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Many modern systems gather feedback data about the
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Many modern systems gather feedback data about the
preferences of their users

This ranking data only asks to be analyzed.

⇒ Over the past 15 years, the statistical analysis of ranking data
has become a subfield of the machine learning literature.



However, ranking data also arise in many other applications

Example 1: Elections

Set of candidates {A,B,C ,D}. A voter can give for instance

I her favorite candidate, e.g. B � A,C ,D.

I a full ordering of the candidates, e.g. B � D � A � C

The collection of ballots in an election is a dataset of rankings.
⇒ How to elect the winner(s)?

Borda-Condorcet
debate since the

18th century

Jean-Charles de Borda Nicolas de Condorcet



However, ranking data also arise in many other applications

Example 2: Competitions

Set of participants {1, . . . , n}.
The results of a game can be for instance

I Victory of i against j : i � j
(e.g. in football, chess, . . . )

I Ranking of the participants of the game:
i1 � · · · � ik
(e.g. races, video games, . . . )

The results of the games of a competition
form a dataset of rankings.

⇒ What is the ranking of the competition?



However, ranking data also arise in many other applications

Example 3: Surveys

Set of items {1, . . . , n}.
A respondent can be asked to give for instance

I Her top-3 items: i1, i2, i3 � the rest

I Her top-3 ranking of items: i1 � i2 � i3 � the rest

The answers to a survey constitute a dataset of rankings.

⇒ How to summarize the results?
⇒ How to segment respondents based on their answers?



The analysis of ranking data spreads over many fields of
the scientific literature

I Machine learning

I Social choice theory

I Economics

I Psychology

I Operational Research

I Artificial intelligence



Many efforts to bring them together

NIPS 2001 New Methods for Preference Elicitation
NIPS 2002 Beyond Classification and Regression
KI 2003 Preference Learning
NIPS 2004 Learning with Structured Outputs
NIPS 2005 Learning to Rank
IJCAI 2005 Advances in Preference Handling
SIGIR 07-10 Learning to Rank for Information Retrieval
ECML/PKDD 08-10 Preference Learning
NIPS 09 Advances in Ranking
AIM Workshop 2010 The Mathematics of Ranking
NIPS 2011 Choice Models and Preference Learning
EURO 09-16 Special track on Preference Learning
ECAI 2012 Preference Learning
DA2PL 2012,2014 From Decision Analysis to Preference Learning
Dagstuhl 2014 Seminar on Preference Learning
NIPS 2014 Analysis of Rank Data



Outline

Why ranking data?

The analysis of ranking data

Harmonic analysis on Sn

The need for a new representation

The MRA representation

Conclusion



Definitions

Set of items JnK := {1, . . . , n}

Definition (Ranking)

A ranking is a strict partial order ≺ over JnK, i.e. a binary relation
satisfying the following properties:

Irreflexivity For all a ∈ JnK, a 6≺ a

Transitivity For all a,b, c ∈ JnK, if a ≺ b and b ≺ c then a ≺ c

Asymmetry For all a, b ∈ JnK, if a ≺ b then b 6≺ a

Shortcut notations:

I a � b � c instead of (a � b, a � c , b � c)

I a � b, c instead of (a � b, a � c)



Main types of rankings

I Full ranking. All the items are ranked, without ties

a1 � · · · � an

I Partial ranking. All the items are ranked, with ties

a1,1, . . . , a1,n1 � · · · � ar ,1, . . . , ar ,nr with
r∑

i=1

ni = n

I Incomplete ranking. Only a subset of items are ranked,
without ties

a1 � · · · � ak with k < n

One can further consider incomplete and partial rankings.



General setting

Perform some task on a dataset of N rankings DN = (≺1, . . . ,≺N).

Examples

I Top-1 recovery: Find the “most preferred” item in DN

e.g. Output of an election

I Aggregation: Find a full ranking that “best summarizes” DN

e.g. Ranking of a competition

I Clustering: Split DN into clusters
e.g. Segment customers based on their answers to a survey

I Prediction: Predict the outcome of a missing pairwise
comparison in a ranking ≺
e.g. In a recommendation setting



Detailed example: analysis of full rankings

Notation.

