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Summary

@ Wavelet-based method and information pooling
© Unidimensional second generation thresholding methods : maxiset approach
© Multidimensional function estimation

@ Structure detection : asymptotic optimality



Wavelet nested multiscale structure

Definition (Compactly supported
periodized wavelet bases)
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Notion of heredity in the coefficient domain
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Clusters of large wavelet coefficients
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Clusters of large wavelet coefficients
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Clusters of large wavelet coefficients

heavisine
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Exploiting the multiscale dependencies

o Tree approximation (Cohen et al 2001) is more restrictive than the usual
n—term approximation but it comes with a little costs in terms of rates of
approximation : nevertheless it enables efficient encoding strategies.

@ Multifractal analysis In practice, multifractal analysis is almost always
performed using the coefficients of a continuous or discrete wavelet
transform. Jaffard et al introduced a multifractal formalism based on wavelet
leaders supj/ 37, |01| that allows for accurate estimation of the local hélder
exponent,

@ Tree-structured wavelet estimation : information pooling

- Cohen, A., Dahmen, W., Daubechies, |., Devore, R. (2001). Tree Approximation and Optimal
Encoding, Applied and Computational Harmonic Analysis, 11, 192226.

- Jaffard, S., Lashermes, B., Abry, P. (2006). Wavelet leaders in multifractal analysis. In wavelet
analysis and applications, Applied and numerical harmonic analysis, 201-246.
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Nonparametric function estimation using wavelet
thresholding under tree constraint

Consider the nonparametric regression model

Y,:f(i>+0'§,, ngN(O,l), 1<i<n, o>0.
n

@ Hard thresholding does not take into account the relations among the wavelet coefficients
(influence cones, hereditary structure. . .),

PH _ a0 5. 1,0
Fr=av®+ 30> 0l oaye,
J k ’

@ = "second generation” wavelet thresholding : Information pooling within some geometric
structures in the coefficient domain (horizontal/vertical blocks) to refine the choice of
coefficients to Keep/kill,

Many theoretical results about horizontal block thresholding (Cai et al, 1997; Hall et al, 1999;
Cai, 2009) ; not much on TSW.

- Cai, T. (1997), 'On Adaptivity of Blockshrink Wavelet Estimator over Besov Spaces’, Technical
Report 97-05, Purdue University.

- Hall, P.,Kerkycharian, G., and Picard, D. (1998a), 'Block Threshold Rules for Curve Estimation
UsingKernel and Wavelet Methods’, Annals of Statistics, 26(3), 922942.

-Hall, P., Kerkycharian, G., and Picard, D. (1998b), 'On the Minimax Optimality for Block Thre-
sholded Wavelet Estimators’, Statistica Sinica, 9, 3349.



Nonparametric function estimation using wavelet
thresholding under tree constraint

Consider the nonparametric regression model

Y,-:f(i)+os,-, §~N(0,1),1<i<n o>0.
n

@ Hard thresholding does not take into account the relations among the wavelet coefficients
(influence cones, hereditary structure. . .),

FH — a0 ). N
fl=ay®+3 Ze»k1{|0j,k|>x}w}k
j ok '

@ = "second generation” wavelet thresholding : Information pooling within some geometric
structures in the coefficient domain (horizontal/vertical blocks) to refine the choice of
coefficients to Keep/kill,

the tree / hereditary constraint imposes that if a coefficient is used to compute the estimator, all
its ancestors have to be included. Tree-Structured Wavelets (TSW).
How to impose tree structure :

@ Greedy Tree Approximation (GTA)
@ Condensing Sort and Select Algorithm (CSSA)
@ Complexity Penalized Sum if Squares (CPSS)
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Model and family of estimators

Definition (Sequential Gaussian White noise)

a&=a-+¢ek éj’k=9jk+€§j,k,j€N;0§k<2j.

where &, &« are i.i.d. N(0,1) and ¢ € ]0, 1[ (noise level).

Definition ((\, g)-VBT estimators)

Use a coarse to fine dynamic programming algorithm on the tree. Attributes ¢, scores to
overlapping vertical blocs of coefficients.
Let g € [1,+00]. The estimator f, is defined by :

2—1
fy = ay)® +Z Z fiu 1 {(Ja k) € Tq(éa As)} wjlyk'

J<irg k=0
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Model and family of estimators

Remark :
@ f3 : Oracle approach (Donoho, 1997).
@ fo : hard thresholding + hereditary constraint (Autin, 2008).

