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Summary of the talk

• In the first part of the talk, we will look to some statistical inverse problems
for which the natural framework is no more an Euclidian one.

• In the second part we will try to give the initial construction of (not
orthogonal) wavelets -of the 80- by Frazier,Jawerth,Weiss, before the Yves
Meyer ORTHOGONAL wavelets theory.

• In the third part we will propose a construction of a geometric wavelet
theory. In the Euclidian case, Fourier transform plays a fundamental role.In
the geometric situation this role is given to some"Laplacian operator" with
some properties.

• In the last part we will show that the previous theory could help to revisit
the topic of regularity of Gaussian processes, and to give a criterium only
based on the regularity of the covariance operator.



PART I-Inverse Problem: Toy Model

Inverse problem in statistic could be described as the following simplified
(White noise ) model : We have two Hilbert spaces : A, B and K : A 7→ B a
continuous injective operator. Let

Y = Kf + ǫW

This equation has the following meaning : ∀b ∈ B we can observe

〈Y, b〉 = 〈Kf, b〉+ ǫ〈W, b〉

where Wb = (〈W, b〉)b∈B is a Gaussian centered process of covariance

E(WbWb′) = 〈b, b′〉

The statistical challange is : how one recover f ∈ A? .



Inverse Problem:

A more realistic model would be : A,B two function spaces
and we observe

Yi = K(f)(Xi) + ǫi, i = 1, 2, ..n. K(f) ∈ B.

where X1..Xn are fixed or random design, ǫi are iid gaussian
noise.
The statistical challange is : how one recover f ∈ A? . This
has to be done as quickly as possible when the number n of
observation goes to ∞.
We will focus on the toy model. It could be proved that the
two models are in some sens equivalent with ǫ = 1√

n



Projection estimator

The most popular estimator use Hilbertian technics : Let us
look to the simplest one :
If en is an orthornormal basis and f =

∑
αnen. Is it possible

to build estimators α̂n, at least for n ≤ N such that

E‖f −
∑

n≤N

α̂nen‖2
A) =

∑

n≤N

E(αn − α̂n)2 +
∑

k>N

α2
k

is as small as possible when ǫ −→ 0?



The Singular Value Decomposition basis

Let us suppose K an injective, compact operator. So K∗K
is a positive compact operator and we have the classical
singular value decomposition : ∃en an orthonormal basis of
A and hn an orthonormal family of B, ∃µn > 0 µn −→ 0
such that :

K∗K(en) = µ2
nen, K(en) = µnhn, K

∗(hn) = µnen.

f =
∑

αnen, αn = 〈f, en〉

〈Y, hn〉 =
1

µn
〈Kf,K(en)〉+ ǫ〈W,hn〉 =

1

µn
〈f,K∗K(en)〉+ ǫ〈W,hn〉 = µn〈f, en〉+ ǫ〈W,hn〉



So we have the following natural estimator of αn :

α̂n =
1

µn
〈Y, hn〉 =

1

µn
〈Kf, hn〉+

1

µn
ǫ〈W,hn〉

So

α̂n is a Gaussian Variable N(αn,
ǫ2

µ2
n

)

and the variance of the estimator α̂n is becoming bigger and
bigger.

E‖f −
∑

n≤N

α̂nen‖2
A) =

∑

n≤N

E(αn − α̂n)2 +
∑

k>N

α2
k = ǫ2

∑

n≤N

1

µ2
n

+
∑

k>N

α2
k



Drawback of the SVD basis estimator.

The first problem is of course : How to choose N?
The second problem is that the SVD basis is too much
linked to the Hilbert space structure. In all the real situation
A = L2(X,µ), where X has a differentiable structure
(Riemann manifold,..), µ is a natural measure and it is often
more important to have a good performance of

E‖f̂ − f‖p
p,

for some 1 ≤ p ≤ ∞, specially p =∞ than the "energy"
risk.

In this framework, the REGULARITY class of f plays an
important role, but this is not suitably described by the SVD
basis. We need to build a "wavelet" type basis.



Some statistical examples in non euclidian
framework.

These last years, to solve some statistical problem , one has
to go from classical Rd space to more intricate geometry :
1− Framework of Jacobi polynomials:
• Wicksell problem, and Jacobi polynomials.

Needlets algorithms for estimation in inverse problems. G.K.,
P. Petrushev, D. Picard. and T. Willer, Electronic Journal of
Statistics, Vol. 1 (2007)



2− Estimation on the sphere Sd−1 (or
compact homogeneous space)

"assymptotic for spherical needlet needlets."
P. Baldi, G.K. , D. Marinucci, D. Picard. Annals of Stat. :
Study of the Cosmological Microwave Background.

"Adaptive density estimation for directional data using
needlets." P. Baldi, G.K. , D. Marinucci, D. Picard. Annals
of Stat.



• Deconvolution on the sphere ( interraction of the geometry
of Sd−1 and SO(d)).

"Localized deconvolution on the sphere."
G.K., T.M. Pham Ngoc, D. Picard.

• Concentration inequalities and confidence bands for
needlet density estimators on compact homogeneous
manifolds. K.G.; NICKL, R., PICARD, D., Probability
Theory and Related Field.



3− Radon transform on the ball.

• Tomography problem ( The framework is the ball with a
non euclidian distance.)

"Inversion of noisy Radon transform by SVD based needlets".
G. K. , G. Kyriazys, E. Le Pennec, P. Petrushev, D. Picard. -
ACHA .
"Radon needlet thresholding".
G. K. , E. Le Pennec, D. Picard. Bernouilli .

In this first part we will mainly focus on the tomography
problem.



Statistic and Geometry :The sphere and the
deconvolution problem.

Let M a compact topological space and G a compact group
acting continuously and transitively on M :

∀g ∈ G, g : x ∈M :7→ g.x ∈M is continuous

and ∀x, y ∈M, ∃g ∈ G, gx = y

Let us define:[γ(g).f ](x) = f(g−1x). Let µ a Haar measure
on G. i.e

∀g ∈ G,
∫

G

F (g−1h)dµ(h) =

∫

G

F (hg)dµ(h) =

∫

G

F (h)dµ(h)

There exists a measure ν on the Borel sets of X such that :

∀g ∈ G,
∫

M

φ(g−1x)dµ(x) =

∫

M

φ(x)dµ(x)



Let Y a M−valued random variable with a density
f : Y ∼ f(x)dν(x), which is the target function

Let U a G−valued random variable with value in G
independant of X and U ∼ F (g)dµ(g), where F is known.

