Oracle inequalties for network models and sparse graphon estimation

Alexandre Tsybakov ENSAE

joint work with Olga Klopp, Nicolas Verzelen and with Pierre Bellec

Luminy, February 3, 2016

Alexandre Tsybakov

Sparse Graphon Estimation

< □ > < □ > < □ > < □ > < □ > □
 Luminy, February 3, 2016

Networks arise in many different fields: social sciences, computer science, statistical physics, biology,...

East-river trophic network [Yoon et al.(04)]

Approach

- Modeling of real networks as random graphs.
- Statistical analysis of random graphs.

Blog Network

Figure : Mutual citations in blogs of politicians. Red: democrats, Blue: republicans.

Alexandre Tsybakov

Sparse Graphon Estimation

Luminy, February 3, 2016

Graph Notation

A simple, undirected graph consists of

- a set of vertices (nodes) $V = \{1, \dots, n\}$
- a set of edges $E \subset \{(i,j): i,j \in V \text{ and } i \neq j\}$

Adjacency matrix of a graph is defined as $A = (A_{ij}) \in \{0, 1\}^{n \times n}$, where $A_{ij} = 1 \Leftrightarrow (i, j) \in E$. Symmetric matrix with zeros on the diagonal.

4 / 34

くほと くほと くほと

Graph Notation

A simple, undirected graph consists of

- a set of vertices (nodes) $V = \{1, \dots, n\}$
- a set of edges $E \subset \{(i,j): i,j \in V \text{ and } i \neq j\}$

Adjacency matrix of a graph is defined as $\mathbf{A} = (\mathbf{A}_{ij}) \in \{0, 1\}^{n \times n}$, where $\mathbf{A}_{ij} = 1 \Leftrightarrow (i, j) \in E$. Symmetric matrix with zeros on the diagonal.

Network Sequence Model

- We observe the entries $A_{ij} \in \{0,1\}$, $1 \le j < i \le n$, of the adjacency matrix A.
- $A_{ij} = 1$ means that the nodes *i* and *j* are connected and $A_{ij} = 0$ otherwise. Set $A_{ii} = 0$ for all diagonal entries.
- A_{ij} are independent Bernoulli r. v. with connection probabilities

$$\boldsymbol{\Theta}_{ij} = \boldsymbol{P}(\boldsymbol{A}_{ij} = 1), \quad 1 \le j < i \le n.$$

- Θ_0 is a $n \times n$ symmetric matrix with entries Θ_{ij} for $1 \le j < i \le n$ and zero diagonal entries.
- The model with such observations A_{ij} , $1 \le j < i \le n$ is called the **network sequence model**.

Problem 1:

Estimate the matrix of connection probabilities Θ_0

Alexanc	Ire 7	Гsyb	oako∖
---------	-------	------	-------

イロト 不得 トイヨト イヨト 二日

Special case: Stochastic Block Model (SBM)

• Parameters:

- ▶ Number of nodes *n*.
- Partition of n nodes into k groups C_1, \ldots, C_k (communities).
- Symmetric $k \times k$ matrix Q of inter-community edge probabilities.
- Any two nodes $u \in C_i$ and $v \in C_j$ are connected with probability Q_{ij} .
- Degenerate case (k = 1): SBM = Erdös-Rényi model.

SBM's are basic approximation units for more complex models.

6 / 34

イロト 不得 トイヨト イヨト 二日

Alexandre Tsybakov

7 / 34 Luminy, February 3, 2016

3

Stochastic Block Model (SBM)

• Partition of n nodes into k groups is represented as a mapping

$$z: \{1,\ldots,n\} \to \{1,\ldots,k\}.$$

• Connection probabilities

$$\Theta_{ij} = \boldsymbol{Q}_{z(i)z(j)}, \quad j < i,$$

where Q is a symmetric $k \times k$ matrix of probabilities.

