
Eigenvalue-free risk bounds for PCA projectors

Andre Mas
IMAG, Univ. Montpellier

joint work with many people (G. Biau, E. Brunel, C. Crambes, N.
Hilgert, A. Roche, F. Ruymgaart, N. Verzelen)

CIRM, February 2016

CIRM, February 2016 1 / 21



Random Projections vs PCA

Two kinds of projections usually encountered in ML :

Principal components/PCA and variants : projection space depends
on the data. Real projections i.e. P2 = P.

“Random projections” (RP) : projection space independent from the
data. Not real projections but rectangle matrices with nrows<ncols
filled with i.i.d. (Gaussian/Rademacher) entries.

RP are used in sparse recovery, compressed sensing, etc. Allow effective
dimension reduction for sparse signals through Johnson-Lindenstrauss
Lemma and Restricted Isometry Property.
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Focus on functional PCA

fPCA=PCA adapted to samples of random functions. Adapted to
high-dimensional data as well.

Principle does not change : retrieve the spectrum
(eigenvalues-eigenvectors) of a covariance operator

Main feature : optimal linear reconstruction. Consider X random with
cov. matrix Σ and Pk the set of orth. projections with rank k . Then,
under general conditions :

min
Pk∈Pk

E ‖X − PkX‖2 = min
Pk∈Pk

tr
[
P⊥k ΣP⊥k

]
is obtained for principal components of X (= s.v.d. of Σ here).

Numerous variants in ML : sparse PCA, kernel/non linear PCA...
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Notations and Set-up

H = L2 ([0, 1]) or W2,m ([0, 1]) with inner product 〈·, ·〉 and norm ‖·‖
X1,X2, ...Xn sample of i.i.d random elements with values in H and
EX1 = 0 :

Σ = E (X1 ⊗ X1) = E 〈X1, ·〉X1 =
+∞∑
i=1

λk (ϕk ⊗ ϕk) ,

Σn =
1

n

n∑
k=1

Xk ⊗ Xk Σnϕ̂i = λ̂i ϕ̂i

(λk)k∈N∗ ∈ l+1 ,with λ1 > ... > λk > ... > 0

Rank one projector : πi = ϕi ⊗ ϕi .

Projection onto span{ϕ1, ..., ϕk} : Pk =
∑k

i=1 πi .

Empirical counterparts : π̂i = ϕ̂i ⊗ ϕ̂i and P̂k =
∑k

i=1 π̂i .
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Smoothness of processes and eigenvalues decay

Karhunen-Loeve development : X =
∑+∞

j=1

√
λjξjϕj

[Kind of random generalized Fourier series]

a=−1.5
a=−2
a=−2.9

Figure: Three examples of random curves with λj = ja and the same ξj ’s.
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Motivation-Goals

Σ ≈ infinite size matrix, Σ trace-class, Σ−1 unbounded (not coercive)

No specific model on X (e.g: signal+ noise) or Σ (spiked covariance
structure not suited to functional setting)

Bound with high probability the norms of : π̂i − πi and P̂k − Pk

Usually upper bounds are (roughly) ‖π̂i − πi‖2
∞ ≺ 1/ (nλi ) or 1/ (nδi )

with δi = min (|λi − λi+1| , |λi−1 − λi |)
Previous bound degenerates if λi = e−mi or λi = i−α for large α

Not that shocking if eig.vec. estimation seen as fixed point pb
Σnϕ̂i/λ̂i = ϕ̂i . If i ↑ ∞ pb no more well posed 7→ price to pay...

But paradox ? X may be concentrated on low dimensional space →
convergence of π̂i could be slow even for i in low dimensions.

Why not some simulations now ?
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Some simulations before theory...
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MC simulation of E ‖π̂k − πk‖2
∞ with M = 500 replications, sample size n = 500 and

X =
∑kmax

j=1

√
λjξjej with kmax = 20, ξj Gaussian, ej Fourier basis and trΣ = 1. Red

curve : k2 fit
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√
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From covariance to projectors : perturbation theory and
functional calculus

Notice
∣∣∣λ̂k − λk ∣∣∣ ≤ ‖Σn − Σ‖∞ ≤ ‖Σn − Σ‖2 .

