III-Construction of needlet .

G. KERKYACHARIAN, LPMA-CREST MATHEMATICAL STATISTIC AND INVERSE PROBLEMS.CIRM.02/16.

February , 2016

Part III :Framework of Dirichlet spaces (Th.Coulhon,P.Petrushev,G.K.)

Let (M, μ) be a connected, locally compact space with μ a borelian measure with support M.

We will try to show that a positive self-adjoint operator rich enough would help us to build a theory of regularity spaces on M. Let us first review some fact on positive self-adjoint operators, closed quadratic forms, semigroup and Markov semi-group.

Semi-group, positive operator and quadratic form.

Let $E = \mathbb{L}^{(M, \mu)}$.

• Self-adjoint contraction semigroup:

$$\forall t > 0, P_t = P_t^*, \ P_t \circ P_s = P_{t+s}, \|P_t(f)\| \le \|f\|,$$

 $\forall f \in E, \lim_{t \mapsto 0} \|P_t(f) - f\| = 0$

Then the infinitesimal generator A with domain

$$D(A) = \{f \in E, \lim_{t \to 0} \frac{P_t(f) - f}{t} = A(f)\} \text{ exists}$$

then $A = A^*, \forall f \in D(A), -\langle A(f), f \rangle \ge 0.$

• If A is a self-adjoint operator , with dense domain D(A), and

 $\forall f \in D(A), -\langle A(f), f \rangle \ge 0.$

Then by Hille-Yoshida theorem A is the generator of a self-adjoint contraction semigroup. There exists a spectral decomposition of identity associated to -A

$$Id = \int_0^\infty dE_\lambda, \ -A = \int_0^\infty \lambda dE_\lambda$$

and
$$P_t = e^{tA} = \int_0^\infty e^{-t\lambda} dE_\lambda$$

• If -A is a positive self-adjoint operator , with dense domain D(A) then we can define a quadratic form $\mathcal{E}(f,g)$:

$$D(\mathcal{E}) = D(\sqrt{-A}), \ \forall f, g \in D(\mathcal{E}), \ \mathcal{E}(f,g) = \langle \sqrt{-A}(f), \sqrt{-A}(g) \rangle$$

then $D(\mathcal{E})$ with norm $||f||_{\mathcal{E}}^2 = ||f||^2 + \mathcal{E}(f, f)$ is complete. \mathcal{E} is a closed positive quadratic form.

From quadratic form to positive self adjoint operator.

If \mathcal{E} a closed positive quadratic form, with dense domain $D(\mathcal{E}) \subset E$. Then one can associate a positive self-adjoint operator L:

 $D(L) = \{ f \in D(\mathcal{E}), \exists C < \infty \text{ such that } \forall g \in D(\mathcal{E}), \quad |\mathcal{E}(f,g)| \le C \|g\| \}$

For such f one define ${\cal L}(f)$ as

$$\forall g \in D(\mathcal{E}), \quad \mathcal{E}(f,g) = \langle L(f), g \rangle$$

Then L is a positive self adjoint operator.

Practical definition of a positive self-adjoint operator: Friedrich extension.

Actually what one has usually a positive symmetric operator with dense domain : A, D(A). Not self-adjoint. Then this operator could always extended to a positive self-adjoint operator

$$\overline{A} = (\overline{A})^*, D(A) \subset D(\overline{A}), \ \overline{A}|D(A) = A$$

(Friedrich extension). This is due to the fact that the quadratic form:

$$D(\mathcal{E}) = D(A), \ \mathcal{E}(f,g) = \langle A(f),g \rangle$$

is actually closable to $\overline{\mathcal{E}}, D(\overline{\mathcal{E}})$ and one use the previous procedure to build a self adjoint extension to A.

Beurling-Deny conditions and Markov semi-group.

For a positive operator -A on $\mathbb{L}^2(\mu, M)$ with \mathcal{E} and P_t the associate quadratique form and semi-group we have the equivalence (Beurling-Deny conditions):

1. If $u \in D(\mathcal{E})$ then,

 $(u \wedge 1)_+ \in D(\mathcal{E}), \text{ and } \mathcal{E}((u \wedge 1)_+, (u \wedge 1)_+) \leq \mathcal{E}(u, u)$

2.

 $\forall f \in D(A), (f-1)_+ \in D(A), \langle A(f), (f-1)_+ \rangle \le 0$

3. P_t is a SUBMARKOVIAN operator :

$$0 \le f \le 1, f \in \mathbb{L}^2 \Longrightarrow 0 \le P_t f \le 1.$$

Then P_t could be extended as a semigroup on $\mathbb{L}^p, 1 \leq p \leq \infty$ (with some precautions for $p = \infty$) and L_l , as the infinitesimal generator is defined for each p on some dense domain $D(L_{(p)}) \subset \mathbb{L}^p$.

"Gradient".

Under some further regularity, we can define (under the hypothesis :

$$\Gamma(f,f) = \frac{1}{2}A(f^2) - fA(f)$$

(for instance if A(f) = f" then $\Gamma(f, f) = |f'|^2$. ($\Gamma(f, f)$ is the "square of the gradient " of f,) $\Gamma(f, f) \ge 0$ and one can check :

$$\int_M A(f)(x)f(x)d\mu(x) = -\int_M \Gamma(f,f)(u)d\mu(u)$$

(For a Laplacian on a Riemannian manifold : $\Gamma(f, f) = |\nabla(f)|^2$) Then we define

$$\rho(x,y) = \sup_{\Gamma(\psi,\psi) \le 1} (\psi(x) - \psi(y))$$

We suppose that ρ is a complete metric compatible with the original topology. In the case of Riemannian geometry, $\rho(x, y)$ is the Riemannian distance.

Main hypothesis.

We will assume the following properties

1. We suppose that (M, ρ, μ) has the doubling property : $\exists d > 0$ (which plays the role of an upper dimension) such that:

$$\forall x \in M, r > 0, \ 0 < |B(x, 2r)| \le 2^d |B(x, r)| < \infty$$

2. POINCARE INEQUALITY : $\exists C \text{ such that, } \forall B(x, r) :$

$$\int_{B(x,r)} |f(u) - f_{B(x,r)}|^2 d\mu(u) \le Cr^2 \int_{B(x,2r)} \Gamma(f,f)(u) d\mu(u)$$
$$(f_{B(x,r)} = \frac{1}{|B(x,r)|} \int_{B(x,r)} f(x) d\mu(x))$$

Heat kernel bounds.

These two previous properties are equivalent to the following one :

The semi-group P_t is a positive symmetric kernel operator

$$P_t(f)(x) = \int_M P_t(x, y) f(y) d\mu(y)$$

and we have : $\exists C_1 > 0, C_2 > 0, c_1 > 0, c_2 > 0$, such that $\forall (x, y) \in M \times M, \quad \forall 0 < t \leq 1,$

$$\frac{C_1 e^{-c_1 \frac{\rho^2(x,y)}{t}}}{\sqrt{|B(x,\sqrt{t})||B(y,\sqrt{t})|}} \le P_t(x,y) \le \frac{C_2 e^{-c_2 \frac{\rho^2(x,y)}{t}}}{\sqrt{|B(x,\sqrt{t})||B(y,\sqrt{t})|}}$$

Moreover $\exists 0 < \alpha \leq 1$ such that $(x, y) \mapsto P_t(x, y)$ is lip- α .

Exemples

Compact Riemannian manifold Riemannian manifold with Positive Ricci curvature.... Nilpotent Lie Group, compact Lie group, homogeneous spaces G/K, associated to sublaplacian.

