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Networks arise in many different fields: social sciences, computer science,
statistical physics, biology,. . .

East-river trophic network [Yoon et al.(04)]

Approach

Modeling of real networks as
random graphs.

Statistical analysis of
random graphs.
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Blog Network

Figure : Mutual citations in blogs of politicians. Red: democrats, Blue:
republicans.
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Graph Notation

A simple, undirected graph consists of

a set of vertices (nodes) V = {1, . . . , n}
a set of edges E ⊂ {(i, j) : i, j ∈ V and i 6= j}

2

3

4
5

1

A =


0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0


Adjacency matrix of a graph is defined as A = (Aij) ∈ {0, 1}n×n, where
Aij = 1⇔ (i, j) ∈ E. Symmetric matrix with zeros on the diagonal.
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Network Sequence Model

We observe the entries Aij ∈ {0, 1}, 1 ≤ j < i ≤ n, of the
adjacency matrix A.

Aij = 1 means that the nodes i and j are connected and Aij = 0
otherwise. Set Aii = 0 for all diagonal entries.

Aij are independent Bernoulli r. v. with connection probabilities

Θij = P (Aij = 1), 1 ≤ j < i ≤ n.

Θ0 is a n× n symmetric matrix with entries Θij for 1 ≤ j < i ≤ n
and zero diagonal entries.

The model with such observations Aij , 1 ≤ j < i ≤ n is called the
network sequence model.

Problem 1:

Estimate the matrix of connection probabilities Θ0
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Special case: Stochastic Block Model (SBM)

Parameters:

I Number of nodes n.

I Partition of n nodes into k groups C1, . . . , Ck (communities).

I Symmetric k × k matrix Q of inter-community edge probabilities.

Any two nodes u ∈ Ci and v ∈ Cj are connected with probability Qij .

Degenerate case (k = 1): SBM = Erdös-Rényi model.

SBM’s are basic approximation units for more complex models.
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Example: SBM with k = 2
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Example: SBM with k = 2
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Stochastic Block Model (SBM)

Partition of n nodes into k groups is represented as a mapping

z : {1, . . . , n} → {1, . . . , k}.

Connection probabilities

Θij = Qz(i)z(j), j < i,

where Q is a symmetric k × k matrix of probabilities.

Equivalent writing:
Θij = UTi (z)QUj(z)

where Ui(z) = (I{z(i)=1}, . . . , I{z(i)=k})T is a binary vector in Rk with
one entry =1 and all other entries 0.
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Stochastic Block Model (SBM)

Connection probabilities

Θij = Qz(i)z(j) = UTi (z)QUj(z), j < i,

where where Ui(z) = (I{z(i)=1}, . . . , I{z(i)=k})T is a binary vector in

Rk with one entry =1 and all other entries 0.

Matrix of connection probabilities Θ0 (n× n) is determined by
two parameters: matrix Q (k × k) and node assignment z.

Θ0 = UT (z)QU(z)

with the convention that the diagonal elements are 0, where U(z) is a
matrix with columns Uj(z).
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Problem 1: Probability Matrix Estimation

Problem 1:

Estimate the matrix of connection probabilities Θ0 in the network
sequence model under the Frobenius loss.

Questions:
I Fundamental limits of estimation accuracy - minimax rates of

convergence on suitable classes of matrices Θ0.

I Model misspecification: Oracle inequalities w.r.t. SBM oracle.

Two cases regarding the elementwise sup-norm ‖Θ‖∞.
I Dense graph: ‖Θ‖∞ is fixed.
I Sparse graph: ρn = ‖Θ‖∞ can be as small as possible.

Graphs observed in practice are usually sparse graphs.

Previous work: Gao, Lu, Zhou (2014). Minimax rates for dense
graphs.
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Graphons

Real-life networks are in permanent movement and often their size is
growing. Thus, it make sense to consider graph limits as n→∞.

”Limiting object” independent of the network size n called the
graphon, introduced by Lovász and Szegedy (2004). Random
graph can be viewed as a partial observation of this limiting object.

Graphons are symmetric measurable functions

W : [0, 1]2 → [0, 1].

High level message: every graph limit can be represented by a
graphon.
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The Graphon Model

ξ1, . . . , ξn are unobserved (latent) i.i.d. random variables uniformly
distributed on [0, 1].

For i 6= j, set
Θij = W (ξi, ξj),

and let the diagonal entries Θii = 0.

Graphon Model. Conditionally on ξ = (ξ1, . . . , ξn), the observations
Aij for 1 ≤ j < i ≤ n are independent Bernoulli random variables
with success probabilities Θij .

