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I - Introduction: The structural econometric
approach

Structural modelling statistics plus economic theory.

Statistical part: data generated by a probability measure characterized
by a function F

e.g. X ∼ P cdf F

(x1, ...xn) iid sample of X.

Economic model: definition of the objects of interest (parameters,
functions...) denoted in general by ϕ.

Relation between statistics and economics:

an implicit relation:

A(ϕ, F ) = 0

”Inverse problem”.

From the data F is estimated by F̂ and ϕ is estimated by solving
A(ϕ, F̂ ) = 0
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A fundamental example: The GMM

(generalized method of moments).

∃ h(ϕ,X) such that

A(ϕ, F ) = E(h(ϕ,X))

Linear wrt F but not wrt ϕ.

Conditional method of moments:
∃ h(ϕ,X) and Z function of X such that

A(ϕ, F ) = E(h(ϕ,X)|Z)
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Some econometric terms

ϕ ∈ E , F ∈ F A : E × F → H

suitable functional spaces.

Well specified model:

∃(ϕ∗, F∗) such that A(ϕ∗, F∗) = 0 X ∼ F∗

ϕ∗ ∈ E F∗ ∈ F .

Identified model (locally identified).
if A(ϕ, F∗) = 0⇒ ϕ = ϕ∗ ∀F∗
(if A(ϕ, F∗) = 0 and ϕ in a neighborhood of ϕ∗ ⇒ ϕ = ϕ∗)
else {ϕ/A(ϕ, F∗) = 0} identified set.

Non overidentified model.
∀F ∈ F ∃ϕ ∈ E/A(ϕ, F ) = 0 (in particular for an estimator of F ).
else: overidentification.
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A model is well-posed if it is well-specified, identified and non
overidentified and if the unique ϕ corresponding to F is a continuous
function of F .

Exogeneity: X = (Y, Z)

Z is exogenous if the solution of A(ϕ, F ) = 0 does not depend on
the marginal distribution of Z (up to null sets). All the
information on ϕ is captured by the conditional probability of Y
given Z.

Contrary: Endogenous.

Fundamental concept because econometrics is not in general
experimental and because data are generated by equilibrium.
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Linear models

A(ϕ, F ) = rF −KFϕ
KF : E → F linear operator
rF ∈ F
ϕ ∈ E

A simple case: linear functional regression.

Z,ϕ ∈ Hilbert space
Y ∈ R U ∈ R

Y = 〈Z,ϕ〉+ U U random noise E(ZU) = 0

⇒ V arZ︸ ︷︷ ︸
KF

(ϕ) = Cov(Z, Y )︸ ︷︷ ︸
rF
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II - Main characteristics of econometric
inverse problems

Usually we have data (x1, ..., xn) and functional objects r(), ϕ()
depending on the distribution of the data and associated by a
relation

r = T (ϕ)

r̂(.) is an estimation of r and

r̂ = T (ϕ) + U

where U is a noise with known properties
(ex: E(U) = 0 V (U) = Σ) Statistical Inverse Problem
In most of the case T is unknown and should be estimated using
the same data sample (x1, ..., xn).
Ex: T = Covariance Operator

T (ϕ) = E(W 〈Z,ϕ〉)
T : conditional expectation operator

T (ϕ) = E(ϕ(Z)|W )
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The functional parameters of interest are simple (very smooth
and with simple shape).
Prior knowledge on ϕ (increasing, convex) ⇒ Bayesian approach.

But T has also usually an important smoothing power.

The primary estimation of r or T are usually
non parametric estimation

(e.g. r = E(Y |Z) T (ϕ) = E(ϕ(Z)|W ) X = (Y,Z,W ))

⇒ Two levels of selection of the regularisation parameters
(estimation of r and T , inversion of T̂ ).