Exemple :Jacobi

$$M = [-1, 1]; \quad d\mu(x) = (1 - x)^{\alpha} (1 + x)^{\beta} dx = W(x) dx,$$

with $_1 < \alpha, \beta$. Let \mathcal{P} the vector space of polynomials restricted to [-1, 1]. This vector space is dense in $\mathbb{L}^2(M, \mu)$. Let us define $\forall f \in \mathcal{P}$,

$$\begin{split} L(f) &= \frac{1}{W(x)} \frac{d}{dx} ((1-x^2)W(x)\frac{d}{dx}(f)) \\ &= (1-x^2)f'' + [\beta - \alpha - (2+\beta - \alpha)x]f' \\ \int L(f)(x)f(x)W(x)dx &= -\int (1-x^2)|f'(x)|^2W(x)dx \leq 0 \\ \mathcal{E}(f,g) &= \int (1-x^2)f'(x)g'(x)W(x)dx \\ \mathsf{So}: \Gamma(f,f) &= (1-x^2)|f'(x)|^2 = \frac{1}{2}\{L(f^2) - 2fL(f)\} \end{split}$$

On can verify the Beurling-Deny conditions so that e^{tL} is a subMarkovian semigroup.

Moreover
$$L(1) = 0$$
 so $P_t(1) = 1$.

So P_t is Markovian. Moreover the other regularity could be checked and :

$$\rho(x,y) = \arccos(x.y + \sqrt{1-x^2}\sqrt{1-y^2}) = |\arccos x - \arccos y|$$
$$= \int_x^y \frac{du}{\sqrt{1-u^2}}$$

Then we have the following behavior of the balls :

$$\mu(B(x,r)) \sim r(r^2 + 1 - x)^{\alpha + \frac{1}{2}} (r^2 + 1 + x)^{\beta + \frac{1}{2}}$$

So the measure of the balls is not the same when x is close to 0 or close to the boundary 1, -1. Moreover

$$\frac{\mu(B(x,2r))}{\mu(B(x,r))} \le 3.$$

So the doubling property is verified.

The eigenvectors are the Jacobi polynomials $P_k^{\alpha,\beta}(x) \in \mathcal{P}$.

$$A(P_k^{\alpha,\beta}) = -k(k+\alpha+\beta+1)P_k^{\alpha,\beta} = \lambda_k p_k$$

So if $q_k = q_k^{\alpha,\beta}$ are the normalized Jacobi polynomials, one can see that the operator is closable in the following way :

$$D(\overline{L}) = \{ f = \sum \alpha_k q_k, \quad \sum |\alpha_k|^2 \lambda_k^2 < \infty \}$$
$$\overline{L}(f) = \sum \lambda_k \alpha_k q_k$$

One can check that \overline{L} is selfadjoint, so in this case the Friedrich extension is the closure of the operator (L us essentially self-adjoint. In the general case it could happen that there is different non comparable self-adjoint extensions. The semigroup P_t is actually a kernel operator with a positive kernel:

$$P_t(x,y) = \sum_k e^{-\lambda_k t} q_k(x) q_k(y)$$

(As it is written it is not obvious that it positive.)

With some work one can verify the Poincare inequality. So we have the Gaussian behavior of the heat kernel.

$$P_t(x,y) \le C \frac{1}{\sqrt{\mu(B(x,\sqrt{t})\mu(B(y,\sqrt{t}))}} e^{-c\frac{d(x,y)^2}{t}}$$
$$P_t(x,y) \ge C' \frac{1}{\sqrt{\mu(B(x,\sqrt{t})\mu(B(y,\sqrt{t}))}} e^{-c'\frac{d(x,y)^2}{t}}$$

with the previous distance and measure of the balls.

Main result : Functional calculus.

Let Θ be an even function in $\mathcal{D}(\mathbb{R})$, and $\delta>0,$ the operator:

$$\Theta(\delta\sqrt{L}) = \int_0^\infty \Theta(\delta\sqrt{\lambda}) dE_\lambda$$

is actually a kernel operator, and the kernel $\Theta(\delta\sqrt{L})(x,y)$ verifies REGULARITY property:

$$\bullet(x,y)\in M\times M\mapsto \Theta(\delta\sqrt{L})(x,y) \quad \text{is} \ Lip-\alpha$$

CONCENTRATION on the diagonal properties :

•
$$\forall s > 0, \delta > 0, |\Theta(\delta\sqrt{L})(x,y)| \le C(\Theta,s) \frac{1}{\sqrt{|B(x,\delta)||B(y,\delta)|}} \frac{1}{(1+\frac{\rho(x,y)}{\delta})^s}$$

As a consequence, by Young Lemma :

• $\exists C, \forall \delta > 0, \forall f \in \mathbb{L}^p, \|\Theta(\delta\sqrt{L})f\|_p \le C \|f\|_p$

Spectral decomposition, Spectral space. Let

$$L = \int_0^\infty \lambda dE_\lambda; \quad \sqrt{L} = \int_0^\infty \lambda dF_\lambda; \quad F_\lambda = E_{\lambda^2}$$

The operator F_{λ} is a kernel operator, with a real symetric non negative kernel, but NOT localised. Let us define :

$$\Sigma_{\lambda} = \{ f \in \mathbb{L}^2, \quad F_{\lambda}(f) = f \}$$

And more we can extend this definition and we can define $\Sigma^p_\lambda, \ 1 \leq p \leq \infty$ and

$$1 \le p \le q \le \infty \Longrightarrow \Sigma^1_{\lambda} \subset \Sigma^p_{\lambda} \subset \Sigma^q_{\lambda} \subset \Sigma^\infty_{\lambda};$$

These are the "low frequencies" spaces or Shannon spaces.

Σ^p_{λ} as a space of analytic vectors.

We have the following equivalence :

1. $f \in \Sigma^p_{\lambda}$

2. $f \in \bigcap_{k=1}^{\infty} D(L_{(p)}^k)$ and

 $\forall \nu > \lambda, \ \exists C_{\nu} > 0, \quad \forall k \in \mathbb{N}, \ \|L^k(f)\|_p \le C_{\nu} \nu^{2k} \|f\|_p$

 $(z \in \mathbb{C} \mapsto e^{-zL}(f) = \sum_{k \in \mathbb{N}} (-1)^k \frac{z^k L^k(f)}{k!}$ is a (\mathbb{L}^p value) entire function of type exponential 2λ .)

Definition of spaces of distribution

Let us fix some $a \in M$.

$$\mathcal{S}(M) = \{ \phi \in \cap_m D(L^m);$$

 $\forall l, n \in \mathbb{N}, \ \mathcal{P}_{l,n}(\phi) = \sup_{x \in M} (1 + \rho(x, a))^l |L^n(\phi)(x)| < \infty \}$

(This coincides, in the \mathbb{R}^d case with the usual definition) One can see :

 $\forall f \in \mathcal{D}(\mathbb{R}), f \text{ even}, \forall y \in M, \quad x \mapsto f(\sqrt{L})(x, y) \in \mathcal{S}.$

The dual of S is the space of distribution S'.

Littlewood-Paley decomposition

Let us define, for $1 < b < \infty$ the b- Littlewood-Paley functions :

$$\Phi_0 \ge 0, \ \Phi_0 \in \mathcal{D}(\mathbb{R}), \Phi \text{ even}$$
$$|u| \le 1 \Longrightarrow \Phi_0(u) = 1, \ supp(\Phi_0 \subset \{|u| \le b\}.$$

Moreover let us take Φ non increasing on \mathbb{R}_+ .

$$\forall j \ge 1, \ \Phi_j(u) = \Phi_0(\frac{u}{b^j}) - \Phi_0(\frac{u}{b^{j-1}}) = \Phi_1(\frac{u}{b^{j-1}}).$$

So

 $\Phi_j \ge 0, \ \Phi_j \in \mathcal{D}(\mathbb{R}), \ supp(\Phi_j \subset \{b^{j-1} \le |u| \le b^{j+1}\}.$

$$1 = \sum_{j} \Phi_j(u)$$

Then, due to the concentration properties :

$$\forall f \in \mathcal{S}', \ f = \sum_{j=0}^{\infty} \Phi_j(\sqrt{L})f$$

The convergence is in the \mathbb{L}^p sense if $1 \le p < \infty$ if $f \in \mathbb{L}^p$ and uniform if f is unformly continuous and bounded (U.C.B.)