Let us suppose that we observe Y = UX

As : E(Φ(UX)) =

∫

X

∫

G

Φ(ux)f(x)dν(x)F (u)dµ(u)

=

∫

X

Φ(y)

∫

G

F (u)f(u−1y)dµ(u)dν(y)

we have: Y ∼ (

∫

G

F (u)f(u−1y)dµ(u))dν(y)



Let us look to a simpler problem:

Y =

∫

G

F (u)f(u−1y)dµ(u) + ǫW = K(f) + ǫW

Clearly, K∗(φ)(x) =

∫

G

F (u)φ(ux)dµ(u);

K∗K(f)(x) =

∫

G

∫

G

F (u)F (u−1w)dµ(u)f(w−1x)dµ(w)

=

∫

G

∫

G

F (u)F (u−1w)dµ(u)γw.f(x)dµ(w)



Let us suppose now that on (M, ν) it exists a positive
self-adjoint operator L with dense domain D(L) ⊂ L

2(M, ν)
such that:

L
2(M) =

⊕
Hλk

, Hλk
= ker(A− λkI)

∀g ∈ G, γg.L(f)(x) = L(f)(g−1x) = L(γg.f)(x)

Clearly if L commute with the γg, g ∈ G,

L(K(f)) = L[

∫

G

F (u)γufdµ(u)] =

∫

G

F (u)L[γuf)]dµ(u)]

=

∫

G

F (u)γuL[f ])dµ(u)] = K(L(f))



This implies that :

K∗K : Hλk
7→ Hλk

So, there is an orthonormal basis ej
λk

of Hλk
(so

L(ej
λk

) = λke
j
λk

) which are eigenvectors of K∗K :

K∗K(ej
λk

) = νλk,je
j
λk

(with some chance Hλk
is also an eigen space of K∗K i.e.

νλk,j = νλk
)



The sphere Sd and SO(d + 1).

Let M = Sd ⊂ Rd+1. Clearly the group G = SO(d+ 1) acts
continually and transitively on Sd.

• The geodesic distance on Sd is given by

d(x, y) = cos−1(〈x, y〉), 〈x, y〉 =
d+1∑

i=1

xiyi

• There is a natural measure ν on Sd, invariant by rotation.
• There is a natural Laplacian on Sd, ∆Sd, invariant by
rotation. We have the following spectral decomposition:



spherical harmonics of order k.

Hk is the restriction to S
d of polynomials of degree k which

are homogeneous and harmonic.

•P =
∑

|α|=k

aαx
α,

• and harmonic ∆P =
d∑

i=1

∂2P

∂x2
i

= 0.

∀P ∈ Hk, ∆SdP = −k(k + d− 1)P

Hk : the space of spherical harmonics of order k.



Projector on Hk.

Let ej
k any orthonormal basis of Hk.

Lk(x, y) =

dimHk∑

j

e
j
k(x)ej

k(x)

Moreover PHλk
(f)(x) =

∫
Lk(x, y)f(y)dν(y)

Lk(x, y) = (1 +
k

ν
)Gν

k(〈x, y〉); ν =
d− 1

2

dim(Hk) = Cd
k+d − Cd

k−1+d

Gν
k : Gegenbauer polynomials.



The Radon Transform in the White Noise
Model .

Let Bd be the unit ball of Rd and f ∈ L
2(Bd, dx).

Let θ ∈ S
d−1 and t ∈ [−1, 1]. By definition :

Rf(θ, t) =

∫

〈θ,x〉=t

f(x)dx

is the Radon transform of f

The statistical problem is to recover f from the noisy
observation :

dY (θ, t) = R(f)dµ(θ, t) + ǫdW (θ, t)

This is a typical inverse problem. (We have an Indirect

noisy observation of f.)



Some Previous Works

B.F. Logan and L.A.Shepp (1975)

Korostelev and A. Tsybakov (1991)

I. Johnstone and B. Silverman (1991)

D. Donoho (1995)

L. Cavalier (2001)

E. Candès and D. Donoho (2000)

B. Lucier and N. Yong Lee (2001)

Yuan Xu

...



The Radon Transform in the White Noise
Model

Let Bd be the unit ball of Rd and f ∈ L
2(Bd, dx).

Let θ ∈ S
d−1 and t ∈ [−1, 1]. By definition :

Rf(θ, t) =

∫

〈θ,x〉=t

f(x)dx

is the Radon transform of f

( dx is the d− 1 Lebesgue measure on the hyperplan
〈θ, x〉 = t)



Continuity of the Radon Transform

Let dµ(θ, t) = dσ(θ) dt
(
√

1−t2)d−1
on Sd−1 × [−1, 1].

R : L2(Bd, dx) 7→ Rf(θ, t) ∈ L
2(Sd−1×[−1, 1], dµ(θ, t))

is continuous

and if g(θ, t) ∈ L
2(Sd−1 × [−1, 1], dµ(θ, t))

R∗(g)(x) =

∫

Sd−1

g(θ, 〈x, θ〉)( 1√
1− |〈x, θ〉|2

)d−1dσ(θ)



The statistical problem is to recover f from the noisy
observation :

dY (θ, t) = R(f)dµ(θ, t) + ǫdW (θ, t)

This is a typical inverse problem.



Geometry of the ball.

Let Bd the unit ball of Rd, equipped with the Lebesgue
measure
An operator: Let us define the following selfadjoint negative
operator:

Af = ∆f − dx.∇f − x.∇(x.∇f) =

∑

i

∂2f

∂x2
i

−
∑

i,j

xixj
∂2f

∂xi∂xj
− (d+ 1)

∑

i

xi
∂f

∂xi

Let Πk(Bd) the space of polynomials of degree ≤ k on the
unit ball of Rd. It is clear that :

A(Πk(Bd)) ⊂ Πk(Bd)



If f ∈ Πk(Bd) by stokes formula :
∫

Bd

A(f)(x)f(x)dx = −
∫

Bd

{|∇(f)(x)|2− (x.∇(f)(x))2}dx

A is symmetric and negative operator on Πk(Bd) . Let:

Πk(Bd) = Vk(Bd)
⊕

Πk−1(B
d);

L
2(Bd) =

∞⊕

k=0

Vk(Bd)

Vk(Bd) is an eigenspace of A.

f ∈ Vk(Bd)⇐⇒ A(f) = −k(k + d)f.