Is it possible to get π̂k = fk (Σn) and πk = fk (Σ) ?

So that π̂k − πk = fk (Σn)− fk (Σ) ' gk (Σn − Σ) with ‘nice’ gk

Functional calculus defines f (M) where M and f (M) matrices or
operators for certain classes of functions f . Two kinds:

Spectral FC � M selfadjoint � f Borel bounded on R � Main tool :
Resolution of the identity (Spectral Theorem)

Perturbation FC � any M � f holomorphic � Main tool : Resolvent
(Kato’s theory)
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Projection via perturbation in a nutshell

Take λk ∈ C and let Ωk a closed oriented contour around λk (say a
circle) separating λk from the other eigenvalues

Use Cauchy integral properties to compute :

1

2πι

∮
Ωk

dz

z − λl
=

{
1 k = l
0 k 6= l

Switch from scalar to operator form and apply eigenvectors :

1

2πι

∮
Ωk

(zI − Σ)−1 (ϕl) dz =
1

2πι

∮
Ωk

dz

z − λl
ϕl =

{
ϕk k = l
0 k 6= l

Then
πk = 1

2πι

∫
Ωk

(zI − Σ)−1 dz and π̂k = 1
2πι

∫
Ω̂k

(zI − Σn)−1 dz ,

!!! Ω̂k is a random contour of C. Control of the location of eigenvalues
(concentration inequalities) then π̂k = 1

2πι

∫
Ωk

(zI − Σn)−1 dz + rn
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0 λk · · · λ2 λ1

2δk 2δ2 2δ1

Figure: Contour made of disjoint circles (court. A. Roche)

Typical contour to define one or more πk ’s
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Two examples of classical contours

0 λm+1 λm · · · λ1 2λ1

−1

1

∂Λk

δm

Figure: Rectangular contour (court. A. Roche)

Typical contour to define Pm, projector associated with the m first
eigenvalues.
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Main results 1/2:

Let ak =
∑

i 6=k
λi

|λi−λk | + λk

δk
.

Theorem (lower bound) Take X Gaussian and ak/
√
n < 0.5 then :

E ‖π̂k − πk‖2
∞ ≥

1

2n

∑
j 6=k

λkλj/ (λj − λk)2

︸ ︷︷ ︸
Mk

−4
a4
k

n2

If λk ∝ k−α then Mk � k2/n and ak ≺ k log k

If λk ∝ exp (−αk) then Mk � 1/n and ak ≺ k ... but k3/n should be small.

N.B.1 : the constants depend on the eigenvalues, the rate not really.

N.B.2 : If ∃γ > 0, jλj log1+γ (j) ↓ 0, then ak ≤ c (γ) k log k.
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Back to simulations
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MC simulation of E ‖π̂k − πk‖2
∞ with M = 500 replications, sample size n = 500 and

X =
∑kmax

j=1

√
λjξjej with kmax = 20, ξj Gaussian, ej Fourier basis and trΣ = 1. Red

curve : k2 fit
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Main results 2/2

Theorem (Upper bound for reconstruction) : Take u =Xi or u =Xn+1 or

u nonrandom with supi |〈u, ϕi 〉|2 /λi < 1 then for all n ≥ 2 and k ≥ 2:

E
∥∥∥(P̂k − Pk

)
u
∥∥∥2

≤ κc0 exp

(
−c1

n

a2
k

)
︸ ︷︷ ︸

Ek,n

+c2 ·
a2
k

n
log2 n ·

 k∑
j=1

√
jδj

2

where κ = (2b − 1)
∑

i λ
2
i + (trΣ)2. No assumption on λk .