Spaces of low-frequency approximation.

For $f \in \mathbb{L}^p(M), \ 1 \leq p \leq \infty$, we define:

$$\sigma(t, f, p) = \inf_{g \in \Sigma_t^p} \|f - g\|_p$$

Then for $1 \le p \le \infty, \ 0 < q \le \infty, \ 0 < s < \infty$,

$$\|f\|_{B^s_{p,q}} \sim \|f\|_p + (\int_1^\infty (t^s \sigma(t, f, p))^q \frac{dt}{t})^{1/q} < \infty\}$$

Clearly, for b > 1, fixed, we have the discretized caracterisation :

$$||f||_{B^s_{p,q}} \sim ||f||_p + ||b^{-js}\sigma(b^j, f, p)||_{l_q(j)}$$

Littlewood-Paley definition of Besov and Triebel-Lizorkin spaces

Let Φ_j be a b-Littlewood Paley family of functions, and $f \in S'$. Let $s \in \mathbb{R}, \ 0 < q, p \leq \infty$:

$$f \in B_{p,q}^{s} : \{ f \in \mathcal{S}', \ (\sum_{j} (b^{js} \| \Phi_{j}(\sqrt{L})f\|_{p})^{q})^{1/q} = \| f\|_{B_{p,q}^{s}} < \infty \}$$

(usual modification for $q = \infty$) This is due to

 $\exists C, \forall 1 \le p \le \infty, \forall \delta > 0, \ \|\Phi(\delta\sqrt{L})f\|_p \le C\|f\|_p$

Triebel-Lizorkin spaces.

Let us define now: Triebel-Lizorkin $F_{p,q}^s$: Let $s \in \mathbb{R}, \ 0 < q \le \infty, \ 0 < p < \infty$:

$$f \in F_{p,q}^s : \{ f \in \mathcal{S}', \ \| (\sum_j |b^{js} \Phi_j(\sqrt{L}) f(x)|^q)^{1/q} \|_p = \| f \|_{F_{p,q}^s} < \infty$$

(usual modification for $q = \infty$)

These definitions are independent of b > 1 and any related Littlewood-Paley family. All the related norms are equivalent.

Sobolev and Triebel-Lizorkin spaces $F_{p,q}^s$

Let us recall the definition of Sobolev space : $s \in R, \ 1 \le p \le \infty$:

$$||f||_{H^p_s} = ||(I_d + L)^{s/2}(f)||_p$$

Then

 $\forall s \in \mathbb{R}, \quad \forall 1$ $For <math>s = 0, \quad \forall 1$

Besov Spaces as interpolation spaces..

Let $1 \le p \le \infty$, and $0 < s < k \in \mathbb{N}$ $\|f\|_{H_p^k} = \|f\|_p + \|L_{(p)}^{k/2}(f)\|_p$ $B_{p,q}^s = [\mathbb{L}^p, H_p^k]_{\theta,q}, \quad s = \theta k$ $\|f\|_{[\mathbb{L}^p, D(L_{(p)}^k)]_{\theta,q}} \sim \|f\|_p + (\int_0^1 (t^{-\theta k} \|(tL)^k e^{tL}(f)\|_p)^q \frac{dt}{t})^{1/q}$ (Jackson and Bernstein properties)

Injections

 $\forall s \in \mathbb{R}, \quad \forall q \le p, \quad B^s_{p,q} \subset F^s_{p,q}$ $\forall s \in \mathbb{R}, \quad \forall p \le q, \quad F^s_{p,q} \subset B^s_{p,q}$

2. $\forall s \in \mathbb{R}, \quad \forall 1 \le p \le p' \le \infty,$ $B_{p,q}^s \subset B_{p',q}^{s'}, \quad s - \frac{d}{p} = s' - \frac{d}{p'}.$

1.

$B^s_{\infty,\infty}$ and Lipschitz spaces

Let us recall : $\forall s > 0$, |f(x) - f(y)|

$$Lip(s) = \{f, \|f\|_{\infty} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{\rho(x, y)^s} = \|f\|_{Lip(s)} < \infty\}$$

Then:

$$\forall 0 < s < \alpha, \ Lip(s) = B^s_{\infty,\infty}$$

Semi-group caracterization

1. Let $1 \le p \le \infty$, $0 < s < \infty$. Let $m \in \mathbb{N}$ such that 0 < s < m. Then

$$\|f\|_{B^s_{p,q}} \sim \|f\|_p + (\int_0^1 [t^{-s/2} \|(tL)^m e^{-tL}f\|_p]^q \frac{dt}{t})^{1/q}$$

2. Let $1 , <math>0 < s < \infty$. Let $m \in \mathbb{N}$ such that 0 < s < m. Then

$$\|f\|_{F^s_{p,q}} \sim \|f\|_p + \|(\int_0^1 [t^{-s/2}|(tL)^m e^{-tL}f(x)|]^q \frac{dt}{t})^{1/q}\|_{\mathbb{L}_p}$$

With the usual modification for $q = \infty$.

Spectral space and sampling

δ -net.

Let us recall that a δ -net of a metric space (M, ρ) is a set $\mathcal{A} \subset M$ such that $\forall x \neq y, x, y \in \mathcal{A}$, we have $\rho(x, y) \geq \delta$.

Maximal δ -net. Let \mathcal{A} be a δ -net. If there is no δ -net \mathcal{B} , $\mathcal{B} \neq \mathcal{A}$, $\mathcal{A} \subset \mathcal{B}$ then \mathcal{A} is said maximal δ -net. If \mathcal{A} is a maximal δ -net, then :

$$\cup_{x\in\mathcal{A}}B(x,\delta)=M;$$

 $x, y \in \mathcal{A}, x \neq y \Longrightarrow B(x, \delta/2) \cap B(y, \delta/2) = \emptyset.$

Sampling theorem

THEOREM :There exists $\gamma > 0$, only depending of the structural constant, such that $\forall \lambda > 0$ and and for any \mathcal{A}_{δ} , a maximal δ -net with $\delta = \frac{\gamma}{\lambda}$, we have :

$$\forall 1 \le p \le \infty, \quad \forall f \in \Sigma_{\lambda}^{p},$$
$$(\sum_{\xi \in \mathcal{A}_{\delta}} |f(\xi)|^{p} |B(\xi, \delta|)^{1/p} \simeq ||f||_{p}$$

(usual modification for $p = \infty$.)

Spectral spaces and cubature formula.

THEOREM : There exists $\gamma > 0$, only depending of the structural constant, such that $\forall \lambda > 0$ and \mathcal{A}_{δ} , a maximal δ -net with $\lambda \delta = \gamma$, it exist $(\mu_{\xi}^{\lambda})_{\xi \in \mathcal{A}_{\delta}}$ positive weights such that :

$$\forall f \in \Sigma^1_\lambda, \quad \int_M f(x) dx = \sum_{\xi \in \mathcal{A}_\delta} \mu^\lambda_\xi f(\xi)$$

$$\frac{2}{3}|A_{\xi}| \le \mu_{\xi}^{\lambda} \le 2|A_{\xi}|$$

Where A_{ξ} is a partition associated to \mathcal{A}_{δ} .

