Subgaussian estimators of the mean

Matthieu Lerasle

CNRS, Nice

with L. Devroye, G. Lugosi and R. Oliveira

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Subgaussian estimators

Let \mathcal{P} be a family of probability measures P on \mathbb{R} with respective mean E_P and variance σ_P^2 . Let $n \in \mathbb{N} \setminus \{0\}$, L > 0 and $x_n > 0$.

Subgaussian estimators

Let \mathcal{P} be a family of probability measures P on \mathbb{R} with respective mean E_P and variance σ_P^2 . Let $n \in \mathbb{N} \setminus \{0\}$, L > 0 and $x_n > 0$.

Definition

1. A single-*x L*-subgaussian estimator on (\mathcal{P}, x_n) is a map $\widehat{E} : \mathbb{R}^n \times [0, x_n] \to \mathbb{R}$ such that, for any $P \in \mathcal{P}$, if $X_1^n = (X_1, \dots, X_n) \sim P^{\otimes n}$,

$$\forall x \leq x_n, \qquad \mathbb{P}\left(\left|\widehat{E}(X_1^n, x) - E_P\right| > L\sigma_P \sqrt{\frac{1+x}{n}}\right) \leq e^{-x}.$$

Hereafter, we denote by $\widehat{E}_x(.) = \widehat{E}(., x)$.

Subgaussian estimators

Let \mathcal{P} be a family of probability measures P on \mathbb{R} with respective mean E_P and variance σ_P^2 . Let $n \in \mathbb{N} \setminus \{0\}$, L > 0 and $x_n > 0$.

Definition

1. A single-*x L*-subgaussian estimator on (\mathcal{P}, x_n) is a map $\widehat{E} : \mathbb{R}^n \times [0, x_n] \to \mathbb{R}$ such that, for any $P \in \mathcal{P}$, if $X_1^n = (X_1, \dots, X_n) \sim P^{\otimes n}$,

$$\forall x \leq x_n, \qquad \mathbb{P}\left(\left|\widehat{E}(X_1^n, x) - E_P\right| > L\sigma_P \sqrt{\frac{1+x}{n}}\right) \leq e^{-x}.$$

Hereafter, we denote by $\widehat{E}_x(.) = \widehat{E}(., x)$.

2. A multiple-*x L*-subgaussian estimator on (\mathcal{P}, x_n) is a map $\widehat{\mathcal{E}} : \mathbb{R}^n \to \mathbb{R}$ such that, for any $\mathcal{P} \in \mathcal{P}$, if $X_1^n = (X_1, \ldots, X_n) \sim \mathcal{P}^{\otimes n}$,

$$\forall x \leq x_n, \qquad \mathbb{P}\left(\left|\widehat{E}(X_1^n) - E_P\right| > L\sigma_P \sqrt{\frac{1+x}{n}}\right) \leq e^{-x}$$

Position of the problem

Our goal is to find, for some large classes $\mathcal{P} \subset \mathcal{P}_2$, the largest x_n for which there exists subgaussian estimators over (\mathcal{P}, x_n) .

Position of the problem

Our goal is to find, for some large classes $\mathcal{P} \subset \mathcal{P}_2$, the largest x_n for which there exists subgaussian estimators over (\mathcal{P}, x_n) .

Example of classes:

$$\mathcal{P}_{2}^{\sigma} = \{ \boldsymbol{P} \in \mathcal{P}_{2}, \text{ s. t. } \sigma_{\boldsymbol{P}} = \sigma \} \quad .$$
$$\mathcal{P}_{2}^{\leq \sigma} = \{ \boldsymbol{P} \in \mathcal{P}_{2}, \text{ s. t. } \sigma_{\boldsymbol{P}} \leq \sigma \} \quad .$$
$$\mathcal{P}_{4}^{\leq \kappa} = \left\{ \boldsymbol{P} \in \mathcal{P}_{4}, \text{ s. t. } \frac{\left(\boldsymbol{P} | \boldsymbol{X} - \boldsymbol{E}_{\boldsymbol{P}} |^{4}\right)^{1/4}}{\sigma_{\boldsymbol{P}}} \leq \kappa \right\} \quad .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Position of the problem

Our goal is to find, for some large classes $\mathcal{P} \subset \mathcal{P}_2$, the largest x_n for which there exists subgaussian estimators over (\mathcal{P}, x_n) .