I The full ranking a1 � · · · � an is denoted by a1 . . . an
I Also seen as the permutation σ that maps an item to its rank:

a1 � · · · � an ⇔ σ ∈ Sn such that σ(ai ) = i

Sn: set of permutations of JnK, the symmetric group.

Probabilistic Modeling. The dataset is a collection of random
permutations drawn IID from a probability distribution p over Sn:

DN = (Σ(1), . . . ,Σ(N)) with Σ(i) ∼ p

p is called a ranking model.



Detailed example: analysis of full rankings

Example, dataset from [Croon, 1989]

After the fall of the Berlin wall a survey of German citizens was
conducted where they were asked to rank four political goals

1. Maintain order

2. Give people more say in government

3. Fight rising prices

4. Protect freedom of speech



Detailed example: analysis of full rankings

Example, dataset from [Croon, 1989]

They collected 2,262 answers

Ranking Answers Ranking Answers
1234 137 3124 330
1243 29 3142 294
1324 309 3214 117
1342 255 3241 69
1423 52 3412 70
1432 93 3421 34
2134 48 4123 21
2143 23 4132 30
2314 61 4213 29
2341 55 4231 52
2413 33 4312 35
2431 39 4321 27



Detailed example: analysis of full rankings

Questions

I How to analyze a dataset of permutations
DN = (Σ(1), . . . ,Σ(N))?

I How to characterize the variability?

I What can be inferred?



Detailed example: analysis of full rankings

Notation:

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
= (σ(1), σ(2), . . . , σ(n))

A random permutation Σ can be seen as a random vector

(Σ(1), . . . ,Σ(n)) ∈ Rn

But

I The random variables Σ(1), . . . ,Σ(n) are highly dependent

I The sum Σ + Σ′ is not a random permutation
⇒ No law of large numbers nor central limit theorem on Sn

I No natural notion of variance for Σ



Detailed example: analysis of full rankings

The set of permutations Sn is finite, compute the histogram:

0

0.5

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

But

I Exploding cardinality: |Sn| = n!. E.g. 20! = 2.4× 1018

⇒ Few statistical relevance



Detailed example: analysis of full rankings

Apply a method from p.d.f. estimation (e.g. kernel density
estimation):

0

0,1

0,2

1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

But

I No canonical ordering of the rankings



Detailed example: analysis of full rankings

No canonical ordering of the rankings
Lexicographical ordering

0

0,1

0,2

1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Random ordering
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0,1

0,2

1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321



Detailed example: analysis of full rankings

More generally: many possible distances on Sn

I Kendall’s tau distance

d(σ, π) =
∑

1≤i<j≤n
I{σ and π disagree on {i , j}}

I Spearman’s rho distance (l2 norm)

d(σ, π) =

(
n∑

i=1

(σ(i)− π(i))2

)1/2

I Footrule distance (l1 norm)

d(σ, π) =
n∑

i=1

|σ(i)− π(i)|

I Many others: Hamming, Cayley, Ulam, . . .



Detailed example: analysis of full rankings

More generally: many possible graph structures on Sn

I Adjacent transpositions

σ and π are neighbors if π = (i i + 1)σ with 1 ≤ i ≤ n − 1

I All transpositions

σ and π are neighbors if π = (i j)σ with 1 ≤ i 6= j ≤ n

I Star graph

σ and π are neighbors if π = (1 k)σ with 2 ≤ k ≤ n

I ...



Detailed example: analysis of full rankings

More generally: many possible embeddings of Sn

I Permutation matrices

Sn → Rn×n, σ 7→ Pσ with Pσ(i , j) = I{σ(i) = j}

I embedding in a sphere

I embedding as angles

I . . .