Frame

As
$$\frac{1}{2} \leq \sum_{j \geq 0} \Phi_j^2(x) \leq 1$$

by spectral theorem

$$\frac{1}{2} \|f\|_2^2 \le \sum_{j\ge 0} \|\Phi_j(\sqrt{L})(f)\|_2^2 \le \|f\|_2^2$$

So using the sampling theorem, we get , for $\mathcal{A}_j=\mathcal{A}_{\gamma b^{-j}},$

$$\frac{1}{4} \|f\|^2 \le \sum_{j} \sum_{\mathcal{A}_j} |\langle f, \psi_{j,\xi} \rangle|^2 \le 2 \|f\|_2^2$$

where :
$$\psi_{j,\xi}(x) = \sqrt{|B(\xi, b^{-j})|} \Phi_j(\sqrt{L})(x, \xi).$$

The previous result means exactly that : $(\phi_{j,\xi})_{j\in\mathbb{N},\xi\in\mathcal{A}_j}$ is a frame

Properties of $\psi_{j,\xi}(x)$.

For a suitable choice of Φ and b:

1. \mathbb{L}^p -norm control : $\forall 0 <math display="block">\|\psi_{j,\xi}\|_p \simeq |B(\xi, b^{-j})|^{\frac{1}{p} - \frac{1}{2}}$

2. $\psi_{j,\xi}$ is "almost" supported by $B(\xi, b^{-j})$: For $0 < \beta < 1 \exists C, \kappa > 0$, such that $\forall j \in \mathbb{N}, \ \xi \in \mathcal{A}_j$

$$|\psi_{j,\xi}(x)| \le C \frac{1}{\sqrt{|B(\xi, b^{-j})|}} e^{-\kappa (b^j \rho(x,\xi))^{\beta}}$$

(Exponential concentration).

3. Spectral localisation : $\psi_{j,\xi} \in \Sigma_{b^{j-1},b^{j+1}}$

Second main result :Existence of a good dual frame

One can built a family $(\tilde{\psi}_{j,\xi})_{\xi \in A_j}$, which is a dual frame (not THE dual frame!) to the previous one, with the same properties:

• Splitting property: $\forall j \in \mathbb{N}$,

$$\Phi_{j}(\sqrt{L})(x,y) = \sum_{\mathcal{A}_{j}} \overline{\psi_{j,\xi}(y)} \tilde{\psi}_{j,\xi}(x) = \sum_{\mathcal{A}_{j}} \psi_{j,\xi}(x) \overline{\tilde{\psi}_{j,\xi}(y)})$$

$$\bullet \quad \|\tilde{\psi}_{j,\xi}\|_{p} \simeq |B(\xi, 2^{-j})|^{\frac{1}{p} - \frac{1}{2}}$$

$$\bullet \quad |\tilde{\psi}_{j,\xi}(x)| \leq C \frac{1}{\sqrt{|B(\xi, b^{-j})|}} e^{-\kappa (b^{j} \rho(x,\xi))^{\beta}}$$

• Spectral localisation $\tilde{\psi}_{j,\xi} \in \Sigma_{b^{j-2},b^{j+2}}$

Frame characterization of Besov and Triebel spaces.

Let b suitably choosen.

• Littlewood-Paley .

$$\forall f \in \mathcal{S}', \quad f = \sum_{j=0}^{\infty} \Phi_j(\sqrt{L})f$$

• Frame decomposition

$$f = \sum_{j} \sum_{\xi \in \mathcal{A}_j} \langle f, \psi_{j,\xi} \rangle \tilde{\psi}_{j,\xi}(x)$$

We can exchange ψ and $\tilde{\psi}$

Concentration property.

Due to the concentration properties of the $\psi_{j,\xi}$ and $\hat{\psi}_{j,\xi}$ we have :

$$\exists C < \infty, \ \forall j \in \mathbb{N}, \quad \sum_{\xi \in \mathcal{A}_j} \|\psi_{j,\xi}\|_1 |\tilde{\psi}_{j,\xi}(y)| \le C$$

We can exchange ψ and $\tilde{\psi}$

Sparse caracterization of Besov space.

So: using

• $\forall s \in \mathbb{R}, \ 0 < p, q \leq \infty$

 $\left[\sum_{j} (b^{js} (\sum_{\xi \in \mathcal{A}_{j}} |\langle f, \psi_{j,\xi} \rangle|^{p} \| \tilde{\psi}_{j,\xi} \|_{p}^{p})^{\frac{1}{p}})^{q} \right]^{1/q} \sim \|f\|_{B^{s}_{p,q}}$

We can exchange ψ and $\bar{\psi}$

Caracterization of $F_{p,q}^s$. $\forall s \in \mathbb{R}, \ 0 < q \le \infty, \ 0 < p < \infty$:

$$\|\{\sum_{j} [b^{js} \sum_{\xi \in \mathcal{A}_{j}} |\langle f, \psi_{j,\xi} \rangle | |\tilde{\psi}_{j,\xi}(x)|]^{q}\}^{1/q} \|_{p} \sim \|f\|_{F^{s}_{p,q}}$$

We can exchange ψ and $\tilde{\psi}$

Compact case.

The following properties are equivalent :

- $Diam(M) < \infty \iff \mu(M) < \infty \iff M$ is compact)
- $\mathbb{L}^{2}(M) = \bigoplus_{k} \mathcal{H}_{\lambda_{k}}, \quad \mathcal{H}_{\lambda_{k}} = ker(L \lambda_{k}I_{d}); \quad dim(\mathcal{H}_{\lambda_{k}}) < \infty$ • $\forall r > 0 \quad \int \frac{1}{|(B(x,r))|} d\mu(x) < \infty$ • $\forall \lambda > 0, \ \forall 1 \le p \le \infty \quad \Sigma_{\lambda}^{1} = \Sigma_{\lambda}^{p} = \Sigma_{\lambda}^{\infty} = \bigoplus_{\sqrt{\lambda_{k}} \le \lambda} \mathcal{H}_{\lambda_{k}}$
 - • $\forall t > 0, e^{-tL}$ is an Hilber-Schmidt operator • $\forall t > 0, e^{-tL}$ is a trace class operator

If this is realized , and if $N(\delta, M)$ is the covering number of M (or the cardinal of a maximal δ -net):

$$dim(\bigoplus_{\lambda_k \le t^{-1}} \mathcal{H}_{\lambda_k}) = dim(\Sigma_{\frac{1}{\sqrt{t}}}) \sim \int \frac{1}{|B(x,\sqrt{t})|} d\mu(x) \sim N(\sqrt{t}, M)$$
$$\sim \int_M P_t(x, x) d\mu(x) = \int_M \int_M P_{t/2}(x, y)^2 d\mu(x) d\mu(y)$$
$$= \sum_k e^{-\lambda_k t} dim(\mathcal{H}_{\lambda_k}) = Tr(e^{-tL}) = ||e^{-t/2L}||_{HS}^2$$

In particular, in the compact Riemannian case of dim n, without boundary :

$$\dim(\bigoplus_{\sqrt{\lambda_k} \le \lambda} \mathcal{H}_{\lambda_k}) \sim \int \frac{1}{|B(x,\lambda^{-1})|} d\mu(x) \sim N(\lambda^{-1},M) \sim \lambda^n$$

Regularity of Gaussian Process in geometrical framework.

G. KERKYACHARIAN, LPMA , CREST

MATHEMATICAL STATISTIC AND INVERSE PROBLEMS. CIRM.02/16.

February 10, 2016

Gaussian process.