Example of classes:

$$\begin{aligned} \mathcal{P}_{2}^{\sigma} &= \{ \boldsymbol{P} \in \mathcal{P}_{2}, \text{ s. t. } \sigma_{\boldsymbol{P}} = \sigma \} \\ \mathcal{P}_{2}^{\leq \sigma} &= \{ \boldsymbol{P} \in \mathcal{P}_{2}, \text{ s. t. } \sigma_{\boldsymbol{P}} \leq \sigma \} \\ \mathcal{P}_{4}^{\leq \kappa} &= \left\{ \boldsymbol{P} \in \mathcal{P}_{4}, \text{ s. t. } \frac{\left(\boldsymbol{P} | \boldsymbol{X} - \boldsymbol{E}_{\boldsymbol{P}} |^{4}\right)^{1/4}}{\sigma_{\boldsymbol{P}}} \leq \kappa \right\} \end{aligned}$$

We provide a general method to *build* subgaussian estimators.

We also present a generic strategy to *prove* some impossibility results.

1. The central limit theorem ensures that, for any fixed *x*, the empirical mean \hat{E}_{emp} is asymptotically subgaussian over \mathcal{P}_2 , with $L = \sqrt{2}$.

- 1. The central limit theorem ensures that, for any fixed *x*, the empirical mean \hat{E}_{emp} is asymptotically subgaussian over \mathcal{P}_2 , with $L = \sqrt{2}$.
- 2. Catoni (2012) proved that \widehat{E}_{emp} is $\sqrt{2} + o(1)$ -subgaussian over $(\mathcal{P}_4^{\leq \kappa}, x_n)$ for any x_n such that $e^{x_n} = o(\log n)$.

(日) (日) (日) (日) (日) (日) (日)

- 1. The central limit theorem ensures that, for any fixed *x*, the empirical mean \hat{E}_{emp} is asymptotically subgaussian over \mathcal{P}_2 , with $L = \sqrt{2}$.
- 2. Catoni (2012) proved that \widehat{E}_{emp} is $\sqrt{2} + o(1)$ -subgaussian over $(\mathcal{P}_4^{\leq \kappa}, x_n)$ for any x_n such that $e^{x_n} = o(\log n)$.
- 3. Bernstein's inequality proves that \widehat{E}_{emp} is $\sqrt{2} + o(1)$ -subgaussian over (\mathcal{P}_{exp}, x_n) if \mathcal{P}_{exp} is a set of probability measures having exponential moments, for any $x_n = o(n)$.

- 1. The central limit theorem ensures that, for any fixed *x*, the empirical mean \hat{E}_{emp} is asymptotically subgaussian over \mathcal{P}_2 , with $L = \sqrt{2}$.
- 2. Catoni (2012) proved that \widehat{E}_{emp} is $\sqrt{2} + o(1)$ -subgaussian over $(\mathcal{P}_4^{\leq \kappa}, x_n)$ for any x_n such that $e^{x_n} = o(\log n)$.
- 3. Bernstein's inequality proves that \widehat{E}_{emp} is $\sqrt{2} + o(1)$ -subgaussian over (\mathcal{P}_{exp}, x_n) if \mathcal{P}_{exp} is a set of probability measures having exponential moments, for any $x_n = o(n)$.
- 4. The rate o(n) for x_n in the last result cannot be improved unless P has subgaussian tails by the Gärtner-Ellis Theorem.

Suppose to simplify that *x* divides *n* and let B_1, \ldots, B_x denotes a partition of $\{1, \ldots, n\}$ into sets B_i with cardinality $|B_i| = n/x$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Suppose to simplify that *x* divides *n* and let B_1, \ldots, B_x denotes a partition of $\{1, \ldots, n\}$ into sets B_i with cardinality $|B_i| = n/x$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For any *i*, let $Y_i = \frac{x}{n} \sum_{j \in B_i} X_j$, (the vector of means).

Suppose to simplify that *x* divides *n* and let $B_1, ..., B_x$ denotes a partition of $\{1, ..., n\}$ into sets B_i with cardinality $|B_i| = n/x$. For any *i*, let $Y_i = \frac{x}{n} \sum_{j \in B_i} X_j$, (the vector of means). Define $\hat{E}_x = \text{median}(Y_i)$ (the median of means).

(日) (日) (日) (日) (日) (日) (日)

Suppose to simplify that *x* divides *n* and let $B_1, ..., B_x$ denotes a partition of $\{1, ..., n\}$ into sets B_i with cardinality $|B_i| = n/x$. For any *i*, let $Y_i = \frac{x}{n} \sum_{j \in B_i} X_j$, (the vector of means). Define $\widehat{E}_x = \text{median}(Y_i)$ (the median of means).