• Equivalent writing:

$$\boldsymbol{\Theta}_{ij} = U_i^T(z) \boldsymbol{Q} U_j(z)$$

where $U_i(z) = (\mathbb{I}_{\{z(i)=1\}}, \dots, \mathbb{I}_{\{z(i)=k\}})^T$ is a binary vector in \mathbb{R}^k with one entry =1 and all other entries 0.

イロト 不得下 イヨト イヨト 二日

Stochastic Block Model (SBM)

Connection probabilities

$$\boldsymbol{\Theta}_{ij} = \boldsymbol{Q}_{z(i)z(j)} = U_i^T(z) \boldsymbol{Q} U_j(z), \quad j < i,$$

where where $U_i(z) = (\mathbb{I}_{\{z(i)=1\}}, \dots, \mathbb{I}_{\{z(i)=k\}})^T$ is a binary vector in \mathbb{R}^k with one entry =1 and all other entries 0.

• Matrix of connection probabilities Θ_0 $(n \times n)$ is determined by two parameters: matrix Q ($k \times k$) and node assignment z.

$$\boldsymbol{\Theta}_0 = \boldsymbol{U}^T(\boldsymbol{z})\boldsymbol{Q}\boldsymbol{U}(\boldsymbol{z})$$

with the convention that the diagonal elements are 0, where U(z) is a matrix with columns $U_i(z)$.

Problem 1: Probability Matrix Estimation

Problem 1:

Estimate the matrix of connection probabilities Θ_0 in the **network** sequence model under the Frobenius loss.

- Questions:
 - Fundamental limits of estimation accuracy minimax rates of convergence on suitable classes of matrices Θ_0 .
 - Model misspecification: Oracle inequalities w.r.t. SBM oracle.
- Two cases regarding the elementwise sup-norm $\|\Theta\|_{\infty}$.
 - **Dense graph**: $\|\Theta\|_{\infty}$ is fixed.
 - Sparse graph: $\rho_n = \|\Theta\|_{\infty}$ can be as small as possible.

Graphs observed in practice are usually sparse graphs.

 Previous work: Gao, Lu, Zhou (2014). Minimax rates for dense graphs.

Graphons

- Real-life networks are in permanent movement and often their size is growing. Thus, it make sense to consider graph limits as n → ∞.
- "Limiting object" independent of the network size *n* called the graphon, introduced by Lovász and Szegedy (2004). Random graph can be viewed as a partial observation of this limiting object.
- Graphons are symmetric measurable functions

$$W: [0,1]^2 \to [0,1].$$

• High level message: every graph limit can be represented by a graphon.

The Graphon Model

- ξ₁,...,ξ_n are unobserved (latent) i.i.d. random variables uniformly distributed on [0, 1].
- For $i \neq j$, set

$$\Theta_{ij} = W(\xi_i, \xi_j),$$

and let the diagonal entries $\Theta_{ii} = 0$.

• Graphon Model. Conditionally on $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$, the observations \boldsymbol{A}_{ij} for $1 \leq j < i \leq n$ are independent Bernoulli random variables with success probabilities $\boldsymbol{\Theta}_{ij}$.

Remarks

() Under this model, the observations A_{ij} are not independent.

2 The expected number of edges is $\sim n^2 \Longrightarrow$ dense graph.

- 3

イロト イポト イヨト イヨト

Sparse Graphon

• Real-life networks usually sparse :

- \blacktriangleright the number of edges is $o(n^2)$ as $n \to \infty$,
- the degree of the graph tends to infinity as n grows.

• Sparse Graphon Model:

$$\Theta_{ij} = \rho_n W(\xi_i, \xi_j) \quad , i < j,$$

where $\rho_n > 0$ such that $\rho_n \to 0$ as $n \to \infty$.

Then

- the number of edges is of the order $O(\rho_n n^2)$,
- the average degree is of the order $\rho_n n$.
- Sparse graphons are considered by: Bickel, Chen (2009), Bickel, Chen, Levina 2011), Wolfe, Olhede (2013), Xu et al. (2014)...