Let (M, d) a compact metric space. Let (Ω, P) a probability space. $(Z_x(\omega))_{x \in X}$ a centered Gaussian process:

$$\forall x_1, ..., x_n \in X; \quad \lambda_1, ..., \lambda_n \in \mathbb{R},$$
$$\sum_{i,j} \lambda_i Z_{x_i}(\omega) \sim N(0, \sum_{i,j} \lambda_i \lambda_j K(x_i, x_j))$$

where $K(x,y) = \mathbb{E}(Z_x Z_y)$ is the covariance kernel

K(x, y) is a real, positive definite function. i.e.

$$K(x,y) = K(y,x) \in \mathbb{R}, \text{ and }$$

$$\forall x_1, ..., x_n \in X; \quad \lambda_1, ..., \lambda_n \in \mathbb{R}, \sum_{i,j} \lambda_i \lambda_j K(x_i, x_j) \ge 0$$

Reciprocally, if K(x, y) is real continuous, positive definite :

$$K(x,y) = \sum_{k} \nu_k \phi_k(x) \phi_k(y)$$

where
$$\int K(x, y)\phi_k(y)d\mu(y) = \nu_k\phi_k(x)$$

Then : $Z_x(\omega) = \sum_k \sqrt{\nu_k}\phi_k(x)B_k(\omega)$

where B_k is sequence of iid N(01) R.V.. Then $Z_x(\omega)$ is Gaussian Process with covariance K.

Question : How one can decide the kind of regularity of the "trajectory: $x \mapsto Z_x(\omega)$ for almost all ω at least for a suitable version of $Z_x(\omega)$?

Let us recall the famous result of Kolmogoroff :

THEOREM: The process $Z_x(\omega)$ had a continuous modification if it exists $0 < p, \psi : \mathbb{R}_+ \mapsto \mathbb{R}_+, \psi(0) = 0$ continuous non decreasing, and $f : \mathbb{R}_+ \mapsto \mathbb{R}_+$ such that :

 $\mathbb{E}|Z_x-Z_y|^p \leq \psi(d(x,y))$, and if D(t,X) is the covering number

$$\int_0^1 \frac{D(t,X)\psi(2t)}{f(t)^p} dt < \infty, \quad \int_0^1 \frac{f(x)}{x} dx < \infty.$$

Actually we want to describe the regularity of the process $Z_x(\omega)$ directly from the covariance function K(x, y)

Random field and geometry.

We suppose that we are in the previous framework.

• (X, μ, d) is a compact metric space, and we suppose that the regularity spaces : Sobolev, Besov, Lipschitz are related to some Positive operator L with all the properties:

• : L is a positive self-adjoint operator determine associate to a regular, and local Dirichlet space with an associated "gradient square" $\Gamma(f,g): \forall f,g \in D(L) \int L(f)gd\mu = \int \Gamma(f,g)d\mu.$

• :
$$d(x, y) = \sup_{\Gamma(f, f) \le 1} \psi(x) - \psi(y)$$

- Doubling condition: $\mu(B(x,2r)) \leq 2^d \mu(B(x,r)).$
- Poincare Inequality :

$$\inf_{\lambda} \int_{B(x,r)} (f-\lambda)^2 d\mu \le Cr^2 \int_{B(x,r)} \Gamma(f,f) d\mu$$

Compact case.

The following properties are equivalent :

• $Diam(M) < \infty \iff \mu(M) < \infty \iff M$ is compact)

• $\mathbb{L}^2(M) = \bigoplus_k \mathcal{H}_{\lambda_k}, \ \mathcal{H}_{\lambda_k} = ker(L - \lambda_k I_d); \ dim(\mathcal{H}_{\lambda_k}) < \infty$

•
$$\forall \lambda > 0, \ \forall 1 \le p \le \infty \quad \Sigma_{\lambda}^{1} = \Sigma_{\lambda}^{p} = \Sigma_{\lambda}^{\infty} = \bigoplus_{\sqrt{\lambda_{k}} \le \lambda} \mathcal{H}_{\lambda_{k}}$$

•If, $N(\delta, M)$ is the covering number of M (or the cardinal of a maximal δ -net): (Peter-Weyl type result)

$$\dim(\bigoplus_{\lambda_k \le t^{-1}} \mathcal{H}_{\lambda_k}) \sim \int \frac{d\mu(x)}{|B(x,\sqrt{t})|} \sim N(\sqrt{t},M) \lesssim t^{\frac{d}{2}}$$

$$\mathbb{L}^{2} = \bigoplus \mathcal{H}_{\lambda_{k}}, \quad P_{t}(x, y) = \sum_{k} e^{-\lambda_{k} t} P_{\lambda_{k}}(x, y).$$
$$P_{\lambda_{k}}(x, y) = \sum_{i=1}^{\dim(\mathcal{H}_{\lambda_{k}})} e_{i}^{k}(x) e_{i}^{k}(y),$$

 $P_t(x, y)$ has a Gaussian behavior. Moreover $e^{-tL}1 = 1$ which is equivalent to L1 = 0.

So we have Sobolev spaces, Besov spaces, Lipschitz spaces. Let us recall

$$\forall 0 < s \leq 1, \ Lip_s \subset B^s_{\infty,\infty}$$

and for some $0 < \alpha, \forall 0 < s < \alpha, B_{\infty,\infty}^s \subset Lip_s$. (Actully, in the Riemannian case $\alpha = 1$.

Subordination to the geometry.

Here is the main hypothesis:

We focus on continuous definite positive kernel, subordinate to the spectral decomposition :

$$K(x,y) = \sum_{k} \sum_{j=1}^{\dim(\mathcal{H}_{\lambda_k})} \nu_k^j e_k^j(x) e_k^j(y)$$

i.e. the eigenfunctions of L are eigenfunctions of K. Actually, this is equivalent to KL = LK. where K is the kernel operator:

$$f\mapsto Kf(x)=\int K(x,y)f(y)d\mu(y)$$

Let us study the regularity of:

$$Z_x(\omega) = \sum_k \sum_{i=1}^{\dim(\mathcal{H}_{\lambda_k})} \sqrt{\nu_k^j} e_k^j(x) B_k^j(\omega); \quad B_k^j, \ i.i.d. \quad N(0,1).$$

Regularity theorem.

THEOREM

1. Let us suppose that $\exists 0 < s \text{ such that}$:

$$\sup_{x \in M} \|K(x,.)\|_{B^s_{\infty,\infty}} \le C < \infty.$$

Then for almost all $\omega \in \Omega, \ x \mapsto Z_x(\omega) \in B^{\alpha}_{\infty,1}, \ \alpha < \frac{s}{2}$

(Let us observe that $B^{\alpha}_{\infty,1} \subseteq B^{\alpha}_{\infty,\infty}, B^{\alpha}_{\infty,1}$ is separable and $B^{\alpha}_{\infty,\infty}$ is not separable.)

2. Conversely If $\exists \alpha > 0$ such that $Z_x(\omega) \in B^{\alpha}_{\infty,\infty}$ for almost all ω , then

$$\sup_{x \in M} \|K(x,.)\|_{B^{2\alpha}_{\infty,\infty}} \le C < \infty.$$

Exemple:

Let us suppose that

 $|K(x,y) - K(x,y')| \le Cd(y,y')^s$, for some $0 < s \le 1$

So, as $Lip_s \subset B^s_{\infty,\infty}$, the theorem implies

for almost all
$$\omega \in \Omega, \ x \mapsto Z_x(\omega) \in B^{\alpha}_{\infty,1}, \ \alpha < \frac{s}{2}$$

But $B^{\alpha}_{\infty,\infty} = Lip_{\alpha}$, if $\alpha < \alpha_0$. Actually $\alpha_0 = 1$ if X is a compact Riemannian manifold.

Sketch of the proof.

To simplify the notations we write:

$$K(x,y) = \sum \nu_k u_k(x) u_k(y); \quad L(u_k) = \lambda_k u_k;$$

$$Z_x(\omega) = \sum \sqrt{\nu_k} B_k(\omega) u_k(x)$$

 u_k is an orthonormal basis of eigenfunctions of L.