Definition (HARD TREE estimator (f = FHT))
fHT(~) a’l,llo()"l‘ Z Z ik {0, lr(\;]aexT ‘9, W | > AE} _/k()

J<ir. k=0

- Tomassi, D., Milone, D., Nelson, J.D.B. (2015) Wavelet shrinkage using adaptive structured
sparsity constraint. Signal Processing, 106, 73-87

Use the 'recent’ Dual Tree Complex Wavelet Transform (Kingsbury, 2001) : nearly
shift invariant and has low redundancy.

Tree-structured estimation using a lasso-type algorithm with a mixed norm regularizer that

induces structured sparsity of an overcomplete representation (overlapping group lasso) with
adaptive weights.

It has been shown that there is more information to retrieve intra-inter scale within DTCWT
coefficients domain than DWT.

- Kingsbury, N. (2001). Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.
ACHA, 10, 234253



Model and family of estimators

Remark :
@ f3 : Oracle approach (Donoho, 1997).
@ fo : hard thresholding + hereditary constraint (Autin, 2008).

Definition (HARD TREE estimator (£, = 7))
FHT () = apl(-) + Z Z )i k { max ‘Q/k/ >,\E} Jk()

! k/
J<ir. k=0 UK )E ],k

- Tomassi, D., Milone, D., Nelson, J.D.B. (2015) Wavelet shrinkage using adaptive structured
sparsity constraint. Signal Processing, 106, 73-87

Use the 'recent’ Dual Tree Complex Wavelet Transform (Kingsbury, 2001)

: nearly
shift invariant and has low redundancy.
L
e \\
‘
%
Fig. 2. (a) Grouping scheme for the proposed mixed-norm regularisation and (b) example of estimate induced by the adopted grouping scheme; its
support is the complement of the union of the sets pushed to zero during optimisation which in turn sets to zero the coefficients represented by shaded

Frorme e foreet like hierarchical free <triictiire



MAXISET THEORY

Remark : Minimax approach has some drawbacks :
@ choice of F,

@ pessimistic approach (at least w.r.t maxiset approach),

@ no comparison of optimal estimators.

Definition (Maxiset approach (Cohen, Kerkyacharian, Picard (2001)))

The maxiset of an estimator f. is the largest functional space where its risk attains
a given convergence rate v, :

MS, (fz, vg) = {f ©osup v lE||f — I3 < +oo}.
0<e<1

Remarks : ) )
Estimator with good performance <= large Maxiset.

°
@ Rate /' Maxiset \,.

o Usually v, = v or ve|In gl®
°

estimator <> maxiset
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MAXISET THEORY

Remark : Minimax approach has some drawbacks :
@ choice of F,

@ pessimistic approach (at least w.r.t maxiset approach),
@ no comparison of optimal estimators.
Definition (Maxiset approach (Cohen, Kerkyacharian, Picard (2001)))

The maxiset of an estimator f. is the largest functional space where its risk attains
a given convergence rate v :

MS, (fz, vg) = {f ©osup v lE||f — I3 < +oo}.
0<e<1

Remarks :

PROCEDURE f{ /’(E)

Maxiset €
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VERTICAL BLOC THRESHOLDING
Theorem (Autin, F. et von Sachs (2011))

4s
Lets>0, g€ [1,+00], m>4V3and v, = (EV ||"E|)Ms'

M, (fv) = BEZ OWs

l+25 9

Bioo:{f sup22JSZZ| ikl <oo}

j>J k=0
wY, = {f: sup AT 222@1 1{(j, k) & (0, ))} < +oo}
0<A<1
WV

r,q,:{f: sup AT 222012,( 1{(j, k) ¢ 74 (8, )\)}<+oo},q’>q.

0<A<1
Autin, F., F, J-M,, von Sachs, R. (2011) Ideal denoising within a family of tree-structured

wavelet estimators. Electronic Journal of Statistics, 5, 829-855.
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VERTICAL BLOC THRESHOLDING
Theorem (Autin, F. et von Sachs (2011))

4s
Lets>0, g€ [1,+00], m>4V3and v, = (EV ||"E|)Ms'

M, (fv) = BEZ OWs

42509

Theorem (Autin, F. and von Sachs (2011))
From the maxiset point of view :

@ the best estimator is : fo, (Hard Tree).