Lemma

$$\mathbb{P}\left(\left|\widehat{E}_{x}-E_{P}\right|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right)\leq e^{-x}$$
.

(日) (日) (日) (日) (日) (日) (日)

By Tchebycheff's inequality

$$orall i, \qquad \mathbb{P}\left(|Y_i - E_P| > 2e\sigma_P\sqrt{\frac{x}{n}}
ight) \leq rac{1}{(2e)^2} \; .$$

By Tchebycheff's inequality

$$orall i, \qquad \mathbb{P}\left(\left| Y_i - E_P \right| > 2e\sigma_P \sqrt{rac{x}{n}}
ight) \leq rac{1}{(2e)^2} \; .$$

Now by definition

$$\mathbb{P}\left(\left|\widehat{E}_{x}-E_{P}\right|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right)$$

$$\leq \mathbb{P}\left(\#\left\{i, \text{ s. t. } |Y_{i}-E_{P}|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right\}\geq\frac{x}{2}\right)$$

$$\leq \mathbb{P}\left(\operatorname{Bin}\left(x,\frac{1}{(2e)^{2}}\right)\geq\frac{x}{2}\right)$$

$$\leq \sum_{k\geq x/2}\binom{x}{k}\left(\frac{1}{(2e)^{2}}\right)^{k}\left(1-\frac{1}{(2e)^{2}}\right)^{x-k}$$

By Tchebycheff's inequality

$$orall i, \qquad \mathbb{P}\left(\left| Y_i - E_P \right| > 2e\sigma_P \sqrt{rac{x}{n}}
ight) \leq rac{1}{(2e)^2} \; .$$

Now by definition

$$\mathbb{P}\left(\left|\widehat{E}_{x}-E_{P}\right|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right)$$

$$\leq \mathbb{P}\left(\#\left\{i, \text{ s. t. } |Y_{i}-E_{P}|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right\}\geq\frac{x}{2}\right)$$

$$\leq \mathbb{P}\left(\operatorname{Bin}\left(x,\frac{1}{(2e)^{2}}\right)\geq\frac{x}{2}\right)$$

$$\leq \sum_{k\geq x/2}\binom{x}{k}\underbrace{\left(\frac{1}{(2e)^{2}}\right)^{k}\left(1-\frac{1}{(2e)^{2}}\right)^{x-k}}_{\leq\frac{1}{(2e)^{x}}}$$

By Tchebycheff's inequality

$$orall i, \qquad \mathbb{P}\left(|Y_i - E_P| > 2e\sigma_P\sqrt{rac{x}{n}}
ight) \leq rac{1}{(2e)^2} \; .$$

Now by definition

$$\mathbb{P}\left(\left|\widehat{E}_{x}-E_{P}\right|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right)$$

$$\leq \mathbb{P}\left(\#\left\{i, \text{ s. t. } |Y_{i}-E_{P}|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right\}\geq\frac{x}{2}\right)$$

$$\leq \mathbb{P}\left(\operatorname{Bin}\left(x,\frac{1}{(2e)^{2}}\right)\geq\frac{x}{2}\right)$$

$$\leq \underbrace{\sum_{k\geq x/2}\binom{x}{k}}_{\leq 2^{x}}\underbrace{\left(\frac{1}{(2e)^{2}}\right)^{k}\left(1-\frac{1}{(2e)^{2}}\right)^{x-k}}_{\leq\frac{1}{(2e)^{x}}}$$

By Tchebycheff's inequality

$$orall i, \qquad \mathbb{P}\left(|Y_i - E_P| > 2e\sigma_P\sqrt{\frac{x}{n}}\right) \leq \frac{1}{(2e)^2} \; .$$

Now by definition

$$\begin{split} & \mathbb{P}\left(\left|\widehat{E}_{x}-E_{P}\right|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right) \\ & \leq \mathbb{P}\left(\#\left\{i, \text{ s. t. } |Y_{i}-E_{P}|>2e\sigma_{P}\sqrt{\frac{x}{n}}\right\}\geq\frac{x}{2}\right) \\ & \leq \mathbb{P}\left(\operatorname{Bin}\left(x,\frac{1}{(2e)^{2}}\right)\geq\frac{x}{2}\right) \\ & \leq \underbrace{\sum_{k\geq x/2}\binom{x}{k}}_{\leq 2^{x}}\underbrace{\left(\frac{1}{(2e)^{2}}\right)^{k}\left(1-\frac{1}{(2e)^{2}}\right)^{x-k}}_{\leq \frac{1}{(2e)^{x}}}\leq e^{-x} \end{split}$$

・ロト・(四ト・(川下・(日下)))

Suppose $\sigma_P^2 = \sigma^2$ is known.