The operator T may be not injective (or its estimator)
→ Identification problem.
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Three sources of error on the estimation of ϕ.
− Error r̂ − r
− Error T̂ − T
− Regularisation bias

Importance of tests

Parametric model/non parametric
Tests between solutions of different inverse problems.

r̂1 = T1(ϕ1) + U1

r̂2 = T2(ϕ2) + U2
} test ϕ2 = A(ϕ1)

Ex: exogeneity tests.
Tests of shape constraints.
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Successive inverse problems
Ex: r = T (ϕ) r = Distribution function

r may be estimated directly ( 1
n

∑
i 1I(yi ≤ t)) or

r may result from a deconvolution.
r = distribution function of Y ∗ but Y ∗ is not observable and we
observe Y = Y ∗ + η

Ex: ϕ(s, t) solutions of an inverse problem but interest to m(s)
such that

m′(s) = ϕ(s,m(s))

Theory of consumer surplus.

Linear model with a partially unknown operator r = Kσϕ. Joint
estimaton of ϕ and σ (example: convolution model with normal
error and unknown variance).
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III - The Instrumental variables model

III-A

Usual regression model: (Y, Z) ∈ R× Rp

Y = E(Y |Z) + U

= ϕ(Z) + U E(U |Z) = 0

Instrumental variables model: (Y, Z,W ) ∈ R× Rp × Rq

Y = ϕ(Z) + U E(U |W ) = 0

Linear integral equation of type I.∫
ϕ(z)f(z|w)dz =

∫
yf(y|w)dy

Kϕ = r

Very important in econometric: Endogeneity/Selection
bias/treatment models.
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III-B

treatment model (counterfactual model)

Y = ϕ(ζ) + U

ζ non random treatment level
U random component

Assignment mechanism: choice of Z non independent of U . (not
a randomized experiment)

⇒ Y = ϕ(Z) + U but E(U |Z) 6= 0

Identification by observation of W (Instrumental variable)
explaining Z but mean independent of U (E(U |W ) = 0).

endogeneity: systems of equations (linear for simplicity)
Y = aZ + bW1 + U1 (∗)

E

(
U1

U2

∣∣∣W1,W2

)
= 0

Z = cY + dW2 + U2 (∗∗)
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Y

Z
( )**

(*)
observation 

equilibrium 

The two equations are not regression models

(E(U1|Z,W1) 6= 0).
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III-C Identification

Correct specification: r ∈ Range(K).
Identification: K one to one.
Dependence condition between W and Z.
Spaces; L2

Z , L
2
W ... wrt the true distribution.

L2
W does not contain a function orthogonal to L2

W .

( )2
ZL

⊥

2
WL

2
ZL

( )( )| 0E Z Wϕ =

0 (a.s)ϕ⇒ =

In most of the case K is compact (implied by an Hilbert Schmidt
condition) : ∫ (

f(z, w)

f(z)f(w)

)2

f(z)f(w)dzdw <∞

K∗ψ(w) = E(ψ(W )|Z)
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Singular value decomposition of K: (λj , ϕj(z), ψj(w))

K one to one ⇔ λj 6= 0 ∀j.
K one to one: ”Strong Identification”
”Completness”

(remember that in a statistical model a statistic ϕ(x) is complete if
E(ϕ(x)|θ) = 0⇒ ϕ = 0 ϕ ∈ L2.
Lp complete: ϕ ∈ Lp).
Non testable assumption.
Important econometric literature about conditions implying this
property.

Ex:

∣∣∣∣ Y = ϕ(Z) + U
Z = W + V V⊥⊥W Characteristic function of V 6= 0

Non identified model: section IV.
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III-D Regularity

Usual hypothesis: Hölder condition:

ϕ ∈ R(K∗K)
β
2

More generally ϕ ∈ R(g(K∗K))

Hilbert scale assumption
L operator defining an Hilbert scale

ϕ ∈ D(Lb)

K ∼ L−a ∃c, c̄ c‖L−aϕ‖ ≤ ‖Kϕ‖ ≤ c̄‖L−aϕ‖
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III-E Estimation

(yi, zi, wi) iid sample

Tikhonov regularization/kernel estimation

min〈r −Kϕ, r −Kϕ〉+ α〈ϕ,ϕ〉 ⇒ ϕα = (αI +K∗K)−1K∗r

αϕ+ K̂∗K̂ϕ = K̂∗r̂

r̂ = Ê(Y |W ) =

∫
yf̂(y|w)dy

K̂ = Ê(ϕ(Z)|W ) =

∫
ϕ(z)f̂(z|w)dz

K̂∗ = Ê(ψ(W )|Z) =

∫
ψ(W )f̂(w|z)

f̂ estimation by kernel.