イロン イボン イヨン イヨン 三日

- Consider a measure-preserving bijection $\tau:[0,1] \rightarrow [0,1]$ (with respect to the Lebesgue measure).
- Take any graphon $W(\cdot, \cdot)$.
- The transformed graphon $W(\tau(\cdot), \tau(\cdot))$ induces the same probability measure on A as $W(\cdot, \cdot)$.
- Therefore, one should consider equivalence classes of graphons. Identifiability of graphons makes sense only on a suitably defined quotient space.

Loss function for graphon estimation

• Consider a sparse graphon

$$f(x,y) = \rho_n W(x,y)$$

and its estimator $\tilde{f}(x, y)$.

• The squared error is defined by

$$\delta^2(f,\tilde{f}) := \inf_{\tau \in \mathcal{M}} \int \int_{(0,1)^2} |f(\tau(x),\tau(y)) - \tilde{f}(x,y)|^2 \mathrm{d}x \mathrm{d}y$$

where $\mathcal M$ is the set of all measure-preserving bijections $\tau:[0,1]\to [0,1].$

• $\delta(\cdot, \cdot)$ is a metric on the quotient space of graphons: Lovász (2012).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Problem 2: Graphon Estimation

Problem 2:

Estimate the sparse graphon function

$$f(x,y) = \rho_n W(x,y)$$

under the $\delta(\cdot, \cdot)$ -loss.

- **Question:** Fundamental limits of estimation accuracy minimax rates of convergence on two classes of graphons:
 - Step function graphons: analog of SBM.
 - **Smooth graphons**: *W* is a smooth function of two variables.
- Previous work: Wolfe, Olhede (2013). Suboptimal upper bounds for smooth graphons.
- Parallel work: **Borgs, Chayes, Smith (2015)**. Upper bounds for step function graphons.

イロト 不得下 イヨト イヨト 二日

Problem 1: Probability Matrix Estimation

• General Idea: Fix an integer k > 0 and estimate the matrix Θ_0 by a block constant matrix with $k \times k$ blocks and such that block size is greater than some given integer n_0 . Denote the set of such matrices by

 $SBM(k, n_0).$

(1) Least squares estimator: The LS estimator Θ of Θ₀ is a solution of

$$\min_{\boldsymbol{\Theta}\in \mathrm{SBM}(k,n_0)} \|\boldsymbol{A}-\boldsymbol{\Theta}\|_F^2.$$

By convention, for all estimators: zero diagonal entries.

A	lexa	ndr	еT	sy	ba	k٥١	J
---	------	-----	----	----	----	-----	---

• (2) Restricted least squares estimator: The restricted LS estimator $\widehat{\Theta}^r$ of Θ_0 is defined as a solution of

$$\min_{\boldsymbol{\Theta} \in \mathrm{SBM}(k,\mathbf{1}): \|\boldsymbol{\Theta}\|_{\infty} \leq \mathbf{r}} \|\boldsymbol{A} - \boldsymbol{\Theta}\|_{F}^{2}.$$

Here, $r\in(0,1]$ is a given constant, $\|\mathbf{\Theta}\|_{\infty}$ is the maximum of components norm.

• Note that for the restricted LS, we allow for any partitions including really unbalanced ones $(n_0 = 1)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Oracle inequality for the LS estimator

Theorem

For the network sequence model with $n_0 \ge 2$,

$$\mathbb{E}\left[\frac{1}{n^2}\|\widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0\|_F^2\right] \le C \min_{\boldsymbol{\Theta} \in \text{SBM}(k,n_0)} \frac{1}{n^2} \|\boldsymbol{\Theta}_0 - \boldsymbol{\Theta}\|_F^2 + \Delta$$

where

$$\Delta = C\left(\|\mathbf{\Theta}_0\|_{\infty} + \frac{\log(n/n_0)}{n_0}\right) \left(\frac{\log k}{n} + \frac{k^2}{n^2}\right).$$

Balanced partitions: $n_0 = n/k \Longrightarrow$

$$\frac{\log(n/n_0)}{n_0} = \frac{k\log k}{n}$$

and the term containing n_0 is negligible for $\|\mathbf{\Theta}_0\|_{\infty} > \frac{k \log k}{n}$.