© moreover f. is better estimator than fH.

Autin, F., F, J-M., von Sachs, R. (2011). Ideal denoising within a family of tree-structured
wavelet estimators. Electronic Journal of Statistics, 5, 829—-855.
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NUMERICAL

EXPERIMENTS
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10 10 10
0z 08 0z
08 05 05
04 04 04
02 02 02
00 00 00
00 02 o0& 085 08 10 00 02 04 06 08 10 00 02 0s 06 08 10 00 02 04 06 08 10
bumps heavisine doppler angles
10 10 10
08 08 08
08 06 08
04 04 04
02 02 02
00 00 00
00 02 04 08 08 10 00 0z 04 06 08 10 00 02 08 06 08 10 00 02 04 06 08 10
parabola fime shift.si pike mer
10 10 10
0z 0z 0z
08 08 08
04 04 04
02 02 02
00 00 00
00 02 04 06 08 10 00 02 04 06 08 10 08 02 0s 06 08 10 00 02 04 06 08 10

FIGURE: Test functions
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NUMERICAL EXPERIMENTS

blip blocks
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NUMERICAL EXPERIMENTS
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FIGURE: MISE estimators f, (Db8, SNR = 10db, N=1024)
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Multidimensional function estimation
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Multivariate wavelet bases
Motivation : multivariate wavelet bases are well adapted to described functions in
LL>([0, 1]9) in a parsimonious way. Atoms are localized both in time and frequency.
Two popular multidimensional wavelet bases :

@ Standard wavelet basis.

@ Hyperbolic wavelet basis.

Actually, a large regain of interest in :
Statistics (Neumann (2000), Benhaddou et al. (2013)).
Approximation theory (Kerkyacharian et al. (2006)).

(]

Compressive sensing (Duarte, Baraniuk (2012).
Multifractal analysis (Abry et al. (2014))

¢ ¢ ¢

Benhaddou, R., Pensky, M., Picard, D. (2013) Anisotropic denoising in functional deconvolution model with dimension-free convergence rates
EJS, 7, 1686-1715

Duarte, M.F., Baraniuk, R. (2012) Kronecker Compressive Sensing. IEEE Transactions on Image Processing, 21(2), 494-504

P. Abry, M. Clausel, S. Jaffard, S.G. Roux, B. Vedel, Hyperbolic wavelet transform : an efficient tool for multifractal analysis of anisotropic
textures.Revista Matematica Iberoamericana, vol 31(1), pp 313-348 (2015)

¢ 66 ¢

Kerkyacharian, G., Picard, D., Temlyakov, V. (2006) Some inequalities for the tensor product of greedy bases and weight-greedy bases. East
journal on approximations, 12(1), 103-118
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Standard and hyperbolic wavelet bases

Definition
From a periodized univariate wavelet basis
Bl = {w07¢1:'|.,k ./ € N70 < k < 2j}7
o the standard wavelet basis is defined as :
Ty ={ufo vl i€ {0, 1}7\0, j €I, ke Kj},
@ the hyperbolic wavelet basis is defined as :
Ho={u§oul, 1€ {0,1}9\0, je I}, ke K;}.

1/1879 = wo X ooee X 1][}0 and wjik = 1/}]':17k1 X o0 X _;Z7kd,
= {i:(faaj)feN}7
I8 = {j=(ah, - jaig) 1 Vu,ju € N},

K, = {k=(ki, - kg):Vu,0<k, <2}
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2-D hyperbolic wavelet basis

Let ¢! be a 1-D wavelet and 9° its associated scaling function.

@0 = ' (x)v°(y), il =0
,JEB = PPy, lil=1

(1 1)
J1 2, k1,ko

(x.)
(%) (

WOAxy) = ), (), il =1
(x.) Uhie () Ui (v), il =2

The support is a rectangle of size 277! x 272 : optimal to adapt to anisotropic
smoothness.
Consider f € L,(]0, 1]%).

f = avg approx + horizontal details + vertical details + diagonal details
——— —_———
_ (10 (01 (0,1) PICRD) (11
= adoo + Z Z ejlkl J1k1 + Z Z ajzkz J2k2 + Z Z J1J2k1k2 J1j2,kiske
120 k 220 ke J1:220 ki ko

= ado+ D D0,

i={h,v,d} jeli kEK;
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Hyperbolic wavelet functions




Standard vs Hyperbolic wavelet transforms

lena

Isotropic Hyperbolic
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Wavelet decomposition of a multivariate function

Consider f € IL»([0,1]9) :

f = avg approx + Z details in orientation i
ie{0,1}9\0

oot D |22 Hiﬁik ;

i€{0,1}9\0 \j€J kEK;

where
@ 7 =] for the standard wavelet decomposition,
@ 7 =J& for the hyperbolic wavelet decomposition.