Remarks

1 Under this model, the observations Aij are not independent.

2 The expected number of edges is ∼ n2 =⇒ dense graph.
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Sparse Graphon

Real-life networks usually sparse :
I the number of edges is o(n2) as n→∞,
I the degree of the graph tends to infinity as n grows.

Sparse Graphon Model:

Θij = ρnW (ξi, ξj) , i < j,

where ρn > 0 such that ρn → 0 as n→∞.

ρn = “expected proportion of non-zero edges”.

Then
I the number of edges is of the order O(ρnn

2),
I the average degree is of the order ρnn.

Sparse graphons are considered by: Bickel, Chen (2009), Bickel,
Chen, Levina 2011),Wolfe, Olhede (2013), Xu et al. (2014)...
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Identifiability of Graphons

Consider a measure-preserving bijection τ : [0, 1]→ [0, 1] (with
respect to the Lebesgue measure).

Take any graphon W (·, ·).

The transformed graphon W (τ(·), τ(·)) induces the same probability
measure on A as W (·, ·).

Therefore, one should consider equivalence classes of graphons.
Identifiability of graphons makes sense only on a suitably defined
quotient space.
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Loss function for graphon estimation

Consider a sparse graphon

f(x, y) = ρnW (x, y)

and its estimator f̃(x, y).

The squared error is defined by

δ2(f, f̃) := inf
τ∈M

∫ ∫
(0,1)2

|f(τ(x), τ(y))− f̃(x, y)|2dxdy

where M is the set of all measure-preserving bijections
τ : [0, 1]→ [0, 1].

δ(·, ·) is a metric on the quotient space of graphons: Lovász (2012).
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Problem 2: Graphon Estimation

Problem 2:

Estimate the sparse graphon function

f(x, y) = ρnW (x, y)

under the δ(·, ·)-loss.

Question: Fundamental limits of estimation accuracy - minimax
rates of convergence on two classes of graphons:

I Step function graphons: analog of SBM.
I Smooth graphons: W is a smooth function of two variables.

Previous work: Wolfe, Olhede (2013). Suboptimal upper bounds
for smooth graphons.

Parallel work: Borgs,Chayes,Smith (2015). Upper bounds for step
function graphons.
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Problem 1: Probability Matrix Estimation

General Idea: Fix an integer k > 0 and estimate the matrix Θ0 by a
block constant matrix with k × k blocks and such that block size is
greater than some given integer n0. Denote the set of such matrices
by

SBM(k, n0).

(1) Least squares estimator: The LS estimator Θ̂ of Θ0 is a
solution of

min
Θ∈SBM(k,n0)

‖A−Θ‖2F .

By convention, for all estimators: zero diagonal entries.
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Restricted least squares estimator

(2) Restricted least squares estimator: The restricted LS

estimator Θ̂
r

of Θ0 is defined as a solution of

min
Θ∈SBM(k,1): ‖Θ‖∞≤r

‖A−Θ‖2F .

Here, r ∈ (0, 1] is a given constant, ‖Θ‖∞ is the maximum of
components norm.

Note that for the restricted LS, we allow for any partitions including
really unbalanced ones (n0 = 1).
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Oracle inequality for the LS estimator

Theorem

For the network sequence model with n0 ≥ 2,

E
[

1

n2
‖Θ̂−Θ0‖2F

]
≤ C min

Θ∈SBM(k,n0)

1

n2
‖Θ0 −Θ‖2F + ∆

where

∆ = C

(
‖Θ0‖∞ +

log(n/n0)

n0

)(
log k

n
+
k2

n2

)
.

Balanced partitions: n0 = n/k =⇒

log(n/n0)

n0
=
k log k

n

and the term containing n0 is negligible for ‖Θ0‖∞ > k log k
n .
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Oracle inequality for the LS estimator

Corollary (First oracle inequality )

For the network sequence model with n0 ≥ 2, balanced partition and
‖Θ0‖∞ > k log k

n ,

E
[

1

n2
‖Θ̂−Θ0‖2F

]
≤ C1 min

Θ∈SBM(k,n0)

1

n2
‖Θ0 −Θ‖2F + ∆

where

∆ = C2‖Θ0‖∞
(

log k

n
+
k2

n2

)
.
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Oracle inequality for the Restricted LS estimator

Theorem (Second oracle inequality )

For the network sequence model with ‖Θ0‖∞ ≤ r, we have

E

[
‖Θ̂r −Θ0‖2F

n2

]
≤ min

Θ∈SBM(k)

C1‖Θ0 −Θ‖2F
n2

+ C2r

(
log k

n
+
k2

n2

)

where Θ̂
r

is the restricted LS estimator.
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Probability matrix estimation: sparse SBM

Given an integer k and any ρn ∈ (0, 1], consider the set of all
probability matrices corresponding to k-class stochastic block model
with connection probability uniformly smaller than ρn:

T [k, ρn] = {Θ0 ∈ SBM(k) : ‖Θ0‖∞ ≤ ρn} .