Orthonormal basis of Vk(Bd) .

gk,l,i(x) =
√

2k + d P
0,ν+l
j (2|x|2 − 1)Yl,i(x),

0 ≤ l ≤ k, k = 2j + l, j ∈ N, ν = d
2 − 1

• P
0,ν+l
j is the Jacobi Polynomial.

• Yl,i

is a basis of the spherical harmonics of degree l, Hl(S
d−1)

on the sphere, taken as homogeneous polynomials of degree
l on Bd.
( Yl,i is an homogeneous polynomial of degree l on
R

d, ∆Yl,i = 0.)



The kernel projector on Vk is given by

Lk(x, y) =
∑

i,0≤l≤k,k−l≡0(mod2)

gk,l,i(x)gk,l,i(y)

Lk(x, y) =
2k + d

|Sd−1|2
∫

Sd−1

Cν+1
k (〈x, ξ〉)Cν+1

k (〈y, ξ〉)dσ(ξ),

ν = d
2 − 1, Cν+1

k is the Gegenbauer polynomial.



Singular Value Decomposition of the Radon
Transform

Let Πk(Bd) the space of polynomials of degree ≤ k on
the unit ball of Rd.

Πk(Bd) = Vk(Bd)
⊕

Πk−1(B
d)

L
2(Bd) =

∞⊕

k=0

Vk(Bd)

Vk(Bd) is an eigenspace of R∗R. So we have a Singular
Value Decomposition of R. The corresponding
eigenvalue is

µ2
k =

πd−12d

(k + 1)....(k + d)
∼ k−(d−1)



A "natural " basis of Vk(Bd) is given by

gk,l,i(x) =
√

2k + dP
0,ν+l
j (2|x|2 − 1)Yl,i(x),

k − l = 2j ≥ 0, ν = d
2 − 1

P
0,ν+l
j is the Jacobi Polynomial.

Yl,i, i = 1...dim(Hl(S
d−1) is a basis of the spherical

harmonics of degree l,Hl(S
d−1) on the sphere, taken as

homogeneous polynomials of degree l on Bd.

R(gk,l,i) = µkfk,l,i, R∗(fk,l,i) = µkgk,l,i

fk,l,i(θ, t) =
C

d/2
k (t)

‖Cd/2
k ‖

(1− t2)(d−1)/2Yl,i(θ)



The kernel projector on Vk is given by

Lk(x, y) =
∑

l,ik−l=2j,

gk,l,i(x)gk,l,i(y)

Lk(x, y) =
2k + d

|Sd−1|2
∫

Sd−1

Cν+1
k (〈x, ξ〉)Cν+1

k (〈y, ξ〉)dσ(ξ),

ν = d
2 − 1, Cν+1

k is the Gegenbauer polynomial.



Regularity classes in the previous framework.

P. Petrushev,Y. Xu, F.Narcowich, J. Ward and coauthors
have proposed a theory of regularity spaces and wavelet they
called "needlet" in the framework of the SPHERE, the
INTERVAL [−1, 1] (Jacobi polynomials) the BALL and the
SIMPLEX.
We present in the sequel this construction. The proofs use
heavily special functions theory.



Some references

P. Petrushev, Y. Xu Localized polynomial frames on the ball,
Constr. Approx. 27 (2008), 121–148.

P. Petrushev, Y. Xu, Localized polynomial frames on the
interval with Jacobi weights, J. Four. Anal. Appl. 11
(2005), 557–575.

F. Narcowich, P. Petrushev, and J. Ward, Decomposition of
Besov and Triebel-Lizorkin spaces on the sphere, J. Funct.
Anal. 238 (2006), 530–564.

G. Kyriazis, P. Petrushev, and Y. Xu, Decomposition of
weighted Triebel-Lizorkin and Besov spaces on the ball,
Proc. London Math. Soc. 97 (2008), 477–513.



Pesenson, Pesenson and Geller have a similar theory for
compact homogeneous manifold.
D. Geller, I. Z. Pesenson, Band-limited localized Parseval
frames and Besov spaces on compact homogeneous
manifolds, J. Geom. Anal. 21 (2011), 334–371. These works

were performed between 2000 and 2010.



Polynomials on compact subset of Rd.

•M a compact subspace of R
d.

Let: P(Rd) : P the space of polynomials on R
d, and

Pk(Rd) : Pk the polynomials of degree k.

•P(M) the vector space of restriction of polynomials to M

•µ a finite measure on M

•Πk(M) : The restriction of polynomials of degree less then k on

•Vk(M) Πk(M) = Vk(M)
⊕

Πk−1(M), V0(M) = Π0(M).

So: L2(M,µ) =
∞⊕

k=0

Vk(M)



Lk the orthogonal projection on Vk . Then

∀f ∈ L2(Y , µ), Lk(f)(x) =

∫

Y
f(y)Lk(x, y)dµ(y)

Lk(x, y) =

lk∑

i=1

ek
i (x)ēk

i (y)

lk is the dimension of Vk and (ek
i )i=1,...lk an arbitrary

orthonormal basis of Vk. We have :
∫
Lk(x, y)Lm(y, z)dµ(z) = δk,mLk(x, z)



Example 1: Jacobi.

M = [−1, 1]; dµ(x) = ω(x)dx;

ω(x) = (1− x)α(1 + x)β; α, β > −1

•D(f) =
(1− x2)ωf ′)′

ω
= (1−x2)f”−(2+α+β)x+α−β)f ′

is a symmetric second order differential operator.
∫ 1

−1

Dff(x)ω(x)dx = −
∫ 1

−1

(1− x2)|f ′(x)|2ω(x)dx

The eigenvectors are the Jacobi polynomials.