Remark : in the multivariate wavelet setting

IFIE = (650 + > ZZ(%&)Z-

i€{0,1}9\0j€7 keK;
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Besov spaces of smooth functions

Definition (Characterisation of Besov space (Abry et al. (2014)))

The Besov space 3% is defined as follows :

S dy . 2juSu YA 2
B = {f € L([0,1]¢) : sup sup (122%21 ) Z (HLK) < —i—oo}.

70 jell kEK;

@ Isotropic Besov spaces : s = (s1,- - ,54) : V(u,v), s, =s,.
@ Anisotropic Besov spaces : s = (s1,+ -+ ,54) : I(u,v), s, # sy

Theorem (Neumann (2000))
Minimax rate over Besov spaces
RI(B%) = et

- 1
where 'y:(sfl—i—-“—f—sljl) 1>§.
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Hierarchical structure

i|=0
lil=1

li] =

DDDOY Sl ™mO==mM

FIGURE: Hierarchical structure 7% coming from the MRA (d = 2,i = (1,1))

Proposition (Autin, Claeskens and F.(2014))

Consider i € {0,1}%\ 0. Each node (j, k) of 7L,
Q has 2|i| children at scales |j| +1;
Q has at most |i| ancestors at scales |j| — 1 and a total number of ancestors
equals to T1%_, (ju + 1)™.
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HEREDITARY STRUCTURE

FIGURE: Hereditary structure among 6, j, iy ,k,
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Estimation in Hyperbolic wavelet basis

Hyperbolic basis :

Ha = {080 vh,: i€ {011\ 0 jeTh ke K],
Definition
Hard Thresholding estimator (¢ > 1/2) :

W= agooty. D D01 {|éi5| > A} B

i#0 jeli, |jl<ir..k
Hard Tree estimator (¢ > 1/2) :

T _ o0 + Z Z Z%Kl { max \0 2 k,| > )\676}1/;1’:7

= & i k' €T
iZ0jETL, || <jne K

1€

with A\cc = ¢|lng|®and 27=c = ()\57C)2.

25 /46



RESULTATS MAXISETS

Theorem (Autin, Claeskens et Freyermuth (2014))
Letyv>0p>2etc>1/2. Sim>4\/p+1, then :

~ 2yp Y
MS, (7 (e]ng|9)™7 ) = ATmm 0 WH, |
p;o0 1+2y
IN 27p y HT
MS, <f"’T,(s| |n€|c)1+27) = AWS 0 WHT A wHl*
P00 T2y T+2s €
‘A;,oo = f: sup Z Z 2er+|ﬂ(p/2—1) Z '9* ‘ < 4o
JEN i#’gi‘gji; 11> kEK
Wfl = f: sup —pz ZZMD/Z 1 Z | ' {‘ k‘ )\}<+oo s
0<A<1 ey ik

HT . - 2—1 i |P i
s {f'su"°<*<1*r I |91 | l{maxj',k’eT% w0 1% | = A} B +Oo}’
L1 L SRS Ik 1=

HT .« ). L1 i1(p/2—1 i
Wrie'™ = 0 f isupgcxc1 AT Iog(A ™) TP i Zjeﬂizwp/ )EKKJ ! {maxj’ KeTi %! > A} -
j j i1 €T () 7k

Autin, F., Claeskens, G., Freyermuth, J-M. (2014). Hyperbolic wavelet thresholding rules : the curse of dimensionality through the maxiset approach
Applied and Computational Harmonic Analysis, 36, 239-255.
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Curse of dimensionality

Constat : Dimension d / sequence space W} . \..
Is information pooling still interesting for d > 17

Theorem (Autin, Claeskens et F. (2014))
Let p>2 and c>1/2. Then
MS, (?H,(e\ |ne|C)1%‘l) c MS, (f”T,(5| |ns|C)1%"w) :

once one of the following properties is satisfied :
Q d < pc (small dimension),
@ d > pc (large dimension) and structural constraint [Hy(c)].