Under some approximation this estimation reduces to a matrix
computation.
Alternative: Sieve estimation f̂ and ϕ approximated on a basis of
functions.
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Example:

Y = Z2 + U U = ρV + ε

Z = W + V
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IV - An Unknown operator and possible lack
of identification: Asymptotic theory

Ex: Instrumental variables

E(Y |W ) = E(ϕ(Z)|W )

r = Kϕ

The same data are used for the estimation of r and K, the
conditional expectation operator.
Tikhonov regularisation:

‖r̂ − K̂ϕ‖2 ∼ Op(δ) ϕ ∈ R(K∗K)
β
2

ϕ̂α = (αI + K̂∗K̂)−1K̂∗r̂

ϕ̂α = (αI + K̂∗K̂)−1(K̂∗r̂ − K̂∗K̂ϕ) I

+
[
(αI + K̂∗K̂)−1K̂∗K̂ − (αI +K∗K)−1K∗K)

]
ϕ II

+ (αI +K∗K)−1K∗Kϕ− ϕ III
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I: variance ( δα ) III bias (αβ): I and III are usual.
II: due to the estimation of K

II = −α(αI + K̂∗K̂)−1(K̂∗K̂ −K ′K)(αI +K∗K)−1ϕ

= −α(αI + K̂∗K̂)−1K̂∗(K̂ −K)(αI +K∗K)−1ϕ

−α(αI + K̂∗K̂)−1(K̂∗ − K̂∗)K(αI +K∗K)−1ϕ

−α(αI +K∗K)−1ϕ = ϕ− (αI +K∗K)−1K∗Kϕ
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Two components:

convergence rate of K̂ −K or K̂∗ −K∗
regularisation bias α(αI +K∗K)−1ϕ

If the model is identified (K one ton one) this regularisation bias goes
to 0 at the speed αβ and this contribute to control the second term.
In general case (identified + good assumptions in the estimation of K
and K∗) the second term is negligable and the rate is

Op

(
δ

α
+ αβ

)
If α optimal rate δ

β
β+1 In the IV case: δ = n−

2s
2s+q

s regularity of E(Y |W )
q: clim W

⇒ rate of ‖ϕ̂α − ϕ‖2 −Op
(
n−

2s
2s+q×

β
β+1

)
.

Under more assumptions β = b
a b smoothness of ϕ a=

smoothness of f(Z|W )

s = a+ b E(Y |W ) = E(ϕ(Z)|W )

⇒ rate =n−
2b

a+b+1 (q = 1) 23



Selection of the regularisation parameter
Empirical rules

min
1

α
‖r̂ − K̂ϕ̂α‖2 or min ‖ϕ̂α‖2‖r̂ − K̂ϕ̂α‖2

Extension to IV models of the cross validation approach.

Many extensions:

other regularisation (iterative)

penalization by the norm of derivatives

Asymptotic normality: α fixed (bias) functional result.

α→ 0 :

√
n〈ϕ̂α − ϕ,ψ〉

σ‖α(αI +K∗K)−1ψ‖
→ N(0, 1)
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Non identified model

N (K) 6= {0} ϕ = ϕ0 + ϕ1
ϕ0 ∈ N (K)
ϕ1 ⊥ N (K)

ϕ̂α → ϕ1 under usual assumptions if K is given at a speed
depending on the regularity of ϕ1.
If K is estimated the regularisation bias α(αI +K∗K)−1ϕ does
not go to 0 and the elimination of II require more assumptions on
‖K̂ −K‖ or ‖K̂∗ −K∗‖.
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V - Linear extensions of the Instrumental
variables model

Reduction of the curse of dimensionality

Additive model

Y = ϕ1(Z1) + ϕ2(Z2) + U E(U |W ) = 0

Partially linear model

Y = ϕ(Z) +X ′β + U E(U |W ) = 0

Main question: rate of convergence of β̂. Under which condition
β̂ converges at

√
n speed?
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Transformation models:

ϕ(Y ) = X ′β + U E(U |X,W ) = 0
normalisation on β.
ex: Y ∈ [0, 1] Y probability
Y = F (X ′β + U) ϕ = F−1.
More generally:

ϕ(Y ) = ψ(Z) +X ′β + U E(U |X,W ) = 0

Y, Z ”endogenous”.
Application: Two sided market
Two equations linking two proportions.