Corollary (First oracle inequality)

For the network sequence model with $n_0 \ge 2$, balanced partition and $\|\Theta_0\|_{\infty} > \frac{k \log k}{n}$,

$$\mathbb{E}\left[\frac{1}{n^2}\|\widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0\|_F^2\right] \le C_1 \min_{\boldsymbol{\Theta} \in \text{SBM}(k,n_0)} \frac{1}{n^2} \|\boldsymbol{\Theta}_0 - \boldsymbol{\Theta}\|_F^2 + \Delta$$

where

$$\Delta = C_2 \|\boldsymbol{\Theta}_0\|_{\infty} \left(\frac{\log k}{n} + \frac{k^2}{n^2}\right).$$

Alexanc	Ire 🛛	Fsyba	kov
---------	-------	-------	-----

Theorem (Second oracle inequality)

For the network sequence model with $\|\mathbf{\Theta}_0\|_{\infty} \leq r$, we have

$$\mathbb{E}\left[\frac{\|\widehat{\boldsymbol{\Theta}}^r - \boldsymbol{\Theta}_0\|_F^2}{n^2}\right] \le \min_{\boldsymbol{\Theta}\in \mathrm{SBM}(k)} \frac{C_1 \|\boldsymbol{\Theta}_0 - \boldsymbol{\Theta}\|_F^2}{n^2} + C_2 r \left(\frac{\log k}{n} + \frac{k^2}{n^2}\right)$$

where $\widehat{\boldsymbol{\Theta}}^r$ is the restricted LS estimator.

Probability matrix estimation: sparse SBM

• Given an integer k and any $\rho_n \in (0, 1]$, consider the set of all probability matrices corresponding to k-class stochastic block model with connection probability uniformly smaller than ρ_n :

$$\mathcal{T}[k,\rho_n] = \left\{ \boldsymbol{\Theta}_0 \in \mathrm{SBM}(k) : \| \boldsymbol{\Theta}_0 \|_{\infty} \le \rho_n \right\}.$$

Theorem (Minimax rate for sparse SBM)

For the network sequence model,

$$\inf_{\widehat{\boldsymbol{T}}} \sup_{\boldsymbol{\Theta}_0 \in \mathcal{T}[k,\rho_n]} \mathbb{E}_{\boldsymbol{\Theta}_0} \left[\frac{1}{n^2} \| \widehat{\boldsymbol{T}} - \boldsymbol{\Theta}_0 \|_F^2 \right] \asymp \min\left(\rho_n \left(\frac{\log k}{n} + \frac{k^2}{n^2} \right), \rho_n^2 \right)$$

where \mathbb{E}_{Θ_0} denotes the expectation with respect to the distribution of A when the underlying probability matrix is Θ_0 and $\inf_{\widehat{T}}$ is the infimum over all estimators.

Alexandre T	syl	ba	ko١
-------------	-----	----	-----

イロト イポト イヨト イヨト

• Previous work: Gao, Lu, Zhou (2014) cover the dense case $\rho_n = 1$. The minimax rate over $\mathcal{T}[k, 1]$ is

$$\frac{\log k}{n} + \frac{k^2}{n^2}.$$

イロト 不得下 イヨト イヨト 二日

Probability matrix estimation for smooth graphons

- Consider now the graphon model.
- Smoothness: Assume that the graphon W is in a Hölder ball with smoothness $\alpha > 0$.
- Approximation of smooth graphon by SBM: If Θ_0 is generated by a ρ_n -sparse graphon belonging to a Hölder ball with smoothness α , then

$$\frac{1}{n^2} \min_{\mathbf{\Theta} \in \text{SBM}(k)} \|\mathbf{\Theta}_0 - \mathbf{\Theta}\|_F^2 \le C\rho_n^2 \left(\frac{1}{k^2}\right)^{\alpha \wedge 1}$$

Plugging this into the oracle inequalities we get the bound

$$\rho_n^2 \left(\frac{1}{k^2}\right)^{\alpha \wedge 1} + \rho_n \left(\frac{\log k}{n} + \frac{k^2}{n^2}\right)$$

Remains to minimize over k to achieve optimality.