Suppose $\sigma_P^2 = \sigma^2$ is known.

Using the median of means principle, one can build, for any $k \leq Cn$, a confidence interval $\hat{I}_k = \left[\hat{E}_k \pm L\sigma \sqrt{\frac{k}{n}}\right]$ for E_P with confidence level e^{-k} .

シック・ 川 ・ 川田・ 小田・ 小田・

Suppose $\sigma_P^2 = \sigma^2$ is known.

Using the median of means principle, one can build, for any $k \leq Cn$, a confidence interval $\hat{I}_k = \left[\hat{E}_k \pm L\sigma \sqrt{\frac{k}{n}}\right]$ for E_P with confidence level e^{-k} .

Let

$$\widehat{k} = \inf \left\{ k \leq Cn, \text{ s. t. } igcap_{j=k}^{Cn} \widehat{l}_j
eq \emptyset
ight\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Suppose $\sigma_P^2 = \sigma^2$ is known.

Using the median of means principle, one can build, for any $k \leq Cn$, a confidence interval $\hat{I}_k = \left[\hat{E}_k \pm L\sigma \sqrt{\frac{k}{n}}\right]$ for E_P with confidence level e^{-k} .

Let

$$\widehat{k} = \inf \left\{ k \leq Cn, \text{ s. t. } igcap_{j=k}^{Cn} \widehat{l}_j
eq \emptyset
ight\} .$$

 $\cap_{j=\widehat{k}}^{Cn}\widehat{f_{j}} \text{ is a non-empty closed interval, let } \widehat{E} \text{ denote its midpoint.}$

Suppose $\sigma_P^2 = \sigma^2$ is known.

Using the median of means principle, one can build, for any $k \leq Cn$, a confidence interval $\hat{I}_k = \left[\hat{E}_k \pm L\sigma \sqrt{\frac{k}{n}}\right]$ for E_P with confidence level e^{-k} .

Let

$$\widehat{k} = \inf \left\{ k \leq Cn, \text{ s. t. } \bigcap_{j=k}^{Cn} \widehat{l}_j \neq \emptyset
ight\}$$
.

 $\bigcap_{j=\widehat{k}}^{Cn} \widehat{l_j} \text{ is a non-empty closed interval, let } \widehat{E} \text{ denote its midpoint.}$ Theorem $\widehat{E} \text{ is a multiple-x } 2\sqrt{2}L\text{-subgaussian estimator for } (\mathcal{P}_2^{\sigma^2}, Cn - 2).$

Let $x \in [0, Cn - 2]$ and let $k \leq \lfloor x \rfloor + 2$.

Let $x \in [0, Cn - 2]$ and let $k \leq \lfloor x \rfloor + 2$. By construction,

$$\mathbb{P}\left(E_{\mathsf{P}}\notin\bigcap_{j=k}^{Cn}\widehat{l}_{j}\right)\leq\sum_{j=k}^{Cn}\mathbb{P}\left(E_{\mathsf{P}}\notin\widehat{l}_{j}\right)\leq e^{1-k}\leq e^{-x}.$$

Let $x \in [0, Cn - 2]$ and let $k \leq \lfloor x \rfloor + 2$. By construction,

$$\mathbb{P}\left(E_{\mathsf{P}}\notin\bigcap_{j=k}^{Cn}\widehat{l}_{j}\right)\leq\sum_{j=k}^{Cn}\mathbb{P}\left(E_{\mathsf{P}}\notin\widehat{l}_{j}\right)\leq e^{1-k}\leq e^{-x}.$$

When $E_P \in \bigcap_{j=k}^{Cn} \widehat{I}_j$, then $E_P \in \widehat{I}_k$ and $\bigcap_{j=k}^{Cn} \widehat{I}_j \neq \emptyset$ so $\widehat{k} \leq k$.