ϕ ∈ L2
Y ψ ∈ L2

Z E(ψ) = 0

K(ϕ,ψ) = E(ϕ− ψ|W,X)
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Panel data models.

{
t time
i individual

Yti = ϕ(Zti) + ηi + Uti

ηi heterogeneity effect .E(Uti(|W ) = 0

Yti − Yt1i = ϕ(Zti)− ϕ(Zt1i) + Uti − Ut−1i

ϕ ∈ E E(ϕ(Zt)− ϕ(Zt−1)|W = E(Yti − Yt−1i|W ).

Kϕ = E(ϕ(Zt)− ϕ(Zt−1)|W ).

ϕ is identified up to an additive constant. Estimation of the
derivative of ϕ using a Tikhonov method with a penalty of the
L2 norm of the derivative.
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Discrete endogenous variable models (classification problem)

Y ∗ = ϕ(Z) + U E(U |W ) = 0 (Y,Z,W ) random vector
Y ∗ = E(Y ∗|W )− ε = E(ϕ(Z)|W )− ε
Y ∗ unobservable but Y = 1I(Y ∗ ≥ 0)

Object of interest: ϕ (example of Z treatment).

Assumption: ε is independent of W with a known distribution
characterised by the cdf G.

⇒ We may identified p(W ) = P (Y = 1|W )

⇒ p(W ) = G(E(ϕ(Z)|W )) G−1(p(W ))︸ ︷︷ ︸
r

= E(ϕ(Z)|W )︸ ︷︷ ︸
Kϕ
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VI - Non Linear Inverse problems and
instrumental variables

Quantile models: (Y,Z) ∈ R× Rp random element.

Object of interest: Conditional distribution of Y |Z describes by
its quantile function

Y = ϕ(Z,U)
ϕ(Z, .) ↑ U ∼ U [0, 1] Z⊥⊥U
U = F (Y |Z)
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Quantile Instrumental variables models.

(Y,Z,W ) ∈ R× Rp × Rq
Y = ϕ(Z,U)
ϕ(Z, .) ↑, U ∼ U [0, 1] U⊥⊥W

⇒ ϕ characterized by a non linear integral equation:

F (y, z|w) =
∂

∂z
P (Y ≤ y, Z ≤ z|W = w)

∫
F (ϕ(z, u), z|w)dz = 1 T (ϕ) = 0

F may be estimated non parametrically
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Examples of interest: computation of the (robust) frontier.

Z level of production of a firm
Y cost
U inefficiency component
ϕ(z, o) minimum cost for producting z: efficiency frontier.
ϕ(z, α) α ”small”: Robust frontier

Quantile I.V. estimation of the cost frontier under endogeneity of
the production level.

other example:

Y = Duration
U ∼ Exp(1) U⊥⊥W
ϕ = inverse of integrated hazard

Duration model with endogenous co-factors (not time dependent).
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Identification (unicity of ϕ)

Local identification (unicity in a neighborhood of the true value).
Dependence condition between Z and W given U (conditional
completness).

E (a(Z,U)|W,U)) = 0⇒ a = 0 (a.s)

Global condition: Same type of condition for a family of
perturbations of the true data generating process.
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Estimation: Landweber recursive algorithm.

ϕK+1 = ϕK + T̂ ′∗ϕK (T̂ (ϕK))

→ choice of K : minK‖T (ϕ̂K)‖2

Particular case: Separability assumption.