D(P α,β
k ) = −k(k + α + β + 1)P α,β

k

∀k ∈ N, dim(Hk) = 1, Lk(x, y) = Pk(x)Pk(y)



Example 2: Sphere.

•, Sd ⊂ R
d+1.

• There is a natural measure on S
d, invariant by rotation.

• There is a natural Laplacian on S
d, ∆Sd, invariant by

rotation.
We have the following spectral decomposition: Hk is the
restriction to Sd of polynomials of degree k which are
homogeneous and harmonic on Rd. (spherical harmonics of
order k.)

∀P ∈ Hk, ∆SdP = −k(k + d− 1)P

Lk(x, y) = (1 +
k

ν
)Cν

k (〈x, y〉); ν =
d− 1

2
Cν

k : Gegenbauer polynomials.



Exemple 3:The ball

Let M = Bd = {‖x‖ ≤ 1} ⊂ R
d, dµ(x) = W (x)dx,

W (x) = (1− ‖x‖2)µ−1

2 ; µ > −1
2

A(f) =
1

W
div((1− ‖x‖2)W∇(f)) +

1

2

∑

i6=j

D2
i,j,

where (Di,jf(x) = (xj∂i − xi∂j)f(x))

Af = ∆f −
n∑

i=1

n∑

j=1

xixj∂i∂jf − (d+ 2µ))x.∇nf



Eigen spaces

−
∫

M

Af(x)f(x)W (x)dx =

∫

M

(1− ‖x‖2)|∇f |2Wdx+
1

2

∑

i6=j

∫

M

[Di,jf ]2Wdx

So:

∫

M

Af(x)f(x)W (x)dx ≥ 0.

One can easily verify that

A(Πk(Bd)) ⊂ Πk(Bd)

∀P ∈ Hk(Bd), AP = −k(k + 2µ+ d− 1)P



Approximation spaces for Jacobi, the sphere
and the ball .

1. for f ∈ Lp, 1 ≤ p ≤ ∞,

σp(k, f) = inf{P ∈ Πk, ‖f − P‖p}

2. For 1 ≤ q ≤ ∞ (with the usual modification for p =∞),

Bs
p,q : {f ‖f‖Bs

pq
= ‖f‖p+(

∑

k≥1

(ksσp(k, f))q 1

k
)1/q <∞}

Actually ‖f‖Bs
p,q
∼ ‖f‖p + (

∑

j≥0

(2jsσp(2
j, f))q)1/q <∞.

The polynomials (and their degrees) are the benchmark of
regularity.



How to check f ∈ Bs
p,q.

Let Pj a sequence of operators verifying :

∃C <∞, ∀j ∈ N‖Pj(f)‖p ≤ C‖f‖p

∀f ∈ Lp, Pj(f) ∈ Π2j

∀f ∈ Π2j−1, Pj(f) = f.

Then f ∈ Bs
p,q if and only if 2js‖Pj(f)− f‖p ∈ lq.

Remark:
Typically the family Pj : orthogonal projector on Π2j ,
NEVER verify the previous condition!



An important tool:Young Lemma.

Let (X, σ), (Y, µ) two measured spaces. Let K(x, y) a
mesurable function such that:

∫
|K(x, y)|dσ(y) ≤ C,

∫
|K(x, y)|dσ(x) ≤ C

Let Kf(x) =

∫
K(x, y)f(y)dµ(y),

then: ∀1 ≤ p ≤ ∞, ‖Kf‖p ≤ C‖f‖p



Minimax Estimation for the Radon
Transform with respect to Bs

π,q(B
d).

Let dY = R(f)dµ(θ, t) + ǫdW . Let 1 ≤ p, π ≤ ∞. Is it
possible to find an estimator f̂ such that

{ sup
‖f‖Bs

π,q
≤M

E‖f̂ − f‖p
p} ∼ inf

ĥ
{ sup
‖f‖Bs

π,q
≤M

E‖ĥ− f‖p
p}

when ǫ→ 0 ?

Is it possible to do it with NO knowledge of the
regularity class Bs

r,q ?

A priori restriction for Bs
π,q ⊂ L

p (Sobolev injection) :

s > (d+ 1)(
1

π
− 1

p
)



Lower Bound

Let 1 ≤ p ≤ ∞, and let
f ∈ Bs

π,q, 1 ≤ π ≤ ∞, 0 < s <∞. Let
s > (d+ 1)( 1

π − 1
p)+ (such that Bs

π,q ⊂ Lp.)

inf
ĥ
{ sup
‖f‖Bs

r,q
≤M

E‖ĥ− f‖p
p} ≥ Cǫαp

with

α = inf{ s

s+ d− 1
2

,
s− 2( 1

π − 1
p)

s+ d− 2
π

,
s− (d+ 1)( 1

π − 1
p)

s+ d− d+1
π

}



s

1
π11

4
1
p0

I

II
III

s
(

1
π

)

=
d−

1

2
1

p
−

1

4

(

1
π
− 1

p

)

s
(

1
π

)

= dp
(

1
π
− 1

p

)

s
(

1
π

)

= (d+ 1)
(

1
π
− 1

p

)

I : s

s+d−
1

2

II :
s−2( 1

π
−

1

p)
s+d−

2

π

III :
s−(d+1)( 1

π
−

1

p)
s+d−

d+1

π



s

1
π11

4
1
p0

I
II

III

s
(

1
π
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Agenda

Construct a new ’basis’ which is concentrated on the
space AND on the spectral domain...

How this can be used in statistical estimation? Project
the process on it, and see...if some thresholding
algorithm works ?



A General Paradigm

In the case of : Jacobi,sphere, the ball (and the
simplex), Narcowich, P. Petrushev, Ward , Y. Xu, ..
have constructed a basis (in fact a frame) spectrally
concentrated enough, but also well concentrated in the
space domain. This is done busing heavily estimation on
special functions, in 3 steps

smoothing the projection operator

splitting

discretization



Step I : Smoothing of the Projection
Operator

Littlewood-Paley trick

Take φ ≥ 0, even, infinitely differentiable, supported in
[−1, 1] and |x| ≤ 1

2 ⇒ φ(x) = 1 and
b(x) = φ(x

2)− φ(x). So

∀x, 1 = φ(x) +
∑

j

b(
x

2j
) = lim

j→∞
φ(
x

2j
)

Bj(x, y) =
∑

k

b(
k

2j
)Lk(x, y)

Φj(x, y) =
∑

k

φ(
k

2j
)Lk(x, y)



Good behavior of Φj(x, y) and Bj(x, y).