Definition
A function f € L,([0, 1]) satisfies the structural constraint [H,(c)] iff, for all
li| > pcandall 0< A <1,

|(f, Jk>|>)\:>1|ssuchthat max{ju,1<u<d}<||n)\|l\
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CURSE OF DIMENSIONALITY

d pc=d )

5
g

- - > pC v > D
1 ) 2

FIGURE: information pooling? (Y/N)
Zonel:d<pc. Zone?2:d>pcandd <pc. Zone3: > pc.
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Conclusion

9 Information pooling in signal and image processing has promising future in
applications

@ still lot of challenges to precisely characterized the performances methods
using information pooling

@ the maxiset approach is an effective way to asses the performance of methods
offering a different perspective to problem
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Time-varying spectrum

Following R.Dahlhaus the evolutionary spectrum of
locally stationary process can be written as :

flu, w) = Tﬂnoo f ([uT], w), u=— € [0,1]

with the Wigner—Ville spectrum
f (t, w) = ZCOV (Xt—s/Z s Xt+5/2) exp(—iws)
s

Estimation :
First approaches : Classical periodograms on segments of length N

In(u, w) =
1 [N=1 2
X exp(—isw)
N Z [T —N/2+s+1]

Drawback : Choice of the length of the blocks N7

4202

Example : a Piecewise stationary AR process

rescaled time

rescaled time
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Time-varying spectrum

Definition
(Preperiodogram /empirical Wigner
Ville distribution)

Fourier transform of empirical local autocovariance
Rescaled preperiodogram of a process X
Ix(u, w) =

CONDY XuT—s/2), T XuT+s/2], T P(=isw)
s:1<uT—s/2,uT+s/2<T

E Ix(u,w) = f(u,w) as T — oo.

Example : a Piecewise stationary AR process

34013

rescaled time

Preperiodogram

rescaled time.
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Time-varying spectrum

Example : a Piecewise stationary AR process

4202
-

Smoothing of the preperiodogram I T

flu,w) = 1 (u,w)* *K(u,w) tescRlen e
Linear
where *x* is the two dimensional convolution "
operator with a kernel K. b

rescaled time
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Anisotropy
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Structure detection
Sobol decomposition of f € L, [0,1]°

(X1, ..., Xd —fo—i—Zf Xy —i—wa Xy Xy )+ oo+ A a (X, xq) (1)

u<v

Marginal components (mam effect) f,: [0,1) — R (1< u<d)

Dalalyan, A., Ingster, Y., Tsybakov, A. (2014). Statistical inference in compound functional
models. Probability Theory and Related Fields, 158(3), pp. 512-532.

The atomic dimension ¢§ of f reflects the maximal degree of interaction between
the d variables within f.

o Additive structure : f(x) = Zgzl fulxy) = 6=1.

@ Sructure with maximal degree of interaction m < d :

f(x) = Z fup oo i (Xugs =+ s Xuy) — 0 = m.

up <o <um
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Structure detection
Sobol decomposition of f € L, [0,1]°

(X1, ..., Xd —fo—i—Zf Xy —i—wa Xy Xy )+ oo+ A a (X, xq) (1)

u<v

Marginal components (mam effect) f,: [0,1) — R (1< u<d)

Dalalyan, A., Ingster, Y., Tsybakov, A. (2014). Statistical inference in compound functional
models. Probability Theory and Related Fields, 158(3), pp. 512-532.

The atomic dimension ¢§ of f reflects the maximal degree of interaction between
the d variables within f.

Back to Time-Varying spectrum

Question : is the process stationary ?

Multivariate/Multiple nonparameric regression model :
Yy = f (ui,w;) + errory, £:[0,1]* - R
i.e., is the variable t; relevant
f(u,w) = f(w) (2)
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Structure detection
Sobol decomposition of f € L, [0,1]°

(X1, ..., Xd —fo—i—Zf Xy —i—wa Xy Xy )+ oo+ A a (X, xq) (1)
u<v

Marginal components (mam effect) f,: [0,1) — R (1< u<d)
Dalalyan, A., Ingster, Y., Tsybakov, A. (2014). Statistical inference in compound functional
models. Probability Theory and Related Fields, 158(3), pp. 512-532.
The atomic dimension ¢§ of f reflects the maximal degree of interaction between
the d variables within f.
Back to Time-Varying spectrum

Question : the process is non stationary but is the behavior similar across the different
frequency bands?