Y = ϕ1(Z) + ϕ2(U) + U

still with U⊥⊥W

Interest of U⊥⊥W relatively to E(ϕ2(U)|W ) = 0 Identification
and estimation with ”few” instruments.

ex: Z ∈ R W ∈ {0, 1}.
Continuous endogenous variables and discrete instruments.
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VII - Dynamic Instrumental variables models

additively separable cases:
Yt stochastic process.
Two filtrations Zt and Wt

IV decomposition: Yt = ∧t + Ut
such that ∧t is Ft adapted

E(Ut − Us|Ws) = 0 0 ≤ s ≤ t

Then: If dYt = ht dt+ dMt decomposition wrt Wt

⇒ ∧t =

∫ t

0

λsds where λt is the solution of

ht = E(λt|Wt)

Application:

macroeconomic time series models
diffusion process with endogenous explanatory variable in the drift
empirical application to Alzheimer decease.
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Results Bootstrap Distributions of ATE

ATE Distribution Estimates: Exogeneity Assumption
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Results Bootstrap Distributions of ATE

ATE Distribution Estimates: Endogeneity Assumption
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Non separable dynamic models
Objective:

duration models with endogenous co-factors, possibly time
dependent
diffusion depending on endogenous variables in the volatility

Yt process. two filtrations Zt and Wt

Model:
∃ Φt increasing sequence of stopping times relatively to Zt

YΦt = Ut (Us)s⊥⊥(Wt)t

Then:

Xt = Zt ∨ Yt
dYt = ktdt+ dEt wrtXt
Ut = Ht +Mt

⇒

EZ

[∫ Φt

0

E(ks|Ys ∨Ws)ds

]
= Ht

Sequence of non linear integral equations.
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VIII - Linear models between functional
variables

Regression case: Y ∈ F Z ∈ E Hilbert spaces

Y = ΠZ + U

π: linear operator U random noise in F

Cov(Z,U) = 0

iid observations (yi, zi)i=1,...,n

ex:
F = R Y = demand to a service in a geographical zone
(Hospital, Post office, Bank...)
Z: density of population in the zone.
Reduced form of a social network model
u ∈ {1, 2, ...} population of individuals{
Z(u)
Y (u)

variables

Y (u) = f ((Y (v))v 6=u, (Z(v))v) + ε(u)

f restricted by a network structure (possibly unknown).
Structural model.
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Resolution of this model:

Y = g(Z) + U g linear

Time dependent variables. In a geographical zone:

Y (t) = electricity consumption at time t

Z(s) = temperature at time s

Y (t) =

∫
Z(s)π(t, s)ds+ U(t)

Π possibly constrained (triangular, convolution).

Estimation under exogeneity assumption.

min

n∑
i=1

‖yi −Πzi‖2︸ ︷︷ ︸+α ‖Π‖2︸ ︷︷ ︸
norm in F Hilbert Schmidt norm

‖Π‖2 = trΠΠ∗

44



Easy computation:

Π̂∗αψ =
1

n

n∑
i=1

(
〈yi, ψ〉 − 〈zi, Π̂∗αψ〉

)
〈zi, Π̂∗αψ〉 solution of a linear systems.

(αI +M)v = Mw M =
(
〈zi,zj〉
n

)
ij

v =
(
〈zi, Π̂∗αψ〉

)
i

w = (〈yi, ψ〉)i

Rate of convergence, asymptotic normality for fixed α
Source condition: ∃R/Π∗ = r(VZ)R
r analytical function

Ex: Hölder condition r(VZ) = V βZ β > 1 Π∗ = V βz R

→ rate ‖Π̂∗α −Π‖2HS = Op
(

1
nα + αβ∧2

)
Asymptotic normality for fixed α and tests.
Data driven selection of α.
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Discretized variables.

zi, yi not observed but zmi , y
m
i are observed such that

‖zmi − zi‖ ∼ O(f(m)) ‖ymi − yi‖ = O(f(m))

same asymptotic if f(m)
αn = O

(
αβ∧2

)
Endogeneity of Z.

Instruments W Cov(U,W ) = 0

⇒ Cov(Y,W ) = ΠCov(Z,W )

⇒ Π̂∗α = (αI + ĈZW ĈWZ)−1ĈZW ĈWY

Same type of asymptotic results.
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IX - Statistical analysis of game theoretic
models

Definitions

Game models very important in economic literature.
Auctions and procurements
Oligopoly competition
Contract theory (labor contract, principal agent models...)
Many applications in industrial economy

Other applications: psychology, political sciences...
Base line model for games with incomplete information.
One game. N player j = 1, .., N
Each player has a private signal: ξj

ξj iid ξj ∼ F (forexample)

each player knows ξj and F and plays

xj = σ(ξj , F )

σ: strategy (e.g. Nash equilibrium).
The statistician observes x1, ...xn (or the winner only), knows σ
and want estimate F .
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Example: First price auction:
ξj private value of the object xj price proposed by the player

gain of the player

{
0 if xj is not the highest price
ξj − xj if ξj is the highest price.

