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Talk outline

I The M/G/∞ estimation problem

– background and problem formulation

I Estimation from the input–output data

– some results on the bivariate arrival–departure point

process

– estimator and its accuracy

I Estimation from the queue–length data

– results on the queue–length process

– estimator and its accuracy

I Conclusion



I. Background and problem formulation



1. The M/G/∞ estimation problem

I Arrival process: customers come to a system according to a

Poisson process of intensity λ.

I Service times: upon arrival, every customer obtains service

and leaves the system after the service is completed. The

service times are i.i.d. random variables, independent of the

arrival process, with common distribution G.

I Observations: during some observation period arrival and

departure time instances are recorded without matchings.

I Goal: estimate (make inference on) the service time

distribution G.



2. The M/G/∞ estimation problem

I The departure point process is obtained by translating the

input points by i.i.d. random variables with distribution G.

The correspondences (arrows) are not observed.
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I The departure process is also Poisson of intensity λ.



Examples

I The M/G/∞ model was used in many applications:

– A telephone exchange model

Beneš (1957),...

– Mobility of particles

dates back to Smoluchowski (1906)

Bingham & Dunham (1997),...

– A traffic density model

Renyi (1964), Brown (1970)



“Sequence of differences” estimator of G

I Brown’s (1970) estimator:

– Associate each output point tj in [t0, tn] with the nearest

input point τk to the left of tj. Call the corresponding

distances between these points zj, j = 1, . . . , n.

– The sequence {zj} is stationary and ergodic, zj has

distribution D:

D(x) = 1− (1−G(x))e−λx ⇔ G(x) = 1− (1−D(x))eλx.

– Estimate D empirically and invert for G.

– Consistency of the estimator is proved.



References and research questions

I Extensions:

– Blanghaps, Nov & Weiss (2013): distances to rth nearest input

point; consistency of the estimator...

– Schweer & Wichelhaus (2015): discrete model, central limit

theorem...

I Related literature:

other observation schemes, inference for point processes

Pickands & Stine (1997), Bingham & Pitts (1999), Hall & Park (2004),

Brillinger (1972, 74, 75), Cox & Lewis (1972).

I Reserach questions:

– estimation accuracy in the original M/G/∞ problem?

– how to construct estimators?



II. Estimation from the input–output data



The random translation model

I Input: M is a stationary Poisson process of intensity λ with

the representation

M :=
∑
j∈Z

ετj , εx(A) :=

 1, x ∈ A,
0, x /∈ A,

x ∈ R, A ∈ B.

I Output: N = L [M ], where L is random translation,

independent of M ,

N :=
∑
j∈Z

εtj , tj = τj + σj , σj
iid∼ G,

(σj)j∈Z are not necessarily non–negative random variables.

I Observation: a realization of the bivariate point process

(M,N)|T , restricted to a time “window“ T = TM × TN .

I The goal is to estimate (to make inference on) G.



Some properties of (M,N)

I Proposition 1: Let {Ai}i=1,...,m and {Bl}l=1,...,n be two families

of disjoint intervals of the real line; then

log EG exp
{ m∑
i=1

ηiM(Ai) +
n∑
l=1

ξlN(Bl)
}

= λ
m∑
i=1

(eηi − 1)|Ai|

+ λ
n∑
l=1

(eξl − 1)|Bl|+ λ
m∑
i=1

n∑
l=1

(eηi − 1)(eξl − 1)Q(Ai, Bl),

where | · | is the Lebesgue measure, and

Q(A,B) :=

∫
A

G(B − x)dx.

I Notation: G(I) := G(b)−G(a), for I = (a, b], a < b.



Remarks

I The case of m = 2 and n = 2 is proved in Milne (1970).

I (M,N) is closely related to Gauss–Poisson processes whose

distribution is completely determined by the first two moment

measures: the probability generating functional of (M,N) is

G(M,N)[η, ξ] := EG exp
{∫

log η(τ)dM(τ) +

∫
log ξ(t)dN(t)

}
= exp

{
λ

∫
[η(τ)− 1]dτ + λ

∫
[ξ(t)− 1]dt

+ λ

∫∫
[η(τ)− 1)][ξ(t)− 1]Q(dτ,dt)

}
∀ 0 ≤ η ≤ 1, 0 ≤ ξ ≤ 1 s.t. 1− η and 1− ξ vanish outside a

compact interval, and Q(dτ,dt) = dG(t− τ)dτ .



Proof outline

I Step 1: conditioning on (τj):

EG

[
e
∑n
i=1 ηiM(Ai)+

∑m
l=1 ξlN(Bl)

∣∣∣(τj)] = exp
{∑
j∈Z

f(τj)
}
,

where

f(x) :=
n∑
i=1

ηi1Ai(x) + log
[ m∑
l=1

(eξl − 1)G(Bl − x) + 1
]
.