Detailed example: analysis of full rankings

Exploit any of the combinatorial or algebraic properties of Sn

But

I Ranking data are very natural for human beings
⇒ Statistical modeling should capture some interpretable
structure



Detailed example: analysis of full rankings

“Parametric” approach

I Fit a predefined generative model on the data

I Analyze the data through that model

I Infer knowledge with respect to that model

“Nonparametric” approach

I Choose a structure on Sn

I Analyze the data with respect to that structure

I Infer knowledge through a “regularity” assumption



Detailed example: analysis of full rankings

Parametric approach - classic models

I Mallows model [Mallows, 1957]

p(σ) = Ce−γd(σ0,σ) with σ ∈ Sn and γ ∈ R+

I Plackett-Luce model [Luce, 1959], [Plackett, 1975]

p(σ) =
n∏

i=1

wσi∑n
j=i wσj

with wi ∈ R+

I Thurstone model [Thurstone, 1927]

p(σ) =

∫
x1>···>xn

n∏
i=1

fi (xi )dxi with fi p.d.f. on R



Detailed example: analysis of full rankings

Examples of nonparametric approaches

I Distance-based modeling

I Independence modeling

I Embedding in euclidean space

I Pairwise decomposition

I Sparsity assumption

I Sampling-based models

I Algebraic toric models

I Harmonic analysis
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Ranking models can be analyzed through their marginals

Law of Σ
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Ranking models can be analyzed through their marginals

The law of Σ(i) for i ∈ JnK is naturally given by

P[Σ(i) = j ] =
∑

σ∈Sn, σ(i)=j

p(σ)

It is called a marginal of p of order 1.

Marginals of order 2

I Unordered: law of Σ({i1, i2})

P[Σ({i1, i2}) = {j1, j2}] =
∑

σ∈Sn, σ({i1,i2})={j1,j2}

p(σ)

I Ordered: law of Σ((i1, i2))

P[Σ((i1, i2)) = (j1, j2)] =
∑

σ∈Sn, σ((i1,i2))=(j1,j2)

p(σ)
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Ranking models can be analyzed through their marginals

In general, one can consider the law of (Σ(A1), . . . ,Σ(Ar )), where
(A1, . . . ,Ar ) is an ordered partition of JnK:

P [Σ(A1) = B1, . . . ,Σ(Ar ) = Br ] =
∑
σ∈Sn

σ(A1)=B1,...,σ(Ar )=Br

p(σ)

It is called a marginal of order λ := (|A1|, . . . , |Ar |)

Remark: λ is a partition of n, i.e. λ ∈ Nr is such that
λ1 ≥ · · · ≥ λr ≥ 1 and

∑r
i=1 λi = n

Example
λ = (n − 1, 1) Order 1
λ = (n − 2, 2) Order 2, unordered
λ = (n − 2, 1, 1) Order 2, ordered



Ranking models can be analyzed through their marginals

Let Mλp denote all the marginals of p of order λ.

Analyzing the marginals has two main purposes

1. For each λ, Mλp focus on some part of the variability of p

2. In a statistical setting, instead of considering the
n!-dimensional empirical estimator

p̂N =
1

N

N∑
t=1

δΣ(t) ,

analyzing Mλp̂N allows to reduce the dimension

Example: M(n−1,1)p̂N ∈ Rn×n ⇒ dim = n2
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Ranking models can be analyzed through their marginals

What λ to choose?

Marginals have a structure



Marginals contain nested part of information

Example: Order (n − 2, 1, 1) marginals induce order (n − 1, 1)
marginals

For i , j ∈ JnK, one has

P[Σ(i) = j ] =
n∑

j ′=1
j ′ 6=j

P[Σ(i) = j ,Σ(i ′) = j ′] for any i ′ 6= i

⇒ There is a linear operator Φ : Rn(n−1)×n(n−1) → Rn×n such that

Φ : M(n−2,1,1)p 7→ M(n−1,1)p

⇒ The knowledge of M(n−2,1,1)p induces the knowledge of
M(n−1,1)p



Marginals contain nested part of information

More generally, one can show the following result

Proposition

λ-marginals are nested according to an order E on partitions of n.
In particular:

(n) E (n − 1, 1) E (n − 2, 2) E (n − 2, 1, 1) E · · ·E (1, . . . , 1)

where

I (n) is order 0: M(n)p =
∑

σ∈Sn
p(σ)

I (1, . . . , 1) is highest order: M(1,...,1)p = p



Marginals contain nested part of information

Dimension

Ranking model on Sn p n!