Let a Littlewood-Paley decomposition :
$$1 = \sum_{j \ge 0} \psi_j(x)$$
,

 $Supp(\psi_0) \subset \{|\xi| \le 2\}; \ \forall j \ge 1, \ Supp(\psi_j) \subset \{2^{j-1} \le |\xi| \le 2^{j+1}\}$ We have to prove:

$$||Z_{\cdot}(\omega)||_{B^{\alpha}_{\infty,1}} \sim \sum_{j\geq 0} 2^{j\alpha} ||\psi_j(\sqrt{L})(Z_{\cdot}(\omega))||_{\infty} < \infty, \ a.e.$$

It is enough to prove

$$\mathbb{E}\left[\sum_{j\geq 0} 2^{j\alpha} \|\psi_j(\sqrt{L})(Z_{\cdot}(\omega))\|_{\infty}\right] = \sum_{j\geq 0} 2^{j\alpha} \mathbb{E}\left[\|\psi_j(\sqrt{L})(Z_{\cdot}(\omega))\|_{\infty}\right] < \infty.$$

If \mathcal{A}_j a maximal $\gamma 2^{-j-1}$ —net. We have $Card(\mathcal{A}_j) \leq 2^{jd}$. We have (as $\Psi_j(\sqrt{L})(f) \in \Sigma_{2^{j+1}}$):

 $\mathbb{E}[\|\Psi_j \sqrt{L})(Z_{\cdot}(\omega)\|_{\infty}] \sim \mathbb{E}[\sup_{\xi \in \mathcal{A}_j} |\Psi(2^{-j}\sqrt{L})(Z_{\cdot}(\omega)(\xi)|] =$

$$\mathbb{E}[\sup_{\xi \in \mathcal{A}_j} | \sum_{2^{j-1} \le \sqrt{\lambda_k} \le 2^{j+1}} \Psi_j(\sqrt{\lambda_k}) \sqrt{\nu_k} u_k(\xi) B_k(\omega) |]$$

Let us recall:

Pisier inequality If $(X_i)_{i \in \mathcal{A}}$ are centered Gaussian R.V.and $\sigma^2 \geq \mathbb{E}(X_i^2), \ \forall i \text{ then}$

 $\mathbb{E}(\sup |X_i|) \le \sigma \sqrt{2\log(2card(\mathcal{A}))}$

But

$$\mathbb{E}\left[\sum_{2^{j-1} \leq \sqrt{\lambda_k} \leq 2^{j+1}} \Psi_j(\sqrt{\lambda_k}) \sqrt{\nu_k} u_k(\xi) B_k(\omega)\right]^2 = \sum_{2^{j-1} \leq \sqrt{\lambda_k} \leq 2^{j+1}} \Psi_j^2(\sqrt{\lambda_k}) \nu_k u_k^2(\xi)\right] \leq \sup_{x \in M} \sum_{2^{j-1} \leq \sqrt{\lambda_k} \leq 2^{j+1}} \nu_k u_k^2(x)\right]$$
So:

$$\sum_{j\geq 0} 2^{j\alpha} \mathbb{E}[\|\psi_j(\sqrt{L})(Z_{\cdot}(\omega))\|_{\infty}] \lesssim \sum_{j\geq 0} 2^{j\alpha} \sqrt{j} \{ \sup_{x\in M} \sum_{2^{j-1}\leq \sqrt{\lambda_k}\leq 2^{j+1}} \nu_k u_k^2(x) \}^{\frac{1}{2}}$$

But one can check :

 $\sup_{x \in M} \|K(x,.)\|_{B^s_{\infty,\infty}} < \infty \iff \exists C' < \infty, \quad \sup_{x \in M} \sum_{2^{j-1} \le \sqrt{\lambda_k} \le 2^{j+1}} \nu_k u_k^2(x)] \le C' 2^{-js}$

So $Z_x(\omega) \in B^{\alpha}_{\infty,1}$, a.s. if $\alpha < \frac{s}{2}$.

Some more result.

Under the hypothesis of the theorem :

1. (Wiener measure) On $B^{\alpha}_{\infty,1}$, there exists a unique Borel measure Q_{α} , such that:

$$\delta_x : \omega \in B^{\alpha}_{\infty,1} \mapsto \omega(x)$$

is a centered Gaussian process and

$$K(x,y) = \int_{B_{\infty,1}^{\alpha}} \delta_x(\omega) \delta_y(\omega) dQ_{\alpha}(\omega) = \mathbb{E}(\delta_x \delta_y)$$

2. If \mathbb{H}_K is the RKHS associated to K(x,y). Then

Moreover
$$\mathbb{H}_K \subseteq B_{\infty,\infty}^{\frac{s}{2}} \iff \sup_{x \in M} \|K(x,.)\|_{B_{\infty,\infty}^s} < \infty$$

 $\mathbb{H}_K = \{f : M \to \mathbb{R} : f(x) = \sum_k \alpha_k \sqrt{\nu_k} u_k(x), \ \alpha_. \in l_2\}$
 $\|f\|_{\mathbb{H}_K}^2 = \|\alpha_.\|_2^2$

Ex : The Brownian motion.

$$M = [0,1], \ K(x,y) = \frac{x+y-|x-y|}{2} = x \wedge y$$

Computing the eigen vector and eigen number of the associate kenel operator:

$$K(x,y) = \sum_{k} \frac{1}{((k+\frac{1}{2})\pi)^2} 2\sin((k+\frac{1}{2})\pi x)\sin(k+\frac{1}{2})\pi y)$$

(v) = $\sum_{k} \frac{1}{(k+\frac{1}{2})\pi} \sqrt{2}\sin((k+\frac{1}{2})\pi x) P_{k}(x)$, $P_{k} = N(0,1)$, i

$$Z_x(\omega) = \sum_k \frac{1}{(k+\frac{1}{2})\pi} \sqrt{2} \sin((k+\frac{1}{2})\pi x) B_k(\omega); \quad B_k \sim N(0,1), \ i.i.d.$$

Now we have the following "bad" Dirichlet space : (with Neumann-Dirichlet conditions)

$$A(f) = f'', \ D(A) = C^2(]0, 1[, \cap C^1[0, 1], \ f(0) = f'(1) = 0.$$
$$\int_0^1 A(f)(x)f(x)dx = -\int_0^1 f'^2(x)dx$$
$$A(\sin((k + \frac{1}{2})\pi)(x) = -((k + \frac{1}{2})\pi)^2\sin((k + \frac{1}{2})\pi x)$$

$$\rho(x, y) = \sup_{|f'| \le 1} f(x) - f(y) = |x - y|;$$

The Poincare and the doubling properties are obvious.

Clearly
$$|K(x,y) - K(x,y')| \le |y - y'|$$

so $x \mapsto Z_x(\omega) \in Lip(s)([0,1]), \ s < \frac{1}{2}; \omega - a.s.$
 $\mathbb{E}(|Z_x - Z_y|^2) = \psi(x,y) =$
 $K(x,x) + K(y,y) - 2K(x,y) = |x - y|$

But unfortunately 1 Does not belong to D(A). and the semi-group is not Markov

Let us go through the circle.

