussian behavior. Moreover e−tL1 = 1 which
is equivalent to L1 = 0.

So we have Sobolev spaces, Besov spaces, Lipschitz spaces.
Let us recall

∀0 < s ≤ 1, Lips ⊂ Bs
∞,∞

and for some 0 < α, ∀0 < s < α, Bs
∞,∞ ⊂ Lips. (Actully, in

the Riemannian case α = 1.



Subordination to the geometry.

Here is the main hypothesis:
We focus on continuous definite positive kernel, subordinate to the spectral
decomposition :

K(x, y) =
∑

k

dim(Hλk
)

∑

j=1

νj
kej

k(x)ej
k(y)

i.e. the eigenfunctions of L are eigenfunctions of K. Actually, this is
equivalent to KL = LK. where K is the kernel operator:

f !→ Kf(x) =

∫

K(x, y)f(y)dµ(y)

Let us study the regularity of:

Zx(ω) =
∑

k

dim(Hλk
)

∑

i=1

√

νj
kej

k(x)Bj
k(ω); Bj

k, i.i.d. N(0, 1).



Regularity theorem.
THEOREM

1. Let us suppose that ∃0 < s such that :

sup
x∈M

∥K(x, .)∥Bs
∞,∞

≤ C < ∞.

Then for almost all ω ∈ Ω, x &→ Zx(ω) ∈ Bα
∞,1, α <

s

2
(Let us observe that Bα

∞,1 ⊆ Bα
∞,∞, Bα

∞,1 is separable
and Bα

∞,∞ is not separable.)

2. Conversely If ∃α > 0 such that Zx(ω) ∈ Bα
∞,∞ for

almost all ω, then

sup
x∈M

∥K(x, .)∥B2α
∞,∞

≤ C < ∞.



Exemple:

Let us suppose that

|K(x, y) − K(x, y′)| ≤ Cd(y, y′)s, for some 0 < s ≤ 1

So, as Lips ⊂ Bs
∞,∞, the theorem implies

for almost all ω ∈ Ω, x %→ Zx(ω) ∈ Bα
∞,1, α <

s

2

But Bα
∞,∞ = Lipα, if α < α0. Actually α0 = 1 if X is a compact Riemannian

manifold.



Sketch of the proof.
To simplify the notations we write:

K(x, y) =
∑

νkuk(x)uk(y); L(uk) = λkuk;

Zx(ω) =
∑√

νkBk(ω)uk(x)

uk is an orthonormal basis of eigenfunctions of L.

Let a Littlewood-Paley decomposition : 1 =
∑

j≥0

ψj(x),

Supp(ψ0) ⊂ {|ξ| ≤ 2}; ∀j ≥ 1, Supp(ψj) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}

We have to prove:

∥Z.(ω)∥Bα
∞,1

∼
∑

j≥0

2jα∥ψj(
√

L)(Z.(ω))∥∞ < ∞, a.e.

It is enough to prove

E[
∑

j≥0

2jα∥ψj(
√

L)(Z.(ω))∥∞] =
∑

j≥0

2jα
E[∥ψj(

√
L)(Z.(ω))∥∞] < ∞.



If Aj a maximal γ2−j−1−net. We have Card(Aj) ! 2jd.
We have (as Ψj(

√
L)(f) ∈ Σ2j+1):

E[∥Ψj

√
L)(Z.(ω)∥∞] ∼ E[sup

ξ∈Aj

|Ψ(2−j
√

L)(Z.(ω)(ξ)|] =

E[sup
ξ∈Aj

|
∑

2j−1≤
√
λk≤2j+1

Ψj(
√

λk)
√
νkuk(ξ)Bk(ω)|]

Let us recall:
Pisier inequality If (Xi)i∈A are centered Gaussian R.V.and
σ2 ≥ E(X2

i ), ∀i then

E(sup |Xi|) ≤ σ
√

2 log(2card(A)



But
E[

∑

2j−1≤
√
λk≤2j+1

Ψj(
√

λk)
√
νkuk(ξ)Bk(ω)]2 =

∑

2j−1≤
√
λk≤2j+1

Ψ2
j (
√

λk)νku2
k(ξ)] ≤ sup

x∈M

∑

2j−1≤
√
λk≤2j+1

νku2
k(x)]

So:
∑

j≥0

2jα
E[∥ψj(

√
L)(Z.(ω))∥∞] !

∑

j≥0

2jα
√

j{ sup
x∈M

∑

2j−1≤
√
λk≤2j+1

νku2
k(x)}

1
2

But one can check :

sup
x∈M

∥K(x, .)∥Bs
∞,∞

< ∞ ⇐⇒ ∃C ′ < ∞, sup
x∈M

∑

2j−1≤
√
λk≤2j+1

νku2
k(x)] ≤ C ′2−js

So Zx(ω) ∈ Bα
∞,1, a.s. if α < s

2 .