∪
· · · ↓
∪

Ordered order 2 marginals M(n−2,1,1)p n2(n − 1)2

∪ ↓
Unordered order 2 marginals M(n−2,2)p

(n
2

)2

∪ ↓
Order 1 marginals M(n−1,1)p n2

∪ ↓
Order 0 marginal M(n)p 1



Ranking models can be analyzed through their marginals

What λ to choose?

With Fourier analysis



Fourier analysis on the symmetric group in a nutshell

Introduced by Persi Diaconis in [Diaconis, 1988]
Many developments since then (e.g. [Huang et al., 2009],
[Kondor and Barbosa, 2010], [Kakarala, 2011]).

Definition (Fourier transform)

The Fourier transform of a function f : Sn → R is defined by

F : f 7→
(
f̂ (λ)

)
λ

with f̂ (λ) =
∑
σ∈Sn

f (σ)ρλ(σ)

where σ 7→ ρλ(σ) is an irreducible representation of Sn.

Analogy with Fourier series
σ 7→ ρλ(σ) is the equivalent of ek : x 7→ e2iπkx

f̂ (λ) is the equivalent of f̂ (k) = 〈f , ek〉



Fourier transform on the symmetric group in a nutshell

Some differences with the classic Fourier transform

I Fourier coefficients are matrices: f̂ (λ) ∈ Rdλ×dλ

I “Frequencies” λ are partitions of n (no natural interpretation)

Satisfies though some classic properties

I Parseval identity

I Inverse Fourier transform

I Turns convolution into (matrix) product

I Fast Fourier Transform



f̂ (λ) localizes specific information the λ-marginals of f

We recall that E is the order on partitions of n such that

λD µ ⇔ Mλf induces Mµf

Theorem (Young’s rule, informal)

For any λ,
Mλp “=” p̂(λ) + F ((Mµp)µCλ)

where F is some function



f̂ (λ) localizes specific information the λ-marginals of f

Example

I p̂(n) localizes information specific to order 0 marginal:

p̂(n) = M(n)p

(
:=

∑
σ∈Sn

p(σ)

)

I p̂(n − 1, 1) localizes information specific to order 1 marginals:

M(n−1,1)p “=” p̂(n − 1, 1) + F (M(n)p)

I p̂(n − 2, 2) localizes information specific to unordered order 2
marginals:

M(n−2,2)p “=” p̂(n − 2, 2) + F (M(n−1,1)p + M(n)p)



Analysis through the Fourier transform

Marginal Fourier coefficient

Ranking model on Sn p p̂(1, . . . , 1)

∪
· · · ↓
∪

Ordered order 2 marginals M(n−2,1,1)p p̂(n − 2, 1, 1)

∪ ↓
Unordered order 2 marginals M(n−2,2)p p̂(n − 2, 2)

∪ ↓
Order 1 marginals M(n−1,1)p p̂(n − 1, 1)

∪ ↓
Order 0 marginal M(n)p p̂(n)



Analysis through the Fourier transform

The Fourier transform allows to measure how much information is
contained in each order λ:

‖f ‖2 =
∑
λ

dλ‖f̂ (λ)‖2 (Parseval identity)

Example on the dataset from [Croon, 1989]

λ (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

dλ‖f̂ (λ)‖2

‖f ‖2 49% 33% 17% 1% 0%

The analysis can then go much further
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λ-marginals localize absolute rank information.



Rank information

Permutation

(
1 2 3 4 5
2 5 4 3 1

)
↔ Ranking 5 � 1 � 4 � 3 � 2

Absolute rank information

I What is the rank σ(3) of item
3? 4

I What item σ−1(2) is ranked at
2nd position? 1

I What are the ranks σ({2, 4, 5})
of items {2, 4, 5}? {5, 3, 1}

Relative rank information

I How are items 1 and 3
relatively ordered? 1 � 3

I How are the items of the
subset {2, 4, 5} relatively
ordered? 5 � 4 � 2



Rank information

Permutation σ ↔ Ranking σ−1(1) � · · · � σ−1(n)

Absolute rank information

I What is the rank σ(i) of item i?

I What item σ−1(j) is ranked at
j th position?

I What are the ranks σ({i , j , k})
of items {i , j , k}?

Relative rank information

I How are items a and b
relatively ordered?

I How are the items of the
subset A relatively
ordered?