First main result: ∃C such that:

∀j ∈ N,

∫
|Φj(x, y)|dµ(x) ≤ C

So
• ∀1 ≤ p ≤ ∞, ∀f ∈ L

p,Φj(f) ∈ Π2j

• ∀f ∈ Π2j−1,Φj(f) = f

• ∀1 ≤ p ≤ ∞, ∀f ∈ L
p, ‖Φj(f)‖p ≤ C‖f‖p

So :

f ∈ f ∈ Bs
p,q ⇐⇒ f ∈ L

p, ‖f − Φj(f)‖p = ǫj2
−js, ǫ. ∈ lq



Step II : The Spliting Procedure

Dj(x, y) =
∑

2j−1<k<2j+1

√
b(
k

2j
)Lk(x, y)

Due to
∫

M Lk(x, u)Lm(u, y)du = δk,mLk(x, y), we get
∫

M

Dj(x, u)Dj(u, y)du = Bj(x, y)

=
∑

2j−1<k<2j+1

b(
k

2j
)Lk(x, y)



Step III : Discretization

We have a quadrature formula . : for Π2j+2 : ∃Xj ⊂M,

and ∀ξ ∈ Xj, λj,ξ > 0, such that

∀f ∈ Π2j+2,

∫

M

f(u)du =
∑

ξ∈Xj

λj,ξf(ξ)

So

Bj(x, y) =

∫

M

Dj(x, u)Dj(u, y)du =
∑

ξ∈Xj

λj,ξDj(x, ξ)Dj(ξ, y)

=
∑

ξ∈Xj

√
λj,ξDj(x, ξ)Dj(y, ξ)

√
λj,ξ



So :
∫
Bj(x, y)f(y)dy =

∑

ξ∈Xj

λj,ξDj(x, ξ)

∫
Dj(y, ξ)f(y)dy

=
∑

ξ∈Xj

√
λj,ξDj(x, ξ)

∫ √
λj,ξDj(y, ξ)f(y)dy

Needlets frame.

ψj,ξ(x) :=
√
λj,ξDj(x, ξ) =

√
λj,ξ

∑

2j−1<k<2j+1

√
b(
k

2j
)Lk(x, ξ),

ξ ∈ X



Here is b(x):
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Frame Properties of the Needlet

f =
∑

j∈N

∑

ξ∈Xj

〈f, ψj,ξ〉ψj,ξ

‖f‖2
2 =

∑

j∈N

∑

ξ∈Xj

|〈f, ψj,ξ〉|2.

(In particular ‖ψj,ξ‖2 ≥ ‖ψj,ξ‖4 so ‖ψj,ξ‖2 ≤ 1.)

But
∑

ξ∈Xj

√
λj,ξψj,ξ =

∑

ξ∈Xj

λj,ξDj(x, ξ) =

∫

M

Dj(x, u)du = 0

So the family (ψj,ξ)j∈N,ξ∈Xj
is a tight frame, but is not

linearly independent (redundancy).



Concentration Properties of the Needlet

As :

ψj,ξ =
√
λj,ξDj(x, ξ) =

√
λj,ξ

∑

2j−1<k<2j+1

√
b(
k

2j
)Lk(x, ξ)

the spectral localisation of ψj,ξ is between 2j−1 and
2j+1.

∃0 < c such that, c ≤ ‖ψj,ξ‖2
2 ≤ 1.

SPATIAL LOCALISATION: ∃C <∞ such that

∀j ∈ N,
∑

ξ∈Xj

‖ψj,ξ‖1|ψj,ξ(x)| ≤ C



Concentration and sparsity.

As a consequence of Young lemma:
THEOREM : Let I a set of indexes . (X,µ) and (Y, ν) two
measured spaces.

Let φi(y), i ∈ I, y ∈ Y, hi(x) i ∈ I, x ∈ X.

We suppose:

∃0 ≤ C <∞,
∑

i

‖φi‖1|hi(x)| ≤ C; sup
i∈I
‖φi‖∞‖hi‖1 ≤ C.

∃0 < c such that, ∀i ∈ I, c ≤ ‖φi‖2
2. THEN:



•For 1 ≤ p <∞, (
∑

i

|〈g, hi〉|p‖φi‖p
Lp(Y ))

1

p ≤ C‖g‖Lp(X,µ)

and for p =∞, sup
i
|〈g, hi〉|‖φi‖∞ ≤ C‖g‖L∞(X,µ)

• Moreover, if ∀ai ∈ C, i ∈ I,

∀1 ≤ p ≤ ∞, c‖
∑

i

aihi(x)‖Lp(X,µ) ≤ C(
∑

i

|ai|p‖φi‖p
p)

1

p ;

(for p =∞, c‖
∑

i

aihi(x)‖L∞(X,µ) ≤ C sup
i
|ai|‖φi‖∞



Consequence :characterization of Bs
p,q

f =
∑

j

∑

ξ∈χj

〈f, ψj,ξ〉ψj,ξ ∈ Bs
p,q ⇐⇒

If 0 < q <∞ :

(
∑

ξ∈χj

|〈f, ψj,ξ〉|p‖ψj,ξ‖p
p)

1/p = uj2
−js, u. ∈ lq

If q =∞ :

sup
ξ∈χj

|〈f, ψj,ξ〉|‖ψj,ξ‖=
∞uj2

−js, u. ∈ l∞



Thresholding strategy

Let us summarize: L2(M) =
⊕

Πk,

ei
k, i = 1, 2, .., dim(Πk) = dk orthonormal basis.

f =
∑

k

dk∑

i=1

αi
ke

i
k; αi

k = 〈f, ei
k〉

=
∑

(j,ξ)j∈N,ξ∈χj

βj,ξψj,ξ, βj,ξ = 〈f, ψj,ξ〉

∀j ∈ N, ξ ∈ χj : ψj,ξ =
√
λj,ξ

∑

k

√
b(
k

2j
)Lk(x, ξ) =

√
λj,ξ

∑

k

√
b(
k

2j
)
∑

i

ei
k(x)ei

k(ξ)



βj,ξ = 〈f, ψj,ξ〉 =
√
λj,ξ

∑

k

√
b(
k

2j
)
∑

i

αi
ke

i
k(ξ)

Let us suppose we are in the simplest case :Πk is an
eigenspace of R∗R:

R(ei
k) = µkh

i
k; R∗R(ei

k) = µ2
ke

i
k µk ∼ k−r, r = illposedness.