Probability matrix estimation for smooth graphons

Denote by $\mathcal{W}(\alpha, \rho_n)$ the class of all sparse graphon models with W in a Hölder ball with smoothness $\alpha > 0$.

Theorem (Estimation rate for smooth sparse graphons) Let $\rho_n \geq C n^{-2+\epsilon}$ with an arbitrarily small $\epsilon > 0$. Then $\inf_{\widehat{T}} \sup_{\Theta_0 \in \mathcal{W}(\alpha, \rho_n)} \mathbb{E}_{\Theta_0} \left[\frac{1}{n^2} \| \widehat{T} - \Theta_0 \|_F^2 \right] \asymp \underbrace{\rho_n^{\frac{2+\alpha\wedge 1}{1+\alpha\wedge 1}} n^{-\frac{2(\alpha\wedge 1)}{1+\alpha\wedge 1}}}_{n} + \underbrace{\rho_n \log n}_{n}$ nonparametric clustering

• Two ingredients of the rates: **nonparametric rate** and **clustering rate** $\frac{\rho_n \log n}{r}$.

n

• The smoothness index α has an impact on the rate only if $\alpha \in (0, 1)$ and only if the network is not too sparse: $\rho_n \ge C n^{\alpha-1} (\log n)^{1+\alpha}$.

• For
$$\alpha \ge 1$$
 the rate is $\frac{\rho_n \log n}{n}$

From probability matrix estimation to graphon estimation

- To any $n \times n$ probability matrix Θ we can associate a graphon.
- Given a $n \times n$ matrix Θ with entries in [0, 1], define the **empirical** graphon \widetilde{f}_{Θ} as the following piecewise constant function:

$$\widetilde{f}_{\boldsymbol{\Theta}}(x,y) = \boldsymbol{\Theta}_{\lceil nx\rceil,\lceil ny\rceil}$$

for all x and y in (0, 1].

- This provides a way of deriving an estimator of the graphon function $f(\cdot, \cdot) = \rho_n W(\cdot, \cdot)$ from any estimator of the connection probability matrix.
- For example, the empirical graphons associated to the LS estimator and to the restricted LS estimator with threshold r:

$$\widehat{f} = \widetilde{f}_{\widehat{\Theta}}, \qquad \widehat{f}_r = \widetilde{f}_{\widehat{\Theta}^r}.$$

Agnostic error

• For any estimator \check{f} of the graphon $f = \rho_n W$, we use the loss

$$\delta^2(\check{f},f) := \inf_{\tau \in \mathcal{M}} \int \int_{(0,1)^2} |f(\tau(x),\tau(y)) - \check{f}(x,y)|^2 \mathrm{d}x \mathrm{d}y$$

 ${\cal M}$ is the set of all measure-preserving bijections $\tau.$

• For any estimator $\widehat{T} = \widehat{T}(A)$ which is an $n \times n$ matrix with entries in [0,1]:

$$\mathbb{E}\left[\delta^{2}(\widetilde{f}_{\widehat{T}}, f)\right] \leq 2\mathbb{E}\left[\frac{1}{n^{2}}\|\widehat{T} - \Theta_{0}\|_{F}^{2}\right] + 2\underbrace{\mathbb{E}\left[\delta^{2}\left(\widetilde{f}_{\Theta_{0}}, f\right)\right]}_{\text{agnostic error}}$$

(from the triangle inequality). Here, $\tilde{f}_{\hat{T}}$ and \tilde{f}_{Θ_0} are empirical graphons; Θ_0 is the (random) probability matrix associated to W.