Rank information

rnd Permutation Σ ↔ rnd Ranking Σ−1(1) � · · · � Σ−1(n)

Absolute rank information

I What is the law of the rank
Σ(i) of item i ?

I What is the law of the item
Σ−1(j) ranked at j th position?

I What is the law of the ranks
Σ({i , j , k}) of items {i , j , k}?

Relative rank information

I What is the probability
P[Σ(a) < Σ(b)] that a is
ranked higher than b?

I What is the law of the
ranking Σ|A induced by Σ
on the subset A?



Relative marginals provide a different point of view

Law of Σ
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Relative marginals provide a different point of view

Definition (Induced ranking)

For σ ∈ Sn and A ⊂ JnK with |A| ≥ 2, we denote by σ|A the
ranking induced by σ on the items of A.

e.g. σ = 24153, σ|{2,3,5} = 253

Definition (Relative marginals)

The marginal of p on a subset A ⊂ JnK with |A| ≥ 2 is the law of
the ranking Σ|A, given by

MAp = P[Σ|A = π] =
∑

σ∈Sn, σ|A=π

p(σ)



Marginals localize nested levels of rank information

Example

The knowledge of the marginal on {a, b, c} induces the knowledge
of the marginal on {b, c}.

P[Σ(b) < Σ(c)] = P[Σ(a) < Σ(b) < Σ(c)]

+ P[Σ(b) < Σ(a) < Σ(c)]

+ P[Σ(b) < Σ(c) < Σ(a)]



Corresponds to the structure of subsets

p

M{1,2,3}f M{1,2,4}p M{1,3,4}p M{2,3,4}p

M{1,2}p M{1,3}p M{1,4}p M{2,3}p M{2,4}p M{3,4}p

⇒ We need to localize the part of information specific to each
relative marginal



Another need: The analysis of incomplete rankings

In many situations one only observes incomplete rankings

a1 � · · · � ak with k � n

e.g. Users usually express preferences on small subsets of items

Probabilistic modeling

Each observed ranking is modeled as a couple (A,Π) where

A ∼ ν probability distribution over 2JnK

Π|(A = A) ∼ MAp marginal of p



Another need: The analysis of incomplete rankings

Dataset of incomplete rankings DN = ((A1,Π1), . . . , (AN ,ΠN))

One can construct the empirical estimator of MAp for A observed
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Another need: The analysis of incomplete rankings

I How to combine knowledge inferred on each subset A?

I How can we transfer knowledge between subsets A?
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We need to localize information specific to each marginal
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The MRA representation allows to localize the part of
information of each relative marginal

Theorem ([Clémençon et al., 2014], informal)

We construct a “wavelet transform”

Ψ : p 7→ (ΨB f )B⊂JnK, |B|6=1

Such that for any A ⊂ JnK with |A| 6= 1,

MAp “=” ΨAp + F ((MBp)B A, |B|6=1)

where F is some function



The MRA representation allows to localize the part of
information of each relative marginal

Example

I Ψ∅p localizes level 0 information

Ψ∅p = M∅p :=
∑
σ∈Sn

p(σ)

I Ψ{a,b}p localizes the part of information specific to M{a,b}p

M{a,b}p “=” Ψ{a,b}p + F (M∅p)

I Ψ{a,b,c}p localizes the part of information specific to M{a,b,c}p

M{a,b,c}p “=” Ψ{a,b,c}p+F (M{a,b}p+M{a,c}p+M{b,c}p+M∅p)



The MRA representation allows to localize the part of
information of each relative marginal

p

M{1,2,3}p M{1,2,4}p M{1,3,4}p M{2,3,4}p

M{1,2}p M{1,3}p M{1,4}p M{2,3}p M{2,4}p M{3,4}p



The MRA representation allows to localize the part of
information of each relative marginal

Ψ{1,2,3,4}p

Ψ{1,2,3}p Ψ{1,2,4}p Ψ{1,3,4}p Ψ{2,3,4}p

Ψ{1,2}p Ψ{1,3}p Ψ{1,4}p Ψ{2,3}p Ψ{2,4}p Ψ{3,4}p



Ingredients of the proof

I Linear algebra

I Combinatorics of words

I Recent result in algebraic topology
(from [Reiner et al., 2013])



Application 1: solving linear systems

The MRA representation allows to characterize the functions
p : Sn → R with know marginal values:

MAp = GA for A ∈ A

where A is any collection of subsets.