I Step 2: the use of Campbell’s formula

EG exp
{∑

j

f(τj)
}

= exp
{
λ

∫ ∞
0

[ef(x) − 1]dx
}
.



Moment measures

I Corollary 1: For any two intervals A and B one has

EG
[
M(A)N(B)

]
= λ2|A| · |B|+ λQ(A,B),

Q(A,B) :=

∫
A

G(B − x)dx.

I Corollary 2: For two pairs of disjoint intervals A1, A2 and B1, B2

EG
[
M(A1)M(A2)N(B1)N(B2)

]
− EG

[
M(A1)N(B1)

]
· EG

[
M(A2)N(B2

]
= λ3

[
Q(A1, B2)|A1| · |B1|+Q(A2, B1)|A1| · |B2|

]
+ λ2Q(A1, B2)Q(A2, B1).

I The proof is by differentiation of the formula in Proposition 1.



Important formula

I Corollary 3:

For any function v satisfying∫∫
|v(τ, t)|dτdt <∞,

∫∫
|v(τ, t)|dG(t− τ)dτ <∞,

EG

[ ∫∫
v(τ, t)dM(τ)dN(t)

]
= EG

[∑
j∈Z

∑
k∈Z

v(τj , tk)
]

= λ2

∫∫
v(τ, t)dτdt+ λ

∫∫
v(τ, t)dG(t− τ)dτ. (∗)

I Immediate consequence of Corollary 1.

I Corollary 1 as well as (∗) are known results; see e.g.,

Cox & Lewis (1972), Mori (1975).



Back to statistical problem...

I Input: Poisson point process of intensity λ on R,

M =
∑
j∈Z ετj .

I Output: N =
∑
j∈Z εtj , tj = τj + σj, σj

iid∼ G.

I Observations: DT := (M,N)
∣∣
T , T = TM × TN ⊂ R× R.

I The goal is to estimate G; in fact, for I = (a, b] we consider

the problem of estimating

θI = G(I) := G(b)−G(a).

I Risk: for any estimator θ̂I = θ̂I(DT )

Risk[θ̂I ; θI ] := EG|θ̂I − θI |2.



Estimator

I Data: realization of (M,N)|T restricted to

T = [τmin, τmax]× [τmin + a, τmax + b], T := τmax − τmin,

so that

DT =
{

(τj : τmin ≤ τj ≤ τmax), (tk : τmin + a ≤ tk ≤ τmax + b)
}
.

I Estimator: Let I := (a, b], v0(τ, t) := 1[τmin,τmax](τ)1I(t− τ); and

θ̂I := 1
λT

∫∫
v0(τ, t)dM(τ)dN(t)− λ|I|

= 1
λT

∑
j∈Z

∑
k∈Z

1[τmin,τmax](τj)1I(tk − τj)− λ|I|.



Accuracy of θ̂I

I Theorem 1:

For any G one has

EG
[
θ̂I
]

= θI = G(I) = G(b)−G(a),

varG{θ̂I} = 2λ|I|
T

∫ T

−T
G(I + u)

(
1− |u|T

)
du

+ 1
T

∫ T

−T
G(I + u)G(I − u)

(
1− |u|T

)
du.

+ λ|I|2
T + 2|I|

T G(I) + 1
λT

(
θI + λ|I|

)
.



For the M/G/∞ setting...

I Estimator: in the M/G/∞ setting G(0) = 0, [τmin, τmax] = [0, T ],

I = (0, x0], so that the estimator is given by

Ĝ(x0) = 1
λT

∑
j∈Z

∑
k∈Z

1[0,T ](τj)1[0,x0](tk − τj)− λx0.

I Notation

– service rate µ: 1
µ := EG[σ] =

∫∞
0

[1−G(u)]du;

– traffic intensity: ρ = λ/µ;

– normalized integrated tail of G:

H(t) := µ

∫ ∞
t

[1−G(u)]du =

∫∞
t

[1−G(u)]du∫∞
0

[1−G(u)]du
.



The result for the M/G/∞ estimation problem

I Corollary 4: Let G(0) = 0, x0 ∈ (0, T ); then Ĝ(x0) is unbiased,

varG{Ĝ(x0)} = 2λx0

T

∫ T

−T
[G(x0 + u)−G(u)]

(
1− |u|T

)
du

+ 1
T

∫ T

−T
[G(x0 + u)−G(u)][G(x0 − u)−G(−u)]

(
1− |u|T

)
du.

+
λx2

0

T + 2x0

T G(x0) + 1
λT [G(x0) + λx0].