• Expectation over the distribution of **unobserved** ξ_1, \ldots, ξ_n .

• Step function graphons: Let $\mathcal{W}[k]$ be the set of all k-step graphons, i.e., the subset of graphons W such that for some $k \times k$ symmetric matrix Q and some $\phi : [0, 1] \rightarrow [k]$,

$$W(x,y) = \boldsymbol{Q}_{\phi(x),\phi(y)} \quad \text{ for all } x,y \in [0,1]$$

Let Θ_0 be the probability matrix associated to W and $f = \rho_n W$. Then the agnostic error satisfies:

$$\mathbb{E}\left[\delta^2\left(\widetilde{f}_{\Theta_0}, f\right)\right] \le C\rho_n^2 \sqrt{\frac{k}{n}} \ .$$

Alexandre Tsybakov

Sparse Graphon Estimation

< □ > < □ > < □ > < □ >
 Luminy, February 3, 2016

Bound for the δ -risk of step-function graphon

Theorem

Consider the ρ_n -sparse step-function graphon model: $W \in \mathcal{W}[k]$. If $\rho_n \leq r$, the restricted LS empirical graphon estimator \hat{f}_r satisfies

$$\mathbb{E}\left[\delta^2\left(\widehat{f}_r, f\right)\right] \le C\left[r\left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) + \rho_n^2\sqrt{\frac{k}{n}}\right]$$

Alexandre Tsybakov

Sparse Graphon Estimation

< □ > < ≥ > < ≥ > ≥
Luminy, February 3, 2016

Bound for the δ -risk of step-function graphon

• Assume $r \simeq \rho_n$. The achievable rate:

$$\min\left(\rho_n\left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) + \rho_n^2\sqrt{\frac{k}{n}}, \, \rho_n^2\right).$$

- Three zones:
 - (i) Weakly sparse graphs: $\rho_n \geq \frac{\log(k)}{\sqrt{kn}} \vee (\frac{k}{n})^{3/2}$. The bound is $\rho_n^2 \sqrt{k/n}$ \implies the agnostic error dominates. **Optimal.**
 - (ii) Moderately sparse graphs: $\frac{\log(k)}{n} \vee \left(\frac{k}{n}\right)^2 \le \rho_n \le \frac{\log(k)}{\sqrt{kn}} \vee \left(\frac{k}{n}\right)^{3/2}$. The bound is $\rho_n \left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) \Longrightarrow$ the probability matrix estimation error dominates. Optimal up to logs: Minimax lower bound $\rho_n \left(\frac{k^2}{n^2} + \frac{1}{n}\right)$.
 - (iii) Highly sparse graphs: $\rho_n \leq \frac{\log(k)}{n} \vee \left(\frac{k}{n}\right)^2$. The bound of the theorem is suboptimal. The optimal rate ρ_n^2 is achieved by the estimator $\tilde{f} \equiv 0$.

Bound for the δ -risk of smooth graphon

Lemma

For the α -smooth ρ_n -sparse graphon model the agnostic error is bounded as

$$\mathbb{E}\left[\delta^2(\widetilde{f}_{\Theta_0}, f)\right] \le C \frac{\rho_n^2}{n^{\alpha \wedge 1}}.$$

Theorem

Consider the α -smooth ρ_n -sparse graphon model. Assume that $r \geq \rho_n \geq C n^{-2}$. Then the restricted LS empirical graphon estimator \hat{f}_r satisfies

$$\mathbb{E}\left[\delta^2\left(\widehat{f}_r, f_0\right)\right] \le C\left\{r^{\frac{2+\alpha\wedge 1}{1+\alpha\wedge 1}}n^{-\frac{2(\alpha\wedge 1)}{1+\alpha\wedge 1}} + \frac{r\log n}{n} + \frac{\rho_n^2}{n^{\alpha\wedge 1}}\right\}.$$