By Fourier serie development :

$$\begin{aligned} x \in [-1,1], \quad |x| &= \frac{1}{2} - \frac{4}{\pi^2} \sum_{n \in \mathbb{N}} \frac{\cos(2n+1)\pi x}{(2n+1)^2} \\ \text{so}: \quad x,y \in [-1,1] \quad |x-y| \wedge (2-|x-y|) &= \frac{1}{2} - \frac{4}{\pi^2} \sum_{n \in \mathbb{N}} \frac{\cos((2n+1)\pi(x-y))}{(2n+1)^2} \\ K(x,y) &= \frac{1}{2} - |x-y| \wedge (2-|x-y|) &= \frac{4}{\pi^2} \sum_{n \in \mathbb{N}} \frac{\cos((2n+1)\pi(x-y))}{(2n+1)^2} = \\ \frac{4}{\pi} \sum_{n \in \mathbb{N}} \frac{\cos((2n+1)\pi x) \cos((2n+1)\pi y)}{(2n+1)^2} + \frac{4}{\pi} \sum_{n \in \mathbb{N}} \frac{\sin((2n+1)\pi x) \sin((2n+1)\pi y)}{(2n+1)^2} \end{aligned}$$

So obviously K(x, y) is P.D. and

4

 π

 $\psi(x,y) = K(x,x) + K(y,y) - 2K(x,y) = 2[|x-y| \land (2-|x-y|)]$

Associated Dirichlet space.

Now let let us look to the Dirichlet associated to :

$$f \in C^{2}(] - 1, 1[) \cap C^{1}[-1, 1], \ A(f) = f^{"},$$
$$f(-1) = f(1); \ f'(-1) = f'(1).$$
$$\int_{-1}^{1} A(f)(x)g(x)dx = -\int_{-1}^{1} f'(x)g'(x)dx,$$
$$\forall x, y \in [-1, 1],$$

$$|x - y| \wedge (2 - |x - y|) = \inf_{|f'| \le 1, f(-1) = f(1), f'(-1) = f'(1)} f(x) - f(y)$$

The eigen-vectors associated are clearly $(\cos k\pi x)_{k\in\mathbb{N}}, (\sin k\pi x)_{k\in\mathbb{N}^*}.$

. With respect to the metric $\rho(x, y) = |x - y| \land (2 - |x - y|)$, Poincaré and the doubling property are easily obtained. So the Gaussian process $Z_x(\omega))_{x \in [-1,1]}$ associated to $\frac{1}{2}K(x, y)$ is a Brownian field with respect to ρ .

When we restrict $\forall x, y \in [0, 1], \rho(x, y) = |x - y|.$

So if we look to $W_x = Z_x - Z_0$ restricted to $x \in [0, 1]$ we get the classical Brownian Motion $(W_0 = 0, \mathbb{E}(W_x - W_y)^2 = |x - y|)$ and we get its regularity as a by-product.

Gaussian field, Positive Definite (P.D.) functions.

Let X a set. A gaussian field on X is a family of real random variables (R.V.) $(Z_x(\omega))_{x \in X}$ such that

$$\forall n \in \mathbb{N}^*, \ \forall \ x_1, .., x_n \in X, \ \forall \ \lambda_1, .., \lambda_n \in \mathbb{R}, \ \sum_{i=1}^n \lambda_i Z_{x_i}$$

is a centered Gaussian R.V.. The "law " of the process is completely determined (because of Gaussianity) by the covariance kernel

$$K(x,y) = \mathbb{E}(Z_x Z_y)$$

K(x,y) is real positive definite (P.D.) : $K(x,y) = K(y,x) \in \mathbb{R}$,

$$\forall x_1, .., x_n \in X, \ \forall \lambda_1, .., \lambda_n \in \mathbb{R}, \ \sum_{i=1}^n \lambda_i \lambda_j K(x_i, x_j) \ge 0$$

Reciprocally to a real P.D. function K(x, y) on $X \times X$ there always exists a Gaussian process Z_x such that $K(x, y) = \mathbb{E}(Z_x Z_y)$.

Gaussian field, Negative Definite (N.D.) functions.

To each D.P K(x,y) , (or Gaussian field Z_x) one can associate

$$\Psi(x,y)(=\psi_K(x,y)) = \mathbb{E}(Z_x - Z_y)^2 = K(x,x) + K(y,y) - 2K(x,y)$$

 $\psi(x,y)$ is Real Negative Definite (N.D.) : $\psi(x,y) = \psi(y,x) \in \mathbb{R}, \ \psi(x,x) \equiv 0$

$$\forall x_1, ., x_n \in X, \ \forall \lambda_1, ., \lambda_n \in \mathbb{R}, \ \sum_{i=1}^n \lambda_i = 0 \Longrightarrow \sum_{i=1}^n \lambda_i \lambda_j \psi(x_i, x_j) \le 0$$

Let $\psi(x,y) = \psi(y,x) \in \mathbb{R}, \ \psi(z,z) \equiv 0$. Let $e \in X$. Let us define :

$$K_e^{\psi}(x,y) = \frac{1}{2}(\psi(x,e) + \psi(y,e) - \psi(x,y))$$

Then ψ $N.D \iff K_e^{\psi}$ P.D.. Moreover if $\psi = \psi_K$, then $K_e^{\psi}(x,y) = K(x,y) + K(e,e) - K(x,e) - K(y,e) = \mathbb{E}[(Z_x - Z_e)(Z_y - Z_e)]$ and $\psi_{K_e^{\psi}} = \psi_K$ The law of Gaussian fields and D.P. fonction are corresponding bijectively.

A N.D. kernel ψ does not determines a precise law of a Gaussian fields, unless we impose the cancelation of the process at a point $e \in X$. In this case the process is associated to the P.D. kernel :

$$K_e^{\psi}(x,y) = \frac{1}{2}(\psi(x,e) + \psi(y,e) - \psi(x,y))$$

But for N.D. kernel there is a functional calculus : If ψ is N.D.

•
$$F(u) = \int_{\mathbb{R}^+} (1 - e^{-su}) d\mu(s) \Longrightarrow F(\psi)$$
 is N.D..

 $\mathsf{Ex:} \ \psi \ N.D \implies \forall 0 < \alpha \leq 1, \quad \psi^{\alpha} \ N.D$

•
$$G(u) = \int_{\mathbb{R}^+} e^{-su} d\mu(s) \Longrightarrow G(\psi)$$
 is P.D..

 $\mathsf{Ex:} \ \psi \ N.D. \iff \forall 0 < t, \quad e^{-t\psi} \ P.D$

Brownian field.Fractional Brownian field.

Definition Let X, d) a metric space. Let $\psi(x, y) = d(x, y)$. **IF** ψ is a D.N. function then \exists (several) $(Z_x(\omega))_{x \in X}$ Gaussian fields verifying

$$\mathbb{E}(Z_x - Z_y)^2 = d(x, y).$$

Such field is A Brownian field. If we impose $Z_e = 0$ for some e then there a unique (in law) field : THE brownian field which cancel in e. This process is associated to the P.D. function

$$K_e^{\psi}(x,y) = \frac{1}{2} \{ d(x,e) + d(y,e) - d(x,y) \}$$

Fractional Brownian field If d(x, y) is N.D then $\forall 0 < \alpha \leq 1$, $(d(x, y))^{\alpha}$ is N.D. the corresponding processes are Fractional Brownian field, with uniqueness if we impose the cancelation in a fixed point $e \in X$.

Regularity.

Regularity Now let us suppose that X has a metric, (or more sophisticated) structure, so that we can define function spaces. For example if (X, d) is a metric space, the $lip(\alpha)$ - spaces $0 < \alpha \leq 1$ Let K(x, y) D.P. and $Z_x(\omega)$ the associated Gaussian process. Is it possible to say :

 $x \in X \mapsto Z_x(\omega) \in \mathbb{R}$ (for almost all ω)

belongs to some function space, from an analysis of the P.D. associated kernel K(x, y)?

Compact homogeneous spaces.

Let now M a compact Riemannian space and G a Lie group of isometry acting transitively on M. So $M \sim G/K$ where K is the subgroup of stabilizer of a fixed point $O \in M$. We are interested by G-invariant Gaussian process, or equivalently by continuous real, definite positive invariant functions :

$$\forall g \in G, \forall x, y \in M, \quad K(g.x, g.y) = K(x, y)$$

Two points homogeneous space.