Let $x \in [0, Cn - 2]$ and let $k \leq \lfloor x \rfloor + 2$. By construction,

$$\mathbb{P}\left(E_{\mathsf{P}}\notin\bigcap_{j=k}^{Cn}\widehat{l}_{j}\right)\leq\sum_{j=k}^{Cn}\mathbb{P}\left(E_{\mathsf{P}}\notin\widehat{l}_{j}\right)\leq e^{1-k}\leq e^{-x}$$

(日) (日) (日) (日) (日) (日) (日)

When $E_P \in \bigcap_{j=k}^{Cn} \widehat{I}_j$, then $E_P \in \widehat{I}_k$ and $\bigcap_{j=k}^{Cn} \widehat{I}_j \neq \emptyset$ so $\widehat{k} \leq k$. When $\widehat{k} \leq k$, $\widehat{E} \in \bigcap_{j=k}^{Cn} \widehat{I}_j$, so $\widehat{E} \in \widehat{I}_k$.

Let $x \in [0, Cn - 2]$ and let $k \leq \lfloor x \rfloor + 2$. By construction,

$$\mathbb{P}\left(E_{\mathsf{P}}\notin\bigcap_{j=k}^{Cn}\widehat{l}_{j}\right)\leq\sum_{j=k}^{Cn}\mathbb{P}\left(E_{\mathsf{P}}\notin\widehat{l}_{j}\right)\leq e^{1-k}\leq e^{-x}$$

When $E_P \in \bigcap_{j=k}^{Cn} \widehat{I}_j$, then $E_P \in \widehat{I}_k$ and $\bigcap_{j=k}^{Cn} \widehat{I}_j \neq \emptyset$ so $\widehat{k} \leq k$. When $\widehat{k} \leq k$, $\widehat{E} \in \bigcap_{j=k}^{Cn} \widehat{I}_j$, so $\widehat{E} \in \widehat{I}_k$. When both E_P and \widehat{E} belong to \widehat{I}_k ,

$$|\widehat{E} - E_P| \le 2L\sigma\sqrt{\frac{k}{n}} \le 2L\sigma\sqrt{\frac{x+2}{n}} \le 2L\sqrt{2}\sigma\sqrt{\frac{1+x}{n}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

The method of confidence intervals can be used to build multiple-x subgaussian intervals

1. over the class
$$\mathcal{P}_2^{\mathrm{sym}} = \{ P \in \mathcal{P}_2, \text{ s. t. } X \sim P \implies 2E_P - X \sim P \},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The method of confidence intervals can be used to build multiple-x subgaussian intervals

- 1. over the class $\mathcal{P}_2^{\text{sym}} = \{ P \in \mathcal{P}_2, \text{ s. t. } X \sim P \implies 2E_P X \sim P \},$
- 2. over the classes $\mathcal{P}_{\alpha}^{\leq \eta} = \{ P \in \mathcal{P}_{\alpha}, \text{ s. t. } \mathbb{E}_{P}[|X E_{P}|^{\alpha}] \leq (\eta \sigma_{P})^{\alpha} \}, \text{ for } \alpha = 3, 4 \text{ and } \eta > 0.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The method of confidence intervals allows to build subgaussian estimators with $x_n \ge cn$ assuming only a *known* variance of the data. These clearly outperform the empirical mean.

(ロ) (同) (三) (三) (三) (○) (○)

The method of confidence intervals allows to build subgaussian estimators with $x_n \ge cn$ assuming only a *known* variance of the data. These clearly outperform the empirical mean.

(ロ) (同) (三) (三) (三) (○) (○)

We show now that the order *n* of x_n is the best possible.

The method of confidence intervals allows to build subgaussian estimators with $x_n \ge cn$ assuming only a *known* variance of the data. These clearly outperform the empirical mean.

We show now that the order *n* of x_n is the best possible.

For any $\lambda \in \mathbb{R}$, let La_{λ} denote the distribution on \mathbb{R} with density

$$f_{\lambda}(x) = rac{e^{-|x-\lambda|}}{2}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

The method of confidence intervals allows to build subgaussian estimators with $x_n \ge cn$ assuming only a *known* variance of the data. These clearly outperform the empirical mean.

We show now that the order *n* of x_n is the best possible.

For any $\lambda \in \mathbb{R}$, let La_{λ} denote the distribution on \mathbb{R} with density

$$f_{\lambda}(x) = rac{e^{-|x-\lambda|}}{2}$$
 .

A D F A 同 F A E F A E F A Q A

This distribution satisfies $E_{La_{\lambda}} = \lambda$ and $\sigma_{La_{\lambda}}^2 = 2$. Let $\mathcal{P}_{La} = \{ La_{\lambda}, \lambda \in \mathbb{R} \}.$

The method of confidence intervals allows to build subgaussian estimators with $x_n \ge cn$ assuming only a *known* variance of the data. These clearly outperform the empirical mean.