Some more result.
Under the hypothesis of the theorem :

1. (Wiener measure) On Bα
∞,1, there exists a unique Borel measure Qα,

such that:
δx : ω ∈ Bα

∞,1 "→ ω(x)

is a centered Gaussian process and

K(x, y) =

∫

Bα
∞,1

δx(ω)δy(ω)dQα(ω) = E(δxδy)

2. If HK is the RKHS associated to K(x, y). Then

Moreover HK ⊆ B
s
2
∞,∞ ⇐⇒ sup

x∈M
∥K(x, .)∥Bs

∞,∞
< ∞

HK = {f : M → R : f(x) =
∑

k

αk
√
νkuk(x), α. ∈ l2}

∥f∥2
HK

= ∥α.∥2
2



Ex : The Brownian motion.

M = [0, 1], K(x, y) =
x + y − |x − y|

2
= x ∧ y

Computing the eigen vector and eigen number of the associate kenel operator:

K(x, y) =
∑

k

1

((k + 1
2)π)2

2 sin((k +
1

2
)πx) sin(k +

1

2
)πy)

Zx(ω) =
∑

k

1

(k + 1
2)π

√
2 sin((k +

1

2
)πx)Bk(ω); Bk ∼ N(0, 1), i.i.d.

Now we have the following "bad" Dirichlet space : (with Neumann-Dirichlet
conditions)

A(f) = f”, D(A) = C2(]0, 1[, ∩C1[0, 1], f(0) = f ′(1) = 0.

∫ 1

0
A(f)(x)f(x)dx = −

∫ 1

0
f ′2(x)dx

A(sin((k +
1

2
)π.)(x) = −((k +

1

2
)π)2 sin((k +

1

2
)πx)



ρ(x, y) = sup
|f ′|≤1

f(x) − f(y) = |x − y|;

The Poincare and the doubling properties are obvious.

Clearly |K(x, y) − K(x, y′)| ≤ |y − y′|

so x $→ Zx(ω) ∈ Lip(s)([0, 1]), s <
1

2
;ω − a.s.

E(|Zx − Zy|2) = ψ(x, y) =

K(x, x) + K(y, y) − 2K(x, y) = |x − y|

But unfortunately 1 Does not belong to D(A). and the
semi-group is not Markov



Let us go through the circle.

By Fourier serie development :

x ∈ [−1, 1], |x| =
1

2
−

4

π2

∑

n∈N

cos(2n + 1)πx

(2n + 1)2

so : x, y ∈ [−1, 1] |x−y|∧(2−|x−y|) =
1

2
−

4

π2

∑

n∈N

cos((2n + 1)π(x − y))

(2n + 1)2

K(x, y) =
1

2
− |x − y| ∧ (2 − |x − y|) =

4

π2

∑

n∈N

cos((2n + 1)π(x − y))

(2n + 1)2
=

4

π

∑

n∈N

cos((2n + 1)πx) cos((2n + 1)πy)

(2n + 1)2
+

4

π

∑

n∈N

sin((2n + 1)πx) sin((2n + 1)πy)

(2n + 1)2

So obviously K(x, y) is P.D. and

ψ(x, y) = K(x, x) + K(y, y) − 2K(x, y) = 2[|x − y| ∧ (2 − |x − y|)]



Associated Dirichlet space.

Now let let us look to the Dirichlet associated to :

f ∈ C2(] − 1, 1[) ∩ C1[−1, 1], A(f) = f”,

f(−1) = f(1); f ′(−1) = f ′(1).
∫ 1

−1
A(f)(x)g(x)dx = −

∫ 1

−1
f ′(x)g′(x)dx,

∀x, y ∈ [−1, 1],

|x−y|∧ (2− |x−y|) = inf
|f ′|≤1,f(−1)=f(1),f ′(−1)=f ′(1)

f(x)−f(y)

The eigen-vectors associated are clearly
(cos kπx)k∈N, (sin kπx)k∈N∗.



. With respect to the metric ρ(x, y) = |x − y| ∧ (2 − |x − y|),
Poincaré and the doubling property are easily obtained.
So the Gaussian process Zx(ω))x∈[−1,1] associated to
1
2K(x, y) is a Brownian field with respect to ρ.

When we restrict ∀x, y ∈ [0, 1], ρ(x, y) = |x − y|.

So if we look to Wx = Zx − Z0 restricted to x ∈ [0, 1] we
get the classical Brownian Motion
(W0 = 0,E(Wx − Wy)2 = |x − y|) and we get its regularity
as a by-product.



Gaussian field, Positive Definite (P.D.)
functions.