イロト 不得下 イヨト イヨト 二日

Sharp Oracle Inequality by Aggregation

- Let Θ_{ij} be connection probabilities in a network. Assignment of n nodes to k classes: $z : \{1, ..., n\} \rightarrow \{1, ..., k\}$.
- Stochastic block model (SBM):

$$\boldsymbol{\Theta}_{ij} = \boldsymbol{Q}_{z(i), z(j)} = U_i^T(z) \boldsymbol{Q} U_j(z)$$

where Q is a symmetric $k \times k$ matrix of probabilities and $U_i(z) = (\mathbb{I}_{\{z(i)=1\}}, \dots, \mathbb{I}_{\{z(i)=k\}})^T$.

• Our aim: when Θ_{ij} are arbitrary and we observe

$$Y_{ij} = \mathbf{\Theta}_{ij} + \epsilon_{ij}, \quad \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \ iid,$$

find an estimator that is as close as possible to the best approximation of Θ_{ij} by a SBM. \implies Oracle inequality with SBM oracle.

Alexandre Tsybakov

Sharp Oracle Inequality by Aggregation

- We have $M = k^n$ possible assignments $z: z^1, ..., z^M$.
- To each fixed z we associate the LS estimator: averaging of Y_{ij} over the blocks defined by this assignment.
- Thus, we get linear estimators $\hat{\boldsymbol{\Theta}}^1, \dots, \hat{\boldsymbol{\Theta}}^M$ of matrix $\boldsymbol{\Theta}$.
- For each $\hat{\Theta}^m$, bias-variance decomposition yields

$$\mathbb{E}\|\hat{\boldsymbol{\Theta}}^m - \boldsymbol{\Theta}_0\|_F^2 \le \min_{\boldsymbol{Q}} \|U^T(z^m)\boldsymbol{Q}U(z^m) - \boldsymbol{\Theta}_0\|_F^2 + \sigma^2 \boldsymbol{k}^2$$

where $\|\cdot\|_F$ is the Frobenius norm.

 We aggregate these estimators using the Exponential Weighting procedure. The aggregate $\hat{\Theta}^{EW}$ satisfies

$$\mathbb{E}\frac{1}{n^2}\|\hat{\boldsymbol{\Theta}}^{EW} - \boldsymbol{\Theta}_0\|_F^2 \le \min_m \mathbb{E}\frac{1}{n^2}\|\hat{\boldsymbol{\Theta}}^m - \boldsymbol{\Theta}_0\|_F^2 + 4\sigma^2 \frac{\log M}{n^2}$$

Sharp Oracle Inequality by Aggregation

 $\bullet\,$ Combining the two inequalities and $M=k^n$ we get

$$\begin{split} \mathbb{E} \frac{1}{n^2} \| \hat{\boldsymbol{\Theta}}^{EW} - \boldsymbol{\Theta}_0 \|_F^2 &\leq \underbrace{\min_{\boldsymbol{Q}, z} \frac{1}{n^2} \| U^T(z) \boldsymbol{Q} U(z) - \boldsymbol{\Theta}_0 \|_F^2}_{\text{oracle error}} \\ &+ \sigma^2 \left(\frac{k^2}{n^2} + \frac{4 \log M}{n^2} \right) \\ &\leq \operatorname{oracle error} + C \left(\frac{k^2}{n^2} + \frac{\log k}{n} \right). \end{split}$$

• The same oracle error as before:

$$\min_{\boldsymbol{Q},z} \frac{1}{n^2} \| \boldsymbol{U}^T(z) \boldsymbol{Q} \boldsymbol{U}(z) - \boldsymbol{\Theta}_0 \|_F^2 = \min_{\boldsymbol{\Theta} \in \text{SBM}(k)} \| \boldsymbol{\Theta} - \boldsymbol{\Theta}_0 \|_F^2.$$

- Inequality with leading constant 1.
- The rate $\frac{k^2}{n^2} + \frac{\log k}{n}$ is minimax optimal for SBM.

Alexandre Tsybakov