Y = Rf + ǫW,

〈Y, hi
k〉 = µkα

i
k + ǫ〈W,hi

k〉

α̂i
k =

1

µk
〈Y, hi

k〉 = αi
k +

ǫ

µk
Zk,i; Zk,iiid N(0, 1).



Estimator of βj,ξ.

β̂j,ξ =
√
λj,ξ

∑

k

√
b(
k

2j
)
∑

i

α̂i
ke

i
k(ξ)

=
√
λj,ξ

∑

k

√
b(
k

2j
)
∑

i

1

µk
〈Y, hi

k〉ei
k(ξ)

= βj,ξ +
√
λj,ξ

∑

k

√
b(
k

2j
)
ǫ

µk

∑

i

Zk,ie
i
k(ξ)

E(β̂j,ξ − βj,ξ)
2 = λj,ξǫ

2
∑

k

1

µ2
k

∑

i

b(
k

2j
)|ei

k(ξ)|2

= λj,ξǫ
2
∑

k

1

µ2
k

b(
k

2j
)Lk(ξ, ξ)



Thresholding strategy

E(β̂j,ξ − βj,ξ)
2 ≤ ǫ2[ sup

2j−1≤k≤2j+1

1

µ2
k

]λj,ξ

∑

k

1

µ2
k

b(
k

2j
)Lk(ξ, ξ)

= ǫ2[ sup
2j−1≤k≤2j+1

1

µ2
k

]‖ψj,ξ‖2
2

. ǫ22jr

So we have the threholding strategy: We keep β̂j,ξ up to

some threshold tǫ,j = κ
√

2jrǫ2 log 1
ǫ :

β̂j,ξ 7→ β̂j,ξ1|β̂j,ξ|>tǫ,j



Stopping rule strategy and thresholding
estimator.

We define now the thresholding estimator:

f̂ǫ =
∑

j≤Jǫ

∑

ξ∈χj

β̂j,ξ1|β̂j,ξ|>tǫ,j
ψj,ξ

with the following stopping rule for J :

ǫ22Jǫr #(χJǫ
) log(

1

ǫ
) ∼ 1



Part II Wavelet frame on R.
Wavelet, atomic decompositions, sparse representation of
functions spaces, appears in the eighties . Let us cite
•M. Frazier, B. Jawerth, Decomposition of Besov spaces,
Indiana Univ. Math. J. 34 (1985),
•M. Frazier, B. Jawerth, A discrete transform and
decomposition of distribution spaces, J. Funct. Anal. 93
(1990),
•M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley
theory and the study of function spaces, CBMS No 79
(1991), AMS.
• and then of course all the works of Yves Meyer , Stephane
Mallat, Ingrid Daubechies, Ronald Coifman, Victor
Wickerhauser, ...
• In the geometric framework, 2000-2010, Petrushev, Ward,
Xu, Narcowich, Pesenson.



For application, wavelet is a tool which give a discrete
representation of mathematical object through a
denumerable family of coefficients(= scalar products), and
the sparsity of the representation is directly linked to the
regularity.

Let us observe that a scalar product is actually an
experiment in physics, and the aim is to obtain the more
economical family of experiment.



On the other side an object has
two representation:

The physical representation and the spectral world :

•The "real" world : functions, distributions...
•The "spectral " world : an object is the superposition of
waves : the Fourier world. The two world are equivalent but
some informations could be obtain more easily in one world
or in the other.

Moreover the Fourier transform is stable for L2 but not for
other Lp.

Actually: irregularity is the consequence of too much high
frequencies.



Regularity on Euclidian spaces.

Simplest concept of regularity on metric space :

Lipschitz spaces.

Let (X, d) a metric space, one can define:

∀0 < α ≤ 1, Lipα : {f : ‖f‖Lipα
=

‖f‖∞ + sup
x,y

|f(x)− f(y)|
d(x, y)α

<∞}



Low frequency approximation.

Let X a Banach space : (here X = L
p(R), 1 ≤ p ≤ ∞.)

and let Σ : {Σt, t ∈ R+} a non decreasing family of "regular"
subspace.

here Σp : {Σp
t = {f ∈ L

p, supp(F(f)) ⊂ {ξ, |ξ| ≤ t}}

the space of "low frequencies" functions.)
Let us define :

σX(f, t,Σ) = inf
φ∈Σt

‖f−φ‖X (The "best" Σt approximation)



Approximation spaces :Besov spaces.

And let us define: for 0 < s <∞, 0 < q <∞. Bs
q(X,Σ) :

{f ∈ X, ‖f‖Bs
q(X) = ‖f‖X + [

∫ ∞

1

(tsσX(f, t,Σ))qdt

t
]

1

q <∞}

and Bs
∞(X,Σ) :

{f ∈ X, ‖f‖Bs
q(X) = ‖f‖X + sup

1≤t<∞
tsσX(f, t,Σ) <∞}



Discrete characterization of Bs
p,q.

By discretization of [
∫∞

1 (tsσX(f, t,Σ))q dt
t ]

1

q we get easily the
following characterization:

for 0 < q <∞, f ∈ Bs
q(X,Σ)⇐⇒

‖f‖X + [
∑

j≥0

(2jsσX(f, 2j,Σ))q]
1

q <∞

for q =∞, f ∈ Bs
∞(X,Σ)⇐⇒

‖f‖X + sup
j≥0

(2jsσX(f, 2j,Σ) <∞



Operator characterization of Bs
q(X,Σ).