Let X a set. A gaussian field on X is a family of real random variables (R.V.)
(Zx(ω))x∈X such that

∀n ∈ N
∗, ∀ x1, ., xn ∈ X, ∀ λ1, .,λn ∈ R,

n
∑

i=1

λiZxi

is a centered Gaussian R.V.. The "law " of the process is completely
determined (because of Gaussianity) by the covariance kernel

K(x, y) = E(ZxZy)

K(x, y) is real positive definite (P.D.) : K(x, y) = K(y, x) ∈ R,

∀ x1, ., xn ∈ X, ∀ λ1, .,λn ∈ R,
n
∑

i=1

λiλjK(xi, xj) ≥ 0

Reciprocally to a real P.D. function K(x, y) on X × X there always exists a
Gaussian process Zx such that K(x, y) = E(ZxZy).



Gaussian field, Negative Definite (N.D.)
functions.

To each D.P K(x, y) , (or Gaussian field Zx ) one can associate

Ψ(x, y)(= ψK(x, y)) = E(Zx − Zy)2 = K(x, x) + K(y, y) − 2K(x, y)

ψ(x, y) is Real Negative Definite (N.D.) : ψ(x, y) = ψ(y, x) ∈ R, ψ(x, x) ≡ 0

∀ x1, ., xn ∈ X, ∀ λ1, .,λn ∈ R,
n
∑

i=1

λi = 0 =⇒
n
∑

i=1

λiλjψ(xi, xj) ≤ 0

Let ψ(x, y) = ψ(y, x) ∈ R, ψ(z, z) ≡ 0. Let e ∈ X. Let us define :

Kψ
e (x, y) =

1

2
(ψ(x, e) + ψ(y, e) − ψ(x, y)

Then ψ N.D ⇐⇒ Kψ
e P.D.. Moreover if ψ = ψK , then

Kψ
e (x, y) = K(x, y) + K(e, e) − K(x, e) − K(y, e) = E[(Zx − Ze)(Zy − Ze)]

and ψ
Kψ

e
= ψK



The law of Gaussian fields and D.P. fonction are corresponding bijectively.

A N.D. kernel ψ does not determines a precise law of a Gaussian fields, unless
we impose the cancelation of the process at a point e ∈ X. In this case the
process is associated to the P.D. kernel :

Kψ
e (x, y) =

1

2
(ψ(x, e) + ψ(y, e) − ψ(x, y)

But for N.D. kernel there is a functional calculus : If ψ is N.D.

• F (u) =

∫

R+
(1 − e−su)dµ(s) =⇒ F (ψ) is N.D..

Ex: ψ N.D =⇒ ∀0 < α ≤ 1, ψα N.D

• G(u) =

∫

R+
e−sudµ(s) =⇒ G(ψ) is P.D..

Ex: ψ N.D. ⇐⇒ ∀0 < t, e−tψ P.D



Brownian field.Fractional Brownian field.

Definition Let X, d) a metric space. Let ψ(x, y) = d(x, y).
IF ψ is a D.N. function then ∃ (several) (Zx(ω))x∈X Gaussian fields verifying

E(Zx − Zy)2 = d(x, y).

Such field is A Brownian field. If we impose Ze = 0 for some e then there a
unique (in law) field : THE brownian field which cancel in e. This process is
associated to the P.D. function

Kψ
e (x, y) =

1

2
{d(x, e) + d(y, e) − d(x, y)}

Fractional Brownian field If d(x, y) is N.D then ∀0 < α ≤ 1, (d(x, y))α is
N.D. the corresponding processes are Fractional Brownian field, with
uniqueness if we impose the cancelation in a fixed point e ∈ X.



Regularity.

Regularity Now let us suppose that X has a metric, (or more sophisticated )
structure, so that we can define function spaces. For example if (X, d) is a
metric space, the lip(α)− spaces 0 < α ≤ 1 Let K(x, y) D.P. and Zx(ω) the
associated Gaussian process. Is it possible to say :

x ∈ X $→ Zx(ω) ∈ R (for almost all ω)

belongs to some function space, from an analysis of the P.D. associated kernel
K(x, y)?



Compact homogeneous spaces.

Let now M a compact Riemannian space and G a Lie group of isometry
acting transitively on M. So M ∼ G/K where K is the subgroup of stabilizer
of a fixed point O ∈ M . We are interested by G−invariant Gaussian process,
or equivalently by continuous real, definite positive invariant functions :

∀g ∈ G, ∀x, y ∈ M, K(g.x, g.y) = K(x, y)

Two points homogeneous space.
If ∀(x, y), (x′, y′) ∈ M × M, ρ(x, y) = ρ(x′, y′), ∃g ∈ G, g.x = x′, g.x′ = y′.
Then continuous real, definite positive invariant functions are :

K(x, y) =
∑

k

νkPλk
(x, y), νk ≥ 0,

∑

k

νkdim(Hk) < ∞,

(Pλk
(x, y) is the projector on the eigenspace Hλk

of ∆ corresponding to λk)
(Bochner-Godement theorem and characterization of spherical functions)



Sphere.