If $\forall (x, y), (x', y') \in M \times M, \rho(x, y) = \rho(x', y'), \exists g \in G, g.x = x', g.x' = y'$. Then continuous real, definite positive invariant functions are :

$$K(x,y) = \sum_{k} \nu_k P_{\lambda_k}(x,y), \ \nu_k \ge 0, \ \sum_{k} \nu_k dim(\mathcal{H}_k) < \infty$$

 $(P_{\lambda_k}(x, y) \text{ is the projector on the eigenspace } \mathcal{H}_{\lambda_k} \text{ of } \Delta \text{ corresponding to } \lambda_k)$ (Bochner-Godement theorem and characterization of spherical functions)

Sphere.

Let $\mathbb{S}^d \subset \mathbb{R}^d$. the unit sphere of \mathbb{R}^{d+1} . This is the simplest example of two points homogeneous space. The geodesic distance is given by :

$$\forall \xi, \eta \in \mathbb{S}^d, \quad d_{\mathbb{S}^d}(\xi, \eta) = \arccos(\langle \xi, \eta \rangle_{\mathbb{R}^{d+1}})$$

We have the following spectral decomposition of the Laplacian $\Delta_{\mathbb{S}^d}$:

$$\mathbb{L}^2(\mathbb{S}^d) = \bigoplus \mathcal{H}_{\lambda_k}, \ \lambda_k = k(k+d-1) = k(k+2\nu),$$
$$P_{\lambda_k}(\xi,\eta) = L_k^d(\langle \xi,\eta \rangle), \quad L_k^d(x) = \frac{1}{|\mathbb{S}^d|}(1+\frac{k}{\nu})C_k^\nu(x); \ \nu = \frac{d-1}{2}$$

 C_k^{ν} Gegenbauer polynomial of degree k: $\frac{1}{(1-2xr+r^2)^{\nu}} = \sum_k r^k C_k^{\nu}(x)$

The invariant continuous definite positive functions are :

$$K(\xi,\eta) = \sum_{k} \nu_k L_k^d(\langle \xi,\eta \rangle) = \sum_{k} \nu_k L_k^d(\cos(d_{S^d}(\xi,\eta)))$$

Schoenberg- Bingham result

Let f a continuous function defined on [-1, 1]. Then : $f(\langle \xi, \eta \rangle)$ is a positive definite function on \mathbb{S}^d FOR ALL $d \in \mathbb{N}^*$, if and only if

$$f(x) = \sum_{n \ge 0} a_n x^n, \quad 0 \le a_n; \quad \sum_n a_n = f(1) < \infty$$

So, for such a function :

$$f(x) = \sum_{k \ge 0} a_k^d L_k^d(x), \quad 0 \le a_k^d; \quad \sum_{k \ge 0} a_k^d L_k^d(1) = \sum_k a_k = f(1)$$

$$\begin{array}{l} (0 < L_k^d(1) \sim k^{d-1}) \\ & \quad \text{So} \quad f(\langle \xi, \eta \rangle) = \sum_{k \ge 0} a_k^d L_k^d(\langle \xi, \eta \rangle) = f(\cos(d_{S^d}(\xi, \eta))) \end{array} \end{array}$$

" Brownian " process on the sphere .

$$\begin{array}{ll} \text{Let} \quad f(x) = \frac{1}{2} (\frac{\pi}{2} - \arccos(x)) = \frac{1}{2} \sum_{j \ge 0} \frac{(\frac{1}{2})_j (\frac{1}{2})_j}{j!} \frac{x^{2j+1}}{(\frac{3}{2})_j} \\ \\ \text{where} \quad (a)_j = a(a+1)..(a+j-1) = \frac{\Gamma(j+a)}{\Gamma(a)} \\ \\ \text{By Gauss formula} \ \frac{1}{2} \sum_{j \ge 0} \frac{(\frac{1}{2})_j (\frac{1}{2})_j}{j! (\frac{3}{2})_j} = \frac{\pi}{4} \\ \\ f(\langle \xi, \eta \rangle) = \frac{1}{2} (\frac{\pi}{2} - \arccos(\langle \xi, \eta \rangle_{\mathbb{R}^{d+1}}) = \frac{\pi}{4} - \frac{1}{2} (d_{\mathbb{S}^d}(\xi, \eta)) \\ \\ \\ \text{As,} \ |f(\langle \xi, \eta \rangle) - f(\langle \xi, \eta' \rangle)| \le \frac{1}{2} d_{\mathbb{S}^d}(\eta', \eta) \end{array}$$

One can built a probability a Gaussian probability on W on $B^s_{\infty,1}(\mathbb{S}^d),\ s<\frac{1}{2}$ such that

$$\int_{B^s_{\infty,1}(\mathbb{S}^d)} (\omega(\xi) - \omega(\eta))^2 dW(\omega) = d_{\mathbb{S}^d}(\xi, \eta)$$

The associated process $Z_{\xi}(\omega) = (\delta_{\xi}(\omega))_{\xi \in \mathbb{S}^d}$ is almost surely in $B^s_{\infty,1}(\mathbb{S}^d) \subset Lip^s(\mathbb{S}^d)$ if $s < \frac{1}{2}$. Moreover

Moreover $\mathbb{E}(|Z_{\xi} - Z_{\eta}|^2) = 2f(1) - 2f(\langle \xi, \eta \rangle) = d_{\mathbb{S}^d}(\xi, \eta)$

Fractionnal brownian process

From the previous result we have :

 $\psi(\xi,\eta)=d_{\mathbb{S}^d}(\xi,\eta) \quad \text{is an invariant negative definite kernel}.$

So from the general theory of definite negative kernel $\forall 0 < \alpha \leq 1, \quad \psi_{\alpha}(\xi, \eta) = [d_{\mathbb{S}^d}(\xi, \eta)]^{\alpha}$ is an invariant negative definite kernel. Then

$$K(\xi,\eta) = C - rac{1}{2} (d_{\mathbb{S}^d}(\xi,\eta))^{lpha}, \ \mathsf{C} \ \mathsf{great} \ \mathsf{enough}$$

Is an invariant definite positive kernel.

$$|K(\xi,\eta) - K(\xi,\eta')| = \frac{1}{2} |d_{\mathbb{S}^d}(\xi,\eta))^{\alpha} - d_{\mathbb{S}^d}(\xi,\eta'))^{\alpha}| \le \frac{1}{2} d_{\mathbb{S}^d}(\eta',\eta))^{\alpha}$$

The associated process Z^{α}_{ξ} is almost surely in $Lip^{s}(\mathbb{S}^{d}),\ s<\frac{\alpha}{2}$

$$\mathbb{E}(Z_{\xi}^{\alpha} - Z_{\eta}^{\alpha})^2 = d_{\mathbb{S}^d}^{\alpha}(\xi, \eta)$$

General Gaussian process on the sphere.

THEOREM:

If
$$f(x) = \sum_{n \ge 0} B_n x^n; \quad 0 \le B_n = O(\frac{1}{n^{\alpha}}); \ \alpha > 0$$

Then;

$$f(\langle \xi, \eta \rangle) = f(\cos(d_{\mathbb{S}^d}(\xi, \eta)))$$

is an invariant definite positive function on \mathbb{S}^d by Schoenberg-Bingham theorem, and one can prove that: the associated centered Gaussian process $(Z_{\xi}(\omega))_{\xi \in \mathbb{S}^d}$ is almost surely in $B_{\infty,1}^{\gamma}$, $\gamma < \alpha$. For example if $0 < a, 0 < b, 0 < \alpha = c - a - b$ the hypergeometric function

$$F_{a,b;c}(x) = \sum_{n \ge 0} \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!}$$

fulfill the condition of the previous theorem.

THANK YOU FOR YOUR ATTENTION !