Application 1: solving linear systems
p

0

0,5

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

M{1,2,3}p M{1,2,4}p M{1,3,4}p M{2,3,4}p

0

0,5

1

123 132 213 231 312 321
0

0,5

1

124 142 214 241 412 421
0

0,5

1

134 143 314 341 413 431
0

0,5

1

234 243 324 342 423 432

M{1,2}p M{1,3}p M{1,4}p M{2,3}p M{2,4}p M{3,4}p

0

0,5

1

12 21
0

0,5

1

13 31
0

0,5

1

14 41
0

0,5

1

23 32
0

0,5

1

24 42
0

0,5

1

34 43



Application 1: solving linear systems
p

-0,2

0,3

0,8

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

M{1,2,3}p M{1,2,4}p M{1,3,4}p M{2,3,4}p

0

0,5

1

123 132 213 231 312 321
0

0,5

1

124 142 214 241 412 421
0

0,5

1

134 143 314 341 413 431
0

0,5

1

234 243 324 342 423 432

M{1,2}p M{1,3}p M{1,4}p M{2,3}p M{2,4}p M{3,4}p

0

0,5

1

12 21
0

0,5

1

13 31
0

0,5

1

14 41
0

0,5

1

23 32
0

0,5

1

24 42
0

0,5

1

34 43



Application 2: Analysis through relative marginals

Question: which subsets of items capture most of the
variability of p?

I If we remove the wavelet coefficient ΨAp in p then the error
of the approximation is

(n − |A|+ 1)!‖ΨAp‖2

NB: the decomposition is not orthogonal, this procedure should be
applied as an Orthogonal Matching Pursuit



Application 2: Analysis through relative marginals

Example, on the dataset from [Croon, 1989]

0

0.5

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321



Application 2: Analysis through relative marginals

Example, on the dataset from [Croon, 1989]

‖Ψ{1,2,3,4}p‖2

2‖Ψ{1,2,3}p‖2 2‖Ψ{1,2,4}p‖2 2‖Ψ{1,3,4}p‖2 2‖Ψ{2,3,4}p‖2

6‖Ψ{1,2}p‖2 6‖Ψ{1,3}p‖2 6‖Ψ{1,4}p‖2 6‖Ψ{2,3}p‖2 6‖Ψ{2,4}p‖2 6‖Ψ{3,4}p‖2



Application 2: Analysis through relative marginals

Example, on the dataset from [Croon, 1989]

0.03

0.02 0.04 0.03 0.02

0.64 0.01 0.89 0.66 0.05 0.98



Application 3: Analysis of incomplete rankings

Dataset of incomplete rankings DN = ((A1,Π1), . . . , (AN ,ΠN))

General framework

1. Construct empirical estimator P̂A for each observed A

2. Compute ΨP̂A

3. Compute the global wavelet estimator

Ψ̂B =
1

|{1 ≤ i ≤ N | B ⊂ Ai}|
∑
A

ΨP̂A

⇒ Can be computed with a complexity that only depends on the
dataset and not on the number of items n



Application 3: Analysis of incomplete rankings

1. Dataset of incomplete rankings
DN = ((A1,Π1), . . . , (AN ,ΠN))

2. Compute global wavelet estimator Ψ̂B

3. Use it to perform a statistical task in the feature space of
wavelet coefficients

Examples of statistical tasks

I Ranking aggregation

I Regularization for inverse problem

I Conditional prediction

I . . .
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Conclusion

Ranking data is fun!

Its analysis presents great and interesting challenges:

I Most of the maths from euclidean spaces cannot be applied

I But our intuitions still hold
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I But our intuitions still hold



Conclusion

What I did not talk about

I Computational aspects (Fast Wavelet Transform)

I Connection with Fourier analysis

I Many other connections (social choice theory, shuffling, . . . )

What we are working on (future directions)

I Applications to various statistical problems

I How to define efficient regularization procedures?

I How to extend to incomplete rankings with ties?

I How to extend to items with features?



Thank you
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