Multivariate/Multiple nonparameric regression model :
Yy = f (uj,w;) + errory, f:[0,1° = R
i.e., is there interaction between time and frequency ?

f(u,w) = f(u) + £ (w) 3)
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Approach

2 characteristic ingredients of our multivariate data :
@ general structure (atomic dimension, variable selection)
@ anisotropy
Objective : Propose procedures to test for structure of multivariate data with

special emphasis of being 'optimal’ (or near optimal) under anisotropic
smoothness properties.

Method : Find appropriate representation in a wavelet basis — design procedures
for detecting some structural characteristics of the estimand :

e maximal degree of interaction of variables (atomic dimension),

e variable selection. ..
Construct (near) minimax optimal tests

@ Abramovich, F. De Feis, |., Sapatinas, T. (2009). Optimal testing for additivity in multiple
nonparametric regression. Ann. Inst. Stat. Math., 61, pp. 691-714.

@ Comminges, L. Dalalyan, A. (2013). Minimax testing of a composite null hypothesis
defined via a quadratic functional in the model of regression EJS, 7, pp. 146-190.

@ Lepski, O. Pouet, C. (2008). Hypothesis testing under composite function alternative. In
Topics in Stochastic Analysis and nonparametric estimation, Springer.
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The approach

physical domain

d-variate function f = sum of functional components f; (related to the Sobol
decomposition)

{ Hyperbolic wavelet transform

wavelet coefficient domain
coefficients within orientations |

A : form test statistics within each orientation to detect f; (theoretical properties
of these elementary test statistics)

B : combine them in appropriate way = test of more general structure (atomic
dimension) | Anisotropy
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Functional ANOVA components and orientations in the
coefficient domain

f = ape+ Z ZZ@ jK

i={i#0} jeJ keK;
Example variable selection for v :
Y = f (u,w) + error, 4)
with £ (u,w) = fi (u) + f () + fiz (u,0) 5)

In a wavelet bases, relation between functional components and wavelet coefficients
of different orientations :

= (1 l). <f s k1¢_/2,k2> = 0,1, /2, ki, k2 (6)
1:(0 1); (£ 00 4,) # 0, Y, ko (7)
L:(]'?O)’ <f J1 Kyt O>_O VJlakl (8)
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Functional ANOVA components and orientations in the
coefficient domain

f = ape+ Z ZZ@ jK

i={i#0} jeJ keK;
Example first order interaction, ie. atomic dimension =1 :

Y = f (u,w) + error, (9)
with f (u,w) = f (v) + f (W) + fi2 (u,w) (10)

In a wavelet bases, relation between functional components and wavelet coefficients of
different orientations :

i= @1 (Fvhthe) = 0. Vi ki, ko (1)
i= (0,1 (Fi0'Whe) # 0.V ko (12)
i=(1,0); <f;¢j11,k1<‘0>750>vj1,k1 (13)

Test coefficient in orientation such that {|i] > d}
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Wavelet decomposition of a multivariate function

Consider f € LL»([0,1]%) :

f = avg approx + Z details in orientation i
i€{0,1}9\0

Ohotoot D > > %ﬁik ,

i€{0,1}4\0 \JET keK;

where
0o /=7J,1= {l =0, -,j):J€ N}, for the standard wavelet decomposition,

@ 7 =] for the hyperbolic wavelet decomposition.
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Summary

@ Wavelet-based method and information pooling
© Unidimensional second generation thresholding methods : maxiset approach
© Multidimensional function estimation

@ Structure detection : asymptotic optimality
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The Model

Model : We observe n? independent random variables under the multivariate
nonparametric regression problem over an equidistant design grid :

Y = f(x) + o€, € ~N(0,1)

where x € [0, l]d. The model is equivalent with the multivariate Gaussian white
noise model.
dY.(x) = f(x)dx + edW(x),

where x = (x,...,xq4) € [0,1]9, f € Ly([0,1]¢), W(x) is the Brownian sheet and
¢ is the known noise level with the calibration £ = on—%.

Definition (Sequential white noise model)

o i i
Ok = 056+ 6 1

where & are i.i.d. A (0,1) and (i,j, k) € {0,1}9 x N¥ x Z9.