Again let us recall: If:

Pj ∈ L(X) and ∀j ≥ 0, ‖Pj‖L(X) ≤ C

Pj(X) ⊂ Σ2j

Pj|Σ2j−1 = Id

Then

f ∈ Bs
q(X,Σ)⇐⇒ f ∈ X, ‖Pj(f)− f‖X = ǫj2

−js ǫ. ∈ lq



Littlewood-Paley decomposition

Let us recall the classical Littlewood-Paley functions :

Φ̂ ≥ 0, even, Φ̂ ∈ D(R), for |u| ≤ π

4
, Φ̂(u) = 1,

supp(Φ̂) ⊂ {|u| ≤ π

2
}, .

Ψ̂(u) = Φ̂(
u

2
)− Φ̂(u); Ψ̂ ≥ 0, Ψ̂ ∈ D(R),

supp(Ψ̂ ⊂ {π
4
≤ |u| ≤ π}.

Then : 1 = Φ̂(ξ) +
∑

j

Ψ̂(
ξ

2j
)



Littlewood-Paley characterization of Bs
p,q

So, for all T ∈ S ′(R),Φ,Ψ ∈ S(R)

T = T ⋆ Φ +
∑

j

T ⋆Ψj, Ψj(x) = 2jΨ(2jx)

As :by YOUNG lemma ‖f⋆Ψj‖p ≤ ‖Ψj‖1‖f‖p = ‖Ψ‖1‖f‖p

f ∈ Bs
p,q ←→ ‖f‖p <∞, ‖f − f ⋆ Φj‖p = ǫj2

−js, ǫ. ∈ lq
f ∈ Bs

p,q ←→ ‖f‖p <∞, 2js‖f − f ⋆ Φj‖p ∈ lq.
f ∈ Bs

p,q ←→ ‖f‖p <∞, 2js‖f ⋆Ψj‖p ∈ lq.



Interpolation spaces. (Lions-Peetre).

Let Y ⊆ X two Banach space. ( ∀f ∈ Y, ‖f‖X ≤ C‖f‖Y ).
Let us define:

∀f ∈ X, K(t, f,X, Y ) = inf
φ∈Y
‖f − φ‖X + t‖φ‖T )

One define the interpolation space between X and
Y : [X, Y ]θ,q depending on 0 < θ < 1, 0 < q ≤ ∞ :

[X, Y ]θ,q :

{f ∈ X, ‖f‖[X,Y ]θ,q
= ‖f‖X+[

∫ ∞

1

(
K(t, f,X, Y )

tθ
)qdt

t
]

1

q <∞}

The interpolations spaces have reiteration properties and
continuity properties.



Link between interpolation and best
approximation.

Let Σt ⊂ Y ⊆ X, t ∈ R+,Σt non decreasing family of subspaces.

Let 0 < N <∞.

As
q(X,Σ) = [X, Y ]θ,q, s = ΘN

under the following properties :

Jackson: ∃C <∞, ∀f ∈ Y, σX(f, t,Σ) ≤ Ct−N‖f‖Y

Bernstein: ∃D <∞, ∀t > 0, ∀f ∈ Σt, ‖f‖Y ≤ DtN‖f‖X

Let us observe that As
q(X,Σ) does not depend on Y.



Typically if N ∈ N the two previous properties are verified
for WN

p (Rn) and HN
p (RN). So

∀0 < q ≤ ∞, 1 ≤ p ≤ ∞, s = θN,

As
q(L

p(Rn),Σp) = [Lp,WN
p (Rn)]θ,q = [Lp, HN

p (Rn)]θ,q



The semi-group point of view.
If X is a Banach space and Tt ∈ L(X), t > 0, a contraction
semi group with generator A :

∀f ∈ X, t > 0, ‖Tt(f)‖X ≤ ‖f‖X , ∀0 < t, 0 < s, Tt◦Ts = Tt+s

D(A) = {f ∈ X,A(f) = lim
t 7→0

Tt(f)− f
t

exists}

∀m ∈ N, ‖f‖D(Am) = ‖f‖X + ‖Am(f)‖X

Moreover we suppose Tt is an holomorphic semi group:

∀t > 0, Tt(X) ⊂ D(A), ∃C, t‖A(Tt(f)‖X ≤ C

Then if m ∈ N, 0 < θ < 1, 0 < q ≤ ∞. [X,D(Am)]θ,q =

{f ∈ X, ‖f‖X + [

∫ 1

0

(t−θm‖(tA)mTt(f)‖X)qdt

t
]

1

q <∞}



The Laplacian on the real line.

−∆ is a positive operator on L
2(R).

−
∫

R

∆(f)(x)f(x)dx =

∫

R

|∇(f)(x)|2dx

The associated semi-group is given by :

et∆f(x) = gt ⋆ f(x), gt(u) =
e−u2/4t

2
√
πt

√
−∆ is the generator of the subordinate semi-group :

e−t
√
−∆f(x) = ht ⋆ f(x), ht(u) =

t

π(t2 + u2)



The spectral resolution (dim 1)

Let Pλ(f) = sin λ.
π. ⋆ f be the orthogonal projector operator

on Λλ

Σλ = {f ∈ L
2, supp(f̂) ⊂ [−λ, λ]}

〈
√
−∆(f), f〉 =

∫ ∞

0

λd〈Eλf, f〉 =
1

2π

∫

R

|ξ||f̂(ξ)|2dξ =

∫ ∞

0

λd(
1

2π

∫ λ

−λ

|f̂(ξ)|2dξ) =

∫ ∞

0

λd〈Pλ(f), f〉

The spectral decomposition of Id associated to
√
−∆ is

given by the Pλ.
The spectral decomposition of Id associated to −∆ is given
by the P√λ.



Semi- group characterization of Bs
p,q

Let m ∈ N. One can prove that Bernstein and Jackson are
verified with N = 2m for ∆m and Σt So for
0 < s < 2m, 2mθ = s we have : taking Dp(∆

m) the
domain in L

p of ∆m,

Bs
p,q = [Lp, Dp(∆

m)]θ,q

= {f ∈ L
p, ‖f‖p + [

∫ 1

0

(t−
s
2‖(t∆)m(f)‖)qdt

t
]

1

q}



Finite difference characterization.