Theorem (Minimax rate for sparse SBM )

For the network sequence model,

inf
T̂

sup
Θ0∈T [k,ρn]

EΘ0

[
1

n2
‖T̂ −Θ0‖2F

]
� min

(
ρn

( log k

n
+
k2

n2

)
, ρ2n

)
where EΘ0 denotes the expectation with respect to the distribution of A
when the underlying probability matrix is Θ0 and inf

T̂
is the infimum over

all estimators.
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Probability matrix estimation: SBM

Previous work: Gao, Lu, Zhou (2014) cover the dense case ρn = 1.
The minimax rate over T [k, 1] is

log k

n
+
k2

n2
.
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Probability matrix estimation for smooth graphons

Consider now the graphon model.

Smoothness: Assume that the graphon W is in a Hölder ball with
smoothness α > 0.

Approximation of smooth graphon by SBM: If Θ0 is generated by
a ρn-sparse graphon belonging to a Hölder ball with smoothness α,
then

1

n2
min

Θ∈SBM(k)
‖Θ0 −Θ‖2F ≤ Cρ2n

(
1

k2

)α∧1
.

Plugging this into the oracle inequalities we get the bound

ρ2n

(
1

k2

)α∧1
+ ρn

( log k

n
+
k2

n2

)
Remains to minimize over k to achieve optimality.
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Probability matrix estimation for smooth graphons

Denote by W(α, ρn) the class of all sparse graphon models with W in a
Hölder ball with smoothness α > 0.

Theorem (Estimation rate for smooth sparse graphons )

Let ρn ≥ Cn−2+ε with an arbitrarily small ε > 0. Then

inf
T̂

sup
Θ0∈W(α,ρn)

EΘ0

[
1

n2
‖T̂ −Θ0‖2F

]
� ρ

2+α∧1
1+α∧1
n n−

2(α∧1)
1+α∧1︸ ︷︷ ︸

nonparametric

+
ρn log n

n︸ ︷︷ ︸
clustering

.

Two ingredients of the rates:
nonparametric rate and clustering rate ρn logn

n .

The smoothness index α has an impact on the rate only if α ∈ (0, 1)
and only if the network is not too sparse: ρn ≥ Cnα−1(log n)1+α.

For α ≥ 1 the rate is
ρn log n

n
.
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From probability matrix estimation to graphon estimation

To any n× n probability matrix Θ we can associate a graphon.

Given a n× n matrix Θ with entries in [0, 1], define the empirical
graphon f̃Θ as the following piecewise constant function:

f̃Θ(x, y) = Θdnxe,dnye

for all x and y in (0, 1].

This provides a way of deriving an estimator of the graphon function
f(·, ·) = ρnW (·, ·) from any estimator of the connection probability
matrix.

For example, the empirical graphons associated to the LS estimator
and to the restricted LS estimator with threshold r :

f̂ = f̃
Θ̂
, f̂r = f̃

Θ̂
r .
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Agnostic error

For any estimator f̌ of the graphon f = ρnW , we use the loss

δ2(f̌ , f) := inf
τ∈M

∫ ∫
(0,1)2

|f(τ(x), τ(y))− f̌(x, y)|2dxdy

M is the set of all measure-preserving bijections τ .

For any estimator T̂ = T̂ (A) which is an n× n matrix with entries in
[0, 1]:

E
[
δ2(f̃

T̂
, f)
]
≤ 2E

[
1

n2
‖T̂ −Θ0‖2F

]
+ 2E

[
δ2
(
f̃Θ0 , f

)]
︸ ︷︷ ︸

agnostic error

(from the triangle inequality). Here, f̃
T̂

and f̃Θ0 are empirical
graphons; Θ0 is the (random) probability matrix associated to W .

Expectation over the distribution of unobserved ξ1, . . . , ξn.
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Bounding the Agnostic Error

Step function graphons: Let W[k] be the set of all k-step
graphons, i.e., the subset of graphons W such that for some k × k
symmetric matrix Q and some φ : [0, 1]→ [k],

W (x, y) = Qφ(x),φ(y) for all x, y ∈ [0, 1] .