Moreover, if 1
µ := EG[σ] =

∫∞
0

[1−G(u)]du <∞ then

varG{Ĝ(x0)} ≤ C
T

[
λx2

0 +λx0 min{ 1
µ [1−H(x0)], x0}+x0 + 1

λG(x0)
]
.



Remarks

I Proof outline:

– the estimator is unbiased in view of formula (∗);

– the variance is calculated using formulas for the moment

measures, established in Corollary 2.

I The M/G/∞ setting:

– G(x0) can be estimated with parametric rate O( 1
T );

– the estimator is not accurate for ”large“ λ and x0.

I Can we do better?



Numerical illustration

I Setting: σ ∼ exp(1), T = 1000, λ ∈ {0.5, 1, 5, 15}
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III. Estimation from the queue–length data



Another look at the M/G/∞ problem

I Queue–length (number of busy servers) process X(t) encodes

input–output streams up to initial conditions:

X(t) =
∑
j∈Z

1{τj ≤ t, σj > t− τj}, t ∈ R.
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I Assume that {X(kδ), k = 1, . . . , n, T = nδ} is observed...



1. Properties of the queue–length process

Proposition 2:

∗ X(t) ∼ Poisson(ρ), ∀t ∈ R, where ρ = λ/µ.

∗ {X(t), t ∈ R} is stationary, and

covG{X(t), X(s)} = ρH(t− s), ∀t, s ∈ R.

∗ Let X = (X(t1), . . . , X(tn)) = (X1, . . . , Xn); then for any θ ∈ Rn

log EG
[

exp{θTX}
]

= ρSn(θ),

Sn(θ) :=
n∑
k=1

(eθk − 1)

+

n−1∑
k=1

Hk

n−1∑
m=k

(
eθm−k+1 − 1

)
e
∑m
i=m−k+2 θi

(
eθm+1 − 1

)
,

where Hk := H(tk), k = 1, . . . , n.



2. Properties of the queue–length process

I Covariance function of {X(t)}:

R(t) := covG{X(s), X(s+ t)} = ρH(t)

= ρ ·
∫∞
t

[1−G(u)]du∫∞
0

[1−G(u)]du
= λ

∫ ∞
t

[1−G(u)]du.

Hence,

1−G(t) = − 1
λR
′(t), t ∈ R+. (∗∗)

I The idea is to estimate the first derivative of the covariance

function of X(t) at point x0, and then recover G(x0)

from (∗∗).



1. Estimator construction

I Estimators of Rk := R(kδ): ρ̂ = 1
n

∑n
t=1Xt

R̂k :=
1

n− k
n−k∑
t=1

(Xt − ρ̂)(Xt+k − ρ̂), k = 0, 1, . . . , n− 1.

I Local window: Let h > 0, Dx := [x− h, x+ h], ∀x ∈ [h, T − h],

and MDx = {k : kδ ∈ Dx}, NDx = #{MDx}.
I Differentiating filter: Fix positive integer `, real h ≥ 1

2 (`+ 2)δ,
and let {ak(x), k ∈MDx} be the solution to

min
∑

k∈MDx

a2k(x)

s.t.
∑

k∈MDx

ak(x) = 0,

∑
k∈MDx

ak(x)(kδ)
j = jxj−1, j = 1, . . . , `.



2. Estimator construction

I Remarks

– h ≥ 1
2 (`+ 2)δ ensures at least `+ 1 grid points in MDx .

– The filter reproduces the first derivative of any

polynomial of degree ≤ `:∑
k∈MDx

ak(x)p(kδ) = p′(x), ∀p : deg(p) ≤ `.

I Estimator of G(x0):

G̃h(x0) = 1 + 1
λ

∑
k∈MDx0

ak(x0)R̂k.

I Two design parameters to be chosen:

degree of the fitted polynomial ` and window width h.



Functional class

I Local smoothness: let β > 0, L > 0 and I ⊂ (0,∞) be a closed

interval containing x0. We say that G ∈ Hβ(L, I) if

|G(bβc)(x)−G(bβc)(y)| ≤ L|x− y|β−bβc, ∀x, y ∈ I,

where bβc := max
{
k ∈ {0, 1, 2, . . .

}
: k < β}.

I Tail (moment) conditions: we say that G ∈Mp(K) with

p ≥ 1, K > 0 if

EG[σp] =

∫ ∞
0

pxp−1[1−G(x)]dx ≤ K <∞.

If G ∈M2(K) then {Hi} is summable ⇒ short–range

dependence.

I Functional class: we consider

Σβ = Σβ(L, I,K) := Hβ(L, I) ∩M2(K).