We show now that the order *n* of x_n is the best possible.

For any $\lambda \in \mathbb{R}$, let La_{λ} denote the distribution on \mathbb{R} with density

$$f_{\lambda}(x) = rac{e^{-|x-\lambda|}}{2}$$
 .

This distribution satisfies $E_{La_{\lambda}} = \lambda$ and $\sigma_{La_{\lambda}}^2 = 2$. Let $\mathcal{P}_{La} = \{ La_{\lambda}, \ \lambda \in \mathbb{R} \}.$

Theorem

Let $L \ge \sqrt{2}$ and $C = 9L^2$. There doesn't exist single-x L-subgaussian estimators over (\mathcal{P}_{La}, Cn).

By contradiction let $x = 9L^2n - 1$ and let \widehat{E}_x be a single-x, *L*-subgaussian estimator. Let $\lambda = 2L\sqrt{2\frac{1+x}{n}}$, $X_1^n \sim La_0^{\otimes n}$, $Y_1^n \sim La_{\lambda}^{\otimes n}$.

By contradiction let $x = 9L^2n - 1$ and let \widehat{E}_x be a single-x, *L*-subgaussian estimator. Let $\lambda = 2L\sqrt{2\frac{1+x}{n}}$, $X_1^n \sim La_0^{\otimes n}$, $Y_1^n \sim La_{\lambda}^{\otimes n}$. By the triangular inequality

$$orall (x_1,\ldots,x_n)\in\mathbb{R}^n,\qquad\prod_{i=1}^n f_0(x_i)\geq e^{-\lambda n}\prod_{i=1}^n f_\lambda(x_i)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

By contradiction let $x = 9L^2n - 1$ and let \widehat{E}_x be a single-x, *L*-subgaussian estimator. Let $\lambda = 2L\sqrt{2\frac{1+x}{n}}$, $X_1^n \sim La_0^{\otimes n}$, $Y_1^n \sim La_{\lambda}^{\otimes n}$. By the triangular inequality

$$\forall (x_1,\ldots,x_n)\in\mathbb{R}^n, \qquad \prod_{i=1}^n f_0(x_i)\geq e^{-\lambda n}\prod_{i=1}^n f_\lambda(x_i)$$

Therefore,

$$\mathbb{P}\left(|\widehat{E}_{x}(X_{1}^{n})-E_{P}|>\frac{\lambda}{2}\right)\geq e^{-\lambda n}\mathbb{P}\left(|\widehat{E}_{x}(Y_{1}^{n})-E_{P}|>\frac{\lambda}{2}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

By contradiction let $x = 9L^2n - 1$ and let \widehat{E}_x be a single-x, *L*-subgaussian estimator. Let $\lambda = 2L\sqrt{2\frac{1+x}{n}}$, $X_1^n \sim La_0^{\otimes n}$, $Y_1^n \sim La_{\lambda}^{\otimes n}$. By the triangular inequality

$$\forall (x_1,\ldots,x_n)\in\mathbb{R}^n, \qquad \prod_{i=1}^n f_0(x_i)\geq e^{-\lambda n}\prod_{i=1}^n f_\lambda(x_i)$$

Therefore,

$$\mathbb{P}\left(|\widehat{E}_x(X_1^n) - E_P| > \frac{\lambda}{2}\right) \ge e^{-\lambda n} \mathbb{P}\left(|\widehat{E}_x(Y_1^n) - E_P| > \frac{\lambda}{2}\right)$$

Thus, by definition of λ and the subgaussian property.

$$e^{-x} \geq e^{-\lambda n}(1-e^{-x})$$
.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

By contradiction let $x = 9L^2n - 1$ and let \widehat{E}_x be a single-x, *L*-subgaussian estimator. Let $\lambda = 2L\sqrt{2\frac{1+x}{n}}$, $X_1^n \sim La_0^{\otimes n}$, $Y_1^n \sim La_{\lambda}^{\otimes n}$. By the triangular inequality

$$\forall (x_1,\ldots,x_n)\in\mathbb{R}^n, \qquad \prod_{i=1}^n f_0(x_i)\geq e^{-\lambda n}\prod_{i=1}^n f_\lambda(x_i)$$

Therefore,

$$\mathbb{P}\left(|\widehat{E}_{x}(X_{1}^{n})-E_{P}|>\frac{\lambda}{2}\right)\geq e^{-\lambda n}\mathbb{P}\left(|\widehat{E}_{x}(Y_{1}^{n})-E_{P}|>\frac{\lambda}{2}\right)$$

Thus, by definition of λ and the subgaussian property.

$$e^{-x} \ge e^{-\lambda n}(1-e^{-x})$$
.