38/46



Testing hypotheses

We are interested in testing whether a component in a certain orientation | is zero.
Definition (Hypotheses of the testing problem)

Hio: feN (R ={f:|fl,<R, f,=0}

Mia: feA(RC,s, ra) = reB(R), Ifll2 > Cr.},

where C > 0, (r.). is a decreasing and continuous sequence of real numbers
tending to 0 when ¢ goes to 0 and B%(R) denotes the ball of radius R of the
Besov space with s as smoothness parameter.

We consider two cases :

@ Non adaptive case : s is such that s, are known for all i, = 1.

o Semi adaptive case : v; = (iys; "+ + I,de,1>71 is known. Example :
Anisotropic Holder (s; = 0.5, = 0.8), (1,0 = 0.5, %(0,1) = 0.8,y(1,1) = 0.31
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We consider two cases :

@ Non adaptive case : s is such that s, are known for all i, = 1.

o Semi adaptive case : v; = (iys; "+ + I,de,1>71 is known. Example :
Anisotropic Holder (s; = 0.5, = 0.8), (1,0 = 0.5, %(0,1) = 0.8,y(1,1) = 0.31

@ Adaptive case : no information available

39 /46



Testing procedure and related errors

Aim at : providing testing procedures which ensure that the sum Error-/ +
Error-1I does not exceed a chosen o > 0 and which are optimal or near optimal in
the minimax sense (see Ingster (1986)).
Definition
A testing procedure is a random variable A with value in {0,1} for which :

o A =1 "H,q Is rejected”

o A =0 else.
Definition
For the testing hypotheses considered and a fixed A :
o Error-| : sup Pr(A =1).
fENI(R)
o Error-Il : sup Pr(A = 0).

feAi(RyCéy"s)
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Minimax results for hypothesis testing : case NA

Theorem (Autin, Claeskens, Freyermuth and Pouet (2015))
@ there exists a constant C' > 0 such that for any C < C' the testing problem

4ry;
has no solution for the rate r. = (54) 4

© there exists a constant C"" > 0 such that for any C > C" the testing problem

4,
as a solution for the rate r. = (¢*) ™7 . Then, the solution of the testing

problem is given through the testing procedure :

Ai,t = {7-1'"8 > tna}

where the test statistic is the nonnegative random variable

o= XY (0

jETh, KEK;
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Minimax results for hypothesis testing : case NA

Definition (calibration of the test A}?)

o J%‘la = {_i c Jl s QuSu (54) T+4y; ’ VU}’

[

@ t"? is the quantile of order 1 — 5 of the Chi-squared distribution
4 {(j k):j € Jha k € KJ;} with degrees of freedom.

PEAS

Remark :
@ A? is defined through the knowledge of s.
@ Minimax rates of separation depends on the orientation.
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Minimax results for hypothesis testing : case SA

Theorem (A., Claeskens, Freyermuth and Pouet (2015))
@ there exists a constant C' > 0 such that for any C < C' the testing problem

4y

has no solution for the rate r. = (54 log log 5’1) T,

© there exists a constant C"" > 0 such that for any C > C" the testing problem

4,
as a solution for the rate r. = (¢*logloge™") ™. Then, the solution of the
testing problem is given through the testing procedure :

n;={17 >t}
where the test statistic is the nonnegative random variable

T2

= Y (8

el kek;
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Minimax results for hypothesis testing : case SA

Definition (calibration of the test A?)

9 Jé = {j_ c JL.onttd (84 log |Og5_1) THa; }’

e

@ t? is the quantile of order 1 — 5 of the Chi-squared distribution
# {(j k):j€ JQ,K € KJ;} with degrees of freedom.

A

remark
@ A?is only defined through the knowledge of ~;.
@ There is a loss of rate through the loglog term.

o At this near optimal rate, A? is able to detect more functions than the than
the previous test for the chosen precision «.

44 / 46



About the questions on structure (selection of variables or atomic dimension) :

@ "Is x,, a true variable for f?"
The answer depends on the observation of the testing procedure :

Ager(m) = max (A,*

i st imzl).

@ "lIs the atomic dimension of f smaller than § 7"
The answer depends on the observation of the testing procedure :

A seom(8) = max (A; il > 5) .

Notation : * € {na, a}.
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