Let Sd ⊂ Rd. the unit sphere of Rd+1. This is the simplest example of two
points homogeneous space. The geodesic distance is given by :

∀ξ, η ∈ S
d, dSd(ξ, η) = arccos(⟨ξ, η⟩Rd+1)

We have the following spectral decomposition of the Laplacian ∆Sd :

L
2(Sd) =

⊕

Hλk
, λk = k(k + d − 1) = k(k + 2ν),

Pλk
(ξ, η) = Ld

k(⟨ξ, η⟩), Ld
k(x) =

1

|Sd|
(1 +

k

ν
)Cν

k (x); ν =
d − 1

2

Cν
k Gegenbauer polynomial of degree k :

1

(1 − 2xr + r2)ν
=

∑

k

rkCν
k (x)

The invariant continuous definite positive functions are :

K(ξ, η) =
∑

k

νkLd
k(⟨ξ, η⟩) =

∑

k

νkLd
k(cos(dSd(ξ, η))



Schoenberg- Bingham result

Let f a continuous function defined on [−1, 1]. Then :
f(⟨ξ, η⟩) is a positive definite function on Sd FOR ALL
d ∈ N∗, if and only if

f(x) =
∑

n≥0

anxn, 0 ≤ an;
∑

n

an = f(1) < ∞

So, for such a function :

f(x) =
∑

k≥0

ad
kLd

k(x), 0 ≤ ad
k;

∑

k≥0

ad
kLd

k(1) =
∑

k

ak = f(1)

(0 < Ld
k(1) ∼ kd−1)

So f(⟨ξ, η⟩) =
∑

k≥0

ad
kLd

k(⟨ξ, η⟩) = f(cos(dSd(ξ, η))



" Brownian " process on the sphere .

Let f(x) =
1

2
(
π

2
− arccos(x)) =

1

2

∑

j≥0

(1
2)j(

1
2)j

j!

x2j+1

(3
2)j

where (a)j = a(a + 1)..(a + j − 1) =
Γ(j + a)

Γ(a)

By Gauss formula
1

2

∑

j≥0

(1
2)j(

1
2)j

j!(3
2)j

=
π

4

f(⟨ξ, η⟩) =
1

2
(
π

2
− arccos(⟨ξ, η⟩Rd+1) =

π

4
−

1

2
(dSd(ξ, η))

As, |f(⟨ξ, η⟩) − f(⟨ξ, η′⟩)| ≤
1

2
dSd(η′, η)



One can built a probability a Gaussian probability on W on Bs
∞,1(Sd), s < 1

2
such that

∫

Bs
∞,1(Sd)

(ω(ξ) − ω(η))2dW (ω) = dSd(ξ, η)

The associated process Zξ(ω) = (δξ(ω))ξ∈Sd is almost surely in

Bs
∞,1(Sd) ⊂ Lips(Sd) if s < 1

2 .Moreover

Moreover E(|Zξ − Zη|2) = 2f(1) − 2f(⟨ξ, η⟩) = dSd(ξ, η)



Fractionnal brownian process

From the previous result we have :

ψ(ξ, η) = dSd(ξ, η) is an invariant negative definite kernel.

So from the general theory of definite negative kernel
∀0 < α ≤ 1, ψα(ξ, η) = [dSd(ξ, η)]α is an invariant negative definite kernel.
Then

K(ξ, η) = C −
1

2
(dSd(ξ, η))α, C great enough

Is an invariant definite positive kernel.

|K(ξ, η) − K(ξ, η′)| =
1

2
|dSd(ξ, η))α − dSd(ξ, η′))α| ≤

1

2
dSd(η′, η))α

The associated process Zα
ξ is almost surely in Lips(Sd), s < α

2

E(Zα
ξ − Zα

η )2 = dα
Sd(ξ, η)



General Gaussian process on the sphere.

THEOREM:

If f(x) =
∑

n≥0

Bnxn; 0 ≤ Bn = O(
1

nα
); α > 0

Then;
f(⟨ξ, η⟩) = f(cos(dSd(ξ, η))

is an invariant definite positive function on Sd by Schoenberg-Bingham
theorem, and one can prove that: the associated centered Gaussian process
(Zξ(ω))ξ∈Sd is almost surely in Bγ

∞,1, γ < α.
For example if 0 < a, 0 < b, 0 < α = c − a − b the hypergeometric function

Fa,b;c(x) =
∑

n≥0

(a)n(b)n

(c)n

xn

n!

fulfill the condition of the previous theorem.



THANK YOU FOR YOUR ATTENTION !
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