⇒ Nash equilibrium

xj = ξj −

∫ ξj

0

FN−1(u)du

FN−1(ξj)
if ξj ∈ [0, 1]

many extensions of this model.

ξj non iid
explanatory variables

ξj |Z ∼ F z conditional distribution

σ depends on W
σ not completely given.
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Data: (l, j)

{
l game l = 1, ..., L
j player j = 1, ..., Nl

Parameters: FZ , θ

xjl = σ(ξjl , F
zl , wzl , θ)

xjl, zl and wjl observed

Baseline model: X = σ(ξ, F ) ξ ∼ F

σ(., F ) increasing ξ ∈ [ξ, ξ]

G(x) = P (X ≤ x) = P (ξ ≤ σ−1
F (x)) = F ◦ σ−1

F (x)

G(x) = F ◦ σ−1
F (x)

Inverse problem (non linear in general).

G−1(u) = σF ◦ F−1(u)

quantile form.
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other examples:

Third price auction:

X = ξ +
1

λ
ln

{
1 +

λ

N − 2

F (ξ)

F (ξ)

}
Contract models (simplest case)

X = ξ +
F (ξ)

f(ξ)
f : density of ξ
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The first price private value auction model

Analysis in terms of distribution function.

C = ϕ ◦ σ−1
F = T (F )

Non linear inverse problem. T given.
G estimated by the empirical distribution function (possibly
smoothed).
Numerical regularized solution of Ĉ = T (F ) (iterative method).
Local analysis: Frechet derivative of T :

T ′F (F̃ )(ξ) = α(ξ)F̃ (ξ) + β(ξ)

∫ ξ

0

FN−2(u)F̃ (u)du

α(ξ) =
N
∫ ξ

0
FN−1(u)du

Fw(ξ)
β(ξ) =

−(N − 1)

FN−1(ξ)
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Analysis in terms of quantile functions.
Interest: linear inverse problem:

G−1(u) =
N

αN

∫ α

0

uN−1F−1(u)du

H(u) =
N

αN

∫ α

0

uN−1ψ(u)du

H and ψ quantile functions of the bids and of the prices.

ϕ = F−1 r = G−1α
N

N

r = Kϕ
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Several solutions:

estimation smooth of r

⇒ r′(α) = αN−1F−1(α)

⇒ F̂−1(α) = 1
αN−1

(
Ĝ−1(α)α

N

N

)′
rate of estimation of F̂−1(α)= rate of estimation of G−1(α)′.

G−1 estimated by the empirical quantile function and regularised
inversion. (under boundary restriction and shape constraint).
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The hazard rate games models.

X = σ(ξ, F ) = a(ξ,
F

f
(ξ)) f = F ′

⇒ G−1(α) = a(F−1(α), αF−1′(α)) a given

r = a(ϕ, αϕ′)

Differential equation. Well-posed inverse problem.

Example: Third price auction. Solution :

ϕ(α) =
1

λ
ln

1

αN

∫ α

0

NuN−1eλG
−1(u)du

Asymptotic theory: Application of the behavior of functions of order
statistics.

General results: F−1, F, F−1′ and f converges at the
√
n rate to

Gaussian processes.
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X - Generalized Moments Method and inverse
problems

X-A GMM

One of the more popular approaches in econometrics

X ∼ F iid sample

∃h/EF (h(X, θ)) = 0 dimθ finite

Over identified (F constrained by this equation) if dimh > θ

Extensions to non iid sampling or to conditional moments.