Polynomial decay : Upper bound ≺ k2 [log k log n]2
/n

Exp. decay : Upper bound ≺ k2 log2 n/n but k2 ≤ exp (αk) ≈ 1/δk

Same kind of bounds for E ‖π̂k − πk‖2
∞ and for E ‖ϕ̂k − ϕk‖2

Previous rates may be improved with projection MS error:

‖Pk − Pk‖∞︸ ︷︷ ︸
uniform

� ‖(Pk − Pk) u‖︸ ︷︷ ︸
strong

� 〈(Pk − Pk) u, v〉︸ ︷︷ ︸
weak
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Application to high-dimensional kernel estimation

Take X in high dim. space, Y ∈ R and consider modified non parametric
regression : rk (x) = E (Y |PkX = x) with x ∈ Im (Pk)

r̂ (x) =

∑n
i=1 YiK

(∥∥∥P̂k (Xi − x)
∥∥∥ /h)∑n

i=1 K
(∥∥∥P̂k (Xi − x)

∥∥∥ /h) .

r∗(x)=
∑n

i=1 YiK(‖Pk (Xi−x)‖/h)∑n
i=1

K(‖Pk (Xi−x)‖/h)
.

Question : is it possible to get E [r̂ (x)− r∗ (x)]2 ≺ τ (n, k) ? with
τ (n, k)= Minimax rate in NP regression in Rk

(and with an almost free choice of h, please)

Prop : Non asymptotic bound for all h and k subject to k > 2,
0 ≤ h ≤ hmax < 1

E [r̂ (x)− r∗ (x)]2 ≤ c6
k4

nh2
log2 n log

(
h
√
n

k2

)
.
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Application to linear inference for functional data

Model generalizes linear regression to functional input/ouput

Functional with scalar output : y = 〈β,X 〉+ ε =
∫
β (s)X (s) ds + ε

∆ = E (yX ) = Σβ =⇒ ∆n = Σnβn implicit equation.

Estimation of β requires inversion/regularization of Σn 7→ linear
inverse problem with unknown operator

Many recipes : penalization/Tikhonov/thresholding...

PCA=spectral cut : Σ†n =
∑k

j=1 λ̂
−1
j (êj ⊗ êj)

Main goal not βn but predictor 〈βn,Xn+1〉
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Why PCA ?

Consider bias=approx error for prediction after projection with Pk
(which is any k-dimensional projector)

E 〈Pkβ − β,X 〉2 = E 〈β, (I − Pk)X 〉2 ≤ ‖β‖2 E ‖(I − Pk)X‖2

PCA: good candidate for projection basis with no prior on β

Avoids decoupling assumptions : smoothness of X / smoothness of β

Provide minimax adaptive estimators

Allows minimax adaptive testing as well

Mean Square Pred. Risk : log n/n even if eigenvalues AND β Fourier
coeff decay at exponential rate ≈ highly ill-posed.
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Example of estimation results : Set L =
∥∥Σ1/2β

∥∥,

ϕ (j) = λj 〈β, ϕj〉2 /L2 and k∗n as the integer part of the unique solution of
the integral equation (in x) :

1

x

∫ +∞

x
ϕ (x) dx =

1

n

σ2
ε

L2
. (1)

then with Rn(L, ϕ) = supΣ1/2β∈L2(L,ϕ) E 〈βn − β,Xn+1〉2

lim sup
n→+∞

n

k∗n
Rn (L, ϕ) = 2σ2

ε

If ϕa (j) ∝
(
j2+α (log j)β

)−1

,Rn (L, ϕa) ∝ (log n)β/(2+α)

n(1+α)/(2+α) ,

If ϕb (j) ∝ exp (−αj),Rn (L, ϕb) ≤ log n
αn .

Besides infT̂ supΣ1/2β∈L2(ϕ,L) E
∥∥∥T̂ (Xn+1)− S (Xn+1)

∥∥∥2

� k∗
n

n
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Thank you for your attention.
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