Let Θ0 be the probability matrix associated to W and f = ρnW .
Then the agnostic error satisfies:

E
[
δ2
(
f̃Θ0 , f

)]
≤ Cρ2n

√
k

n
.
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Bound for the δ-risk of step-function graphon

Theorem

Consider the ρn-sparse step-function graphon model: W ∈ W[k]. If
ρn ≤ r, the restricted LS empirical graphon estimator f̂r satisfies

E
[
δ2
(
f̂r, f

)]
≤ C

[
r

(
k2

n2
+

log(k)

n

)
+ ρ2n

√
k

n

]
.
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Bound for the δ-risk of step-function graphon

Assume r � ρn. The achievable rate:

min

(
ρn

(
k2

n2
+

log(k)

n

)
+ ρ2n

√
k

n
, ρ2n

)
.

Three zones:

(i) Weakly sparse graphs: ρn ≥ log(k)√
kn
∨ ( k

n )3/2. The bound is ρ2n
√
k/n

=⇒ the agnostic error dominates. Optimal.

(ii) Moderately sparse graphs: log(k)
n ∨

(
k
n

)2 ≤ ρn ≤ log(k)√
kn
∨
(
k
n

)3/2
.

The bound is ρn
(

k2

n2 + log(k)
n

)
=⇒ the probability matrix estimation

error dominates. Optimal up to logs: Minimax lower bound

ρn

(
k2

n2 + 1
n

)
.

(iii) Highly sparse graphs: ρn ≤ log(k)
n ∨

(
k
n

)2
. The bound of the theorem

is suboptimal. The optimal rate ρ2n is achieved by the estimator f̃ ≡ 0.
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Bound for the δ-risk of smooth graphon

Lemma

For the α-smooth ρn-sparse graphon model the agnostic error is bounded
as

E
[
δ2(f̃Θ0 , f)

]
≤ C ρ2n

nα∧1
.

Theorem

Consider the α-smooth ρn-sparse graphon model. Assume that
r ≥ ρn ≥ Cn−2. Then the restricted LS empirical graphon estimator f̂r
satisfies

E
[
δ2
(
f̂r, f0

)]
≤ C

{
r

2+α∧1
1+α∧1n−

2(α∧1)
1+α∧1 +

r log n

n
+

ρ2n
nα∧1

}
.
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Sharp Oracle Inequality by Aggregation

Let Θij be connection probabilities in a network. Assignment of n
nodes to k classes: z : {1, ..., n} → {1, ..., k}.
Stochastic block model (SBM):

Θij = Qz(i),z(j) = UTi (z)QUj(z)

where Q is a symmetric k × k matrix of probabilities and
Ui(z) = (I{z(i)=1}, . . . , I{z(i)=k})T .

Our aim: when Θij are arbitrary and we observe

Yij = Θij + εij , εij ∼ N (0, σ2) iid,

find an estimator that is as close as possible to the best
approximation of Θij by a SBM.
=⇒ Oracle inequality with SBM oracle.
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Sharp Oracle Inequality by Aggregation

We have M = kn possible assignments z: z1, ..., zM .

To each fixed z we associate the LS estimator: averaging of Yij over
the blocks defined by this assignment.

Thus, we get linear estimators Θ̂
1
, ..., Θ̂

M
of matrix Θ.

For each Θ̂
m

, bias-variance decomposition yields

E‖Θ̂m −Θ0‖2F ≤ min
Q
‖UT (zm)QU(zm)−Θ0‖2F + σ2k2

where ‖ · ‖F is the Frobenius norm.

We aggregate these estimators using the Exponential Weighting

procedure. The aggregate Θ̂
EW

satisfies

E
1

n2
‖Θ̂EW −Θ0‖2F ≤ min

m
E

1

n2
‖Θ̂m −Θ0‖2F + 4σ2

logM

n2
.
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Sharp Oracle Inequality by Aggregation

Combining the two inequalities and M = kn we get

E
1

n2
‖Θ̂EW −Θ0‖2F ≤ min

Q,z

1

n2
‖UT (z)QU(z)−Θ0‖2F︸ ︷︷ ︸

oracle error

+ σ2
(
k2

n2
+

4 logM

n2

)
≤ oracle error + C

(
k2

n2
+

log k

n

)
.

The same oracle error as before:

min
Q,z

1

n2
‖UT (z)QU(z)−Θ0‖2F = min

Θ∈SBM(k)
‖Θ−Θ0‖2F .

Inequality with leading constant 1.

The rate k2

n2 + log k
n is minimax optimal for SBM.
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