Again by definition of λ and x, this implies $e^{(9-6\sqrt{2})L^2n} \le e^{1+\log 2}$ which is wrong for any $n \ge 2$ since $L \ge \sqrt{2}$.

multiple-x and single-x are different notions

Theorem

For any $L \ge \sqrt{2}$ and any $x_n \to \infty$, there doesn't exist multiple-x *L*-subgaussian estimators over (\mathcal{P}_2, x_n) .

The proof relies on the same kind of minimax arguments, but we used the class \mathcal{P}_{Po} of Poisson distributions instead of the class \mathcal{P}_{La} .

(日) (日) (日) (日) (日) (日) (日)

multiple-x and single-x are different notions

Theorem

For any $L \ge \sqrt{2}$ and any $x_n \to \infty$, there doesn't exist multiple-x *L*-subgaussian estimators over (\mathcal{P}_2, x_n) .

The proof relies on the same kind of minimax arguments, but we used the class \mathcal{P}_{Po} of Poisson distributions instead of the class \mathcal{P}_{La} .

Consequences

 Multiple-x and single-x are different notions (by the median of means principle, there *exists* single-x L-subgaussian estimators over (P₂, *cn*).

(ロ) (同) (三) (三) (三) (三) (○) (○)

multiple-x and single-x are different notions

Theorem

For any $L \ge \sqrt{2}$ and any $x_n \to \infty$, there doesn't exist multiple-x *L*-subgaussian estimators over (\mathcal{P}_2, x_n) .

The proof relies on the same kind of minimax arguments, but we used the class \mathcal{P}_{Po} of Poisson distributions instead of the class \mathcal{P}_{La} .

Consequences

 Multiple-x and single-x are different notions (by the median of means principle, there *exists* single-x L-subgaussian estimators over (P₂, cn).

(ロ) (同) (三) (三) (三) (三) (○) (○)

2. One cannot derive multiple-*x* from single-*x* subgaussian estimators.

Getting optimal L

Catoni (2012) proved that

1. $L = \sqrt{2}$ is optimal on any class $\mathcal{P} \supset (\mathcal{N}(m, \sigma^2))_{m \in \mathbb{R}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Getting optimal L

Catoni (2012) proved that

- 1. $L = \sqrt{2}$ is optimal on any class $\mathcal{P} \supset (\mathcal{N}(m, \sigma^2))_{m \in \mathbb{R}}$.
- 2. there exists single-x ($\sqrt{2} + o(1)$)-subgaussian estimators over ($\mathcal{P}_2, \frac{n}{2} 1$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Getting optimal L

Catoni (2012) proved that

- 1. $L = \sqrt{2}$ is optimal on any class $\mathcal{P} \supset (\mathcal{N}(m, \sigma^2))_{m \in \mathbb{R}}$.
- 2. there exists single-x ($\sqrt{2} + o(1)$)-subgaussian estimators over ($\mathcal{P}_2, \frac{n}{2} 1$).

(日) (日) (日) (日) (日) (日) (日)

Theorem

For any $x_n = o\left(\left(\frac{n}{\sqrt{\kappa}}\right)^{2/3}\right)$, there exists multiple-x $(\sqrt{2} + o(1))$ -subgaussian estimators over $(\mathcal{P}_4^{\leq \kappa}, x_n)$.

I: Truncation of the data

For any (E, R), define

$$\Psi_{E,R}(x) = \mu + \left(\frac{R}{|x-E|} \wedge 1\right)(x-E)$$
.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

I: Truncation of the data

For any (E, R), define

$$\Psi_{E,R}(x) = \mu + \left(\frac{R}{|x-E|} \wedge 1\right)(x-E)$$
.

Lemma
If
$$E = E_P$$
 and $R = \sigma_P \sqrt{\frac{n}{x_n}}$, then, for any $x \le x_n$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}\Psi_{E,R}(X_i)-E_P\right|>(\sqrt{2}+o(1))\sigma_P\sqrt{\frac{t}{n}}\right)\leq 1-2e^{-t}.$$

I: Truncation of the data

For any (E, R), define

$$\Psi_{E,R}(x) = \mu + \left(\frac{R}{|x-E|} \wedge 1\right)(x-E)$$
.