∆yf(x) = f(x+ y)− f(x)

∆N
y f(x) = ∆y(∆

N−1
y )f(x) =

N∑

l=0

C l
N(−1)N+lf(x+ ly)

∀t > 0, ωN
p (f, t) = sup

|h|≤t

‖∆N
h f‖p,

f ∈ Bs
p,q ⇐⇒ f ∈ L

p and ∃N ∈ N, N > s,

and if 0 < q <∞, [

∫ 1

0

(
ωN

p (t, f)

ts
)qdt

t
]1/q < +∞,

and if q = +∞, sup
0<t<1

ωN
p (t, f)

ts
< +∞

⇐⇒ ∀j ∈ N, 2jsωN
p (2−j, f) ∈ lq(N)



Second tool: Cubature formula.

•∀f ∈ Σ1
2Ω(R),

∫

R

f(u)du =
π

Ω

∑

k∈Z
f(k

π

Ω
)

• : ∀f, g ∈ Σ2
Ω(R),

∫

R

f(u)g(u)du =
π

Ω

∑

k∈Z
f(k

π

Ω
)g(k

π

Ω
)



Shannon Wavelet

L
2 = Σπ⊕{⊕j∈NG2jπ}, G2jπ = {f, supp(F(f)) ⊂ {2jπ ≤ |ξ| ≤ 2

Let φ(t) =
sin πt

πt
, F(φ)(ξ) = 1[−π,π](ξ)

ψ0(t) = 2φ(2t)−φ(t) =
sin πt(2 cosπt− 1)

πt
, F(ψ0)(ξ) = 1π≤|ξ|≤

ψj(t) = 2jψ0(2
jt), F(ψj)(ξ) = 12jπ≤|ξ|≤2j+1π(ξ)



Then, by Shannon sampling theorem :

(φk(t) = φ(t− k))k∈Z is an orthonormal basis of Λπ,

{2j/2ψ(2j(t− k

2j
))}k∈Z is an orthonormal basis of G2jπ.

We obtain the Shannon "wavelet basis" which is perfectly
localized spectrally, but VERY BADLY localized in space and
unfortunatly CANNOT catch the L

p regularities .



Again: Littlewood-Paley decomposition

Let us recall the classical Littlewood-Paley functions :

Φ̂ ≥ 0, even, Φ̂ ∈ D(R), for |u| ≤ π

4
, Φ̂(u) = 1,

supp(Φ̂) ⊂ {|u| ≤ π

2
}, .

Ψ̂(u) = Φ̂(
u

2
)− Φ̂(u); Ψ̂ ≥ 0, Ψ̂ ∈ D(R),

supp(Ψ̂ ⊂ {π
4
≤ |u| ≤ π}.

Φ̂ = F(φ)2 = F(φ ⋆ φ); Ψ̂ = (F(ψ))2 = F(ψ ⋆ ψ),

φ, ψ ∈ S(R); .

Then : 1 = Φ̂(ξ) +
∑

j

Ψ̂(2−jξ) = φ̂2(ξ) +
∑

j

ψ̂2(2−jξ)



f̂(ξ) = f̂(ξ)Φ̂(ξ) +
∑

j

f̂(ξ)Ψ̂(
ξ

2j
)

= f̂(ξ)φ̂2(ξ) +
∑

j

f̂(ξ)ψ̂2(
ξ

2j
).

i.e f = f ⋆ Φ +
∑

j

Ψj ⋆ f = φ ⋆ φ ⋆ f +
∑

j

ψj ⋆ ψj ⋆ f

ψj(x) = 2jψ(2jx)



Wavelet "a la" Frazier, Jawerth, Weiss.

Let us recall the Shannon sampling theorem:

∀f, g ∈ ΛT , 〈f, g〉 =
∑

k

π

T
f(k

π

T
)g(k

π

T
) (here T = 2jπ)

ψj⋆ψj(x−y) =

∫
ψj(x−u)ψj(y−u)du =

1

2j

∑
ψj(x−

k

2j
)ψj(y−

Ψj⋆f = ψj⋆ψj⋆f =
∑

k

〈f, ψj,k〉ψj,k(x); ψj,k(x) = 2j/2ψ(2j(x−

ψ ∈ S(R), the ψj,k(x) are LOCALIZED around k
2j and

SPECTRALLY LOCALIZED:

supp(F(ψj,k) ⊂ {ξ, 2j−2π ≤ |ξ| ≤ 2jπ}



Space concentration.
Moreover

1

2j

∑

k

ψj(x−
k

2j
)ψj(y−

k

2j
) =

∑

k

2
j

2ψ(2jx−k)2
j

2ψ(2jy−k)

But
∑

k

‖ψj,k‖1|ψj,k(x)| =

∑

k

∫

R

|2 j
2ψ(2jx−k)|dx|2 j

2ψ(2jy−k)| = ‖ψ‖1

∑

k

|ψ(2jy−k)|

≤ ‖ψ‖1 sup
y∈R

∑

k

|ψ(2jy − k)| ≤ C

So the family ψj,k (which is a tight frame but not an
orthogonal basis ) could handle, by the discretization tool :
all the Lp regularity:



For example using as previously the localization :

f ∈ Bs
p,q ⇐⇒

If 1 ≤ p <∞,

f ∈ L
p; (

∑

k

|〈f, ψj,k〉|p‖ψj,k‖p
p)

1/p = ǫj2
−js, ǫ. ∈ lq

If p =∞,

f ∈ L
∞; (sup

k
|〈f, ψj,k〉|‖ψj,k‖∞ = ǫj2

−js, ǫ. ∈ lq

‖ψj,k‖p = ‖ψ‖p2
j( 1

2
− 1

p
)



Summary

Main points :
• Regularized spectral decomposition : Littlewood-Paley
decomposition. =⇒ Concentration.
• Shannon formula =⇒ Discretization, and frame
construction.

This provides a frame

ψj,k = 2j/2ψ(2j(x− k

2j
))

which analyzes and represents regularity spaces in a sparse
way.
Our aim is to mimick this ,
BUT WITHOUT FOURIER TRANSFORM.