Different approaches in the literature.

min ‖ 1
n

Σh(xi, θ)‖2V
}

GMM
CUE

V may depend on θ

resolution of F min d(F − F̂n)/EF (h) = 0 }GEL

55



Reformulation of the problem.
Parameter:

(θ, f) f density of F wrt π

f ∈ L2
Π such that

∫
h(x, θ)f(x)dπ = 0

r̂n(t) =
1

n

n∑
i=1

k(xi, t) k : X × T → R (T, T , P )

r̂(t) =

∫
k(x, t)f(x)π(dx) + U(t)

E(U) = 0 V ar(U) =
1

n
Σ


r̂ = Kf + U

f ∈ N (Rθ) Rθ(f) =

 ∫
f(x)π(dx) = 1∫
h(x, θ)f(x)π(dx) = 0


possible extension to more general problems.
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X-B

Bayesian analysis

linear models without constraints.

Different notations:

Sampling model

yδ|x ∼ N (Kx, δΣ)

x ∈ X y ∈ y K : X → Y Σ trace class operator

Prior probability

x|α ∼ N(x0,
δ

α
Ωo)

(interesting case: L = Ω
− 1

2s
o defining an Hilbert scale and

K ∼ L−a).
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Hypothesis: R(KΩ
1
2
o ) ⊂ D(Σ−1)

⇒ x|yδ, α ∼ N
(
A(yδ −Kx0) + x0,

δ

α
(Ω0 −AKΩo)

)
A = Ω

1
2
o (αI +B∗B)−1(Σ−

1
2B)∗ continuous

B = Σ−
1
2KΩ

1
2
o

Frequentist analysis of the posterior mean and of the posterior
distribution.

Adaptive selection of α by an empirical bayes method.

µ|α
yδ|µ, α

}
→ yδ|α

yδ|α: dominated model
α̂: max integrated likelihood or positive mode.
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X-C Bayesian GMM

θ ∈ Θ ⊂ Rk

f |θ ∼ N(foθ,Ωoθ)

r̂|f, θ ∼ N(Kf,
1

n
Σ) Σ estimated.
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Prior such that

Prob

(∫
fdπ = 1 and

∫
h(x, θ)f(x)π(x) = 0

)
= 1

Ω
1
2

oθ1 = 0 Ω
1
2

oθh = 0

→ Posterior analysis:

Under some regularity assumption

µ(θ rn) ∝ µ(θ)exp− 1
2

∞∑
j=0

〈
√
n(rn −Kfoθ),Σ−

1
2ψθ〉2

1 + nλj

(ljθ, ψjθ, piθ) SVD of Σ−
1
2KΩ

1
2

oθ

λj eigen values of Ωoθ (independent of θ in some cases).
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Several properties

{
diffuse prior
frequentist asymptotic properties

f |θ, rn ∼ N(f̂oθ, Ω̂θ)

f̂θ = foθ +A(rn −Kfoθ) Ω̂θ = Ωo −AKΩoθ

A = Ω
1
2

oθ

(
1

n
I + Ω

1
2

oθK
∗Σ−1KΩ

1
2

oθ

)−1 (
Σ−1KΩoθ

)∗
f generated by the posterior satisfies the moment conditions.

The posterior of f given θ revises the prior on f except in the
directions of the moments constraints.
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XI - Conclusion

Presentation biased in direction of my own works and of
co-authors and PhD students.

Many others works:

Radom coefficient models

Y = X ′θ θ random X⊥⊥θ

Object of interest: distribution of θ
Lead to

deconvolution on the sphere
Random transform

Functional GMM

E(h(ϕ,X)|Z) = 0 ϕ function

Type II integral equations:

ϕ(z)− E(ϕ(Z1)|Z2 = z) = E(Y |Zz)
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Data driven selection of the regularisation parameter and oracle
inegalities.

More complex functional equations

Yt = ϕ(Zt) + Ut + E

E(Ut − Us|Ws) = 0

Zt diffusion conditional to the filtration generated by Y,Z and W.

dZt = µtdt+ σtdBt

E

(
dYt
dt
|Wt

)
= E

(
∂ϕ

∂z
µt +

1

2

∂2ϕ

∂z2
σ2
t |Wt

)
Development of softwares with a choice of approaches (choice of
the regularisation and of this estimation)

Models on networks or on Riemmanian manifolds (use of the
Laplacian).
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