Upper bound

I Theorem 2:

Let I = [x0 − d, x0 + d] ⊂ [0, (1− κ)T ] for some κ ∈ (0, 1). Let

G̃∗(x0) be the estimator G̃h∗(x0) associated with

` ≥ bβc+ 1, h∗ =

[
K

L2κT

(
1 + 1

λ

)]1/(2β+2)

.

If

K

L2κ
(
1 + 1

λ

)
d−2β−2 ≤ T ≤ K

L2κ
(
1 + 1

λ

)[ 2

(`+ 2)δ

]2β+2

then

sup
G∈Σβ

[
EG|G̃∗(x0)−G(x0)|2

]1/2
≤ C(`)L1/(β+1)

[
K

κT
(
1+ 1

λ

)]β/(2β+2)

.



Remarks

I Under local smoothness and second moment conditions:

Riskx0 [G̃∗; Σβ ] := sup
G∈Σβ

[
EG|G̃∗(x0)−G(x0)|2

]1/2
� C

[
1

T−x0
(1 + 1

λ )
]β/(2β+2)

, T →∞.

I The rate of convergence is nonparametric:

inf
G̃

Riskx0
[G̃; Σβ ] ≤ O

(
T−β/(2β+2)

)
, T →∞,

but dependence on λ and x0 is ”weak“.



Numerical illustration

I Setting: σ ∼ exp(1), T = 1000, δ = 0.01 h = 3δ, λ ∈ {1, 10, 40, 100}
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Comparison of the estimators

I Different regimes in terms of the convergence rate:

– light traffic regime: x0

√
ρ
T � C(T − x0)−β/(2β+2)

– heavy traffic regime: x0

√
ρ
T � C(T − x0)−β/(2β+2)

I Numerical behavior:

– dependence on λ: even undersmoothed estimator G̃h(x0)

is much better than Ĝ(x0) already for moderate λ;

– heavy tails: G̃h(x0) is more sensitive to heavy tails of G

than Ĝ(x0).

I Lower bounds on the risk?

Difficult because of the dependence structure; the

distribution of observations is not available explicitly.



Gaussian approximation in heavy traffic

I Corollary to Proposition 2:

Let {M`/G/∞, ` = 1, 2, . . .} be a sequence of the M/G/∞
systems with fixed G and arrival rates λ` = `λ, λ > 0. Let

Xn
` = (X`(t1), . . . , X`(tn)) be observations of the queue–length

process in the `th system; then

Xn
` − `ρen√

`ρ

d→ Nn(0, V (H)), `→∞,

where ρ = λ
µ , en = (1, . . . , 1) ∈ Rn, V (H) = {H((i− j)δ)}i,j=1,...,n.

I This result is in line with general results of Borovkov (1967),

Iglehart (1973) and Whitt (1974) on weak convergence for

queues.



A Gaussian model

I In heavy traffic {X(t)} is close to a stationary Gaussian

process. By (∗∗), G is proportional to the derivative of the

covariance function.

I A problem for stationary Gaussian process:

Let {X(t), t ∈ R} be a stationary Gaussian process with

zero mean and covariance function γ. We observe

Xn = (X(t1), . . . , X(tn)), ti = iδ, i = 1, . . . , n, nδ = T .

I The goal is to estimate θ = γ′(x0) using observation Xn. We

are mainly interested in lower bounds on the minimax risk

Risk∗x0
[Γ] = inf

θ̂
sup
γ∈Γ

[
Eγ
∣∣θ̂ − γ′(x0)

∣∣2]1/2,
where Γ is a suitable class of covariance functions.



Lower bound in the Gaussian problem

I Definition: Let I = [x0 − d, x0 + d], L > 0 and β > 0. We say

that γ ∈ Γβ := Γβ(L, I,K) if

(i)
∫∞
−∞ |γ(t)|dt ≤ K <∞;

(ii) γ is ` := max{k ∈ N : k < β + 1} times continuously

differentiable on I and

|γ(`)(x)− γ(`)(y)| ≤ L|x− y|β+1−`, ∀x, y ∈ I.

I Theorem 2:

There exist positive constants C1, C2 and c depending

on β, x0, d and K only such that if

C1δ
−2 ≤ T, L2T ≤ C2δ

−2β−2

then

lim inf
T→∞

{
L−1/(β+1)T β/(2β+2) Risk∗x0

[Γβ ]
}
≥ c > 0.



Concluding remarks

I Two different estimators with different properties...

I The lower bound in the Gaussian model strongly suggests

that the ”queue–length“–based estimator is rate optimal in

the heavy traffic regime...

I In the light traffic regime it is not clear if estimators with

better dependence on λ and x0 can be constructed...

I A fundamental question: how to judge optimality of

estimators when the joint distribution of observations is

intractable?