Lemma
If
$$E = E_P$$
 and $R = \sigma_P \sqrt{\frac{n}{x_n}}$, then, for any $x \le x_n$,
 $\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n \Psi_{E,R}(X_i) - E_P\right| > (\sqrt{2} + o(1))\sigma_P \sqrt{\frac{t}{n}}\right) \le 1 - 2e^{-t}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof: exponential Markov's inequality.

II: an insensitivity argument

Let
$$\mathcal{R} = \left\{ (E, R), \text{ s. t. } |E - E_P| \le \varepsilon_1 \sigma_P, \left| R - \sigma_P \sqrt{\frac{n}{2x_n}} \right| \le \varepsilon_2 \sigma_P \right\}$$
 and let
$$\Delta_{E,R} = \frac{1}{n} \sum_{i=1}^n (\Psi_{E,R}(X_i) - \Psi_{E_P,\sigma_P} \sqrt{\frac{n}{2x_n}}(X_i)) \quad .$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

II: an insensitivity argument

Let
$$\mathcal{R} = \left\{ (E, R), \text{ s. t. } |E - E_P| \le \varepsilon_1 \sigma_P, \left| R - \sigma_P \sqrt{\frac{n}{2x_n}} \right| \le \varepsilon_2 \sigma_P \right\}$$
 and let

$$\Delta_{E,R} = \frac{1}{n} \sum_{i=1}^{n} (\Psi_{E,R}(X_i) - \Psi_{E_{P,\sigma_P}\sqrt{\frac{n}{2X_n}}}(X_i)) .$$

Lemma For any $\varepsilon_1 = o(1)$ and $\varepsilon_2 = O(1)$,

$$\mathbb{P}\left(\forall (\boldsymbol{E}, \boldsymbol{R}) \in \mathcal{R}, \qquad |\Delta_{\boldsymbol{E}, \boldsymbol{R}}| \leq o(1)\sigma_{\boldsymbol{P}}\sqrt{\frac{t}{n}}\right) \geq 1 - e^{-t}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

II: an insensitivity argument

Let
$$\mathcal{R} = \left\{ (E, R), \text{ s. t. } |E - E_P| \le \varepsilon_1 \sigma_P, \left| R - \sigma_P \sqrt{\frac{n}{2x_n}} \right| \le \varepsilon_2 \sigma_P \right\}$$
 and let

$$\Delta_{E,R} = \frac{1}{n} \sum_{i=1}^{n} (\Psi_{E,R}(X_i) - \Psi_{E_{P,\sigma_P}\sqrt{\frac{n}{2x_n}}}(X_i)) .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lemma
For any
$$\varepsilon_1 = o(1)$$
 and $\varepsilon_2 = O(1)$,
 $\mathbb{P}\left(\forall (E, R) \in \mathcal{R}, \qquad |\Delta_{E,R}| \le o(1)\sigma_P \sqrt{\frac{t}{n}}\right) \ge 1 - e^{-t}$

Proof: Chaining argument+Bernstein's inequality.

III: Median of means principles

Let \widehat{E}_{x_n} , $\widehat{\sigma}_{x_n}^2$ denote a median of means estimator of E_P and a median of "*U*-statistics" estimator of σ_P^2 , built with $x_n + 1$ blocks.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

III: Median of means principles

Let \widehat{E}_{x_n} , $\widehat{\sigma}_{x_n}^2$ denote a median of means estimator of E_P and a median of "*U*-statistics" estimator of σ_P^2 , built with $x_n + 1$ blocks. Lemma

$$\mathbb{P}\left(\left|\widehat{E}_{x_n}-E_P\right|>L\sigma_P\sqrt{\frac{x_n}{n}} \text{ and } \sqrt{\frac{n}{2x_n}}\left|\widehat{\sigma}_{x_n}-\sigma_P\right|\leq \frac{\kappa}{2}\right)\geq 1-e^{-x_n}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some references

- [1] Catoni (2012). Challenging the empirical mean and empirical variance: a deviation study. Annales de l'IHP P&S.
- [2] Hsu and Sabato (2014). Heavy-tailed regression with a generalized median-of-means. ICML.
- [3] Nemirovsky and Yudin (1983). Problem complexity and method efficiency in optimization. Wiley interscience.

(日) (日) (日) (日) (日) (日) (日)

Thanks

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで