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Subgaussian estimators
Let P be a family of probability measures P on R with respective
mean EP and variance σ2

P . Let n ∈ N \ {0}, L > 0 and xn > 0.

Definition
1. A single-x L-subgaussian estimator on (P, xn) is a map

Ê : Rn × [0, xn]→ R such that, for any P ∈ P, if
X n

1 = (X1, . . . ,Xn) ∼ P⊗n,

∀x ≤ xn, P

(∣∣∣Ê(X n
1 , x)− EP

∣∣∣ > LσP

√
1 + x

n

)
≤ e−x .

Hereafter, we denote by Êx (.) = Ê(., x).
2. A multiple-x L-subgaussian estimator on (P, xn) is a map

Ê : Rn → R such that, for any P ∈ P, if X n
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(∣∣∣Ê(X n
1 , x)− EP

∣∣∣ > LσP

√
1 + x

n

)
≤ e−x .

Hereafter, we denote by Êx (.) = Ê(., x).
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Position of the problem

Our goal is to find, for some large classes P ⊂ P2, the largest xn for
which there exists subgaussian estimators over (P, xn).

Example of classes:

Pσ2 = {P ∈ P2, s. t. σP = σ } .

P≤σ2 = {P ∈ P2, s. t. σP ≤ σ } .

P≤κ4 =

{
P ∈ P4, s. t.

(
P|X − EP |4

)1/4

σP
≤ κ

}
.

We provide a general method to build subgaussian estimators.

We also present a generic strategy to prove some impossibility
results.
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Behavior of the empirical mean

1. The central limit theorem ensures that, for any fixed x , the
empirical mean Êemp is asymptotically subgaussian over P2, with
L =
√

2.

2. Catoni (2012) proved that Êemp is
√

2 + o(1)-subgaussian over
(P≤κ4 , xn) for any xn such that exn = o(log n).

3. Bernstein’s inequality proves that Êemp is
√

2 + o(1)-subgaussian
over (Pexp, xn) if Pexp is a set of probability measures having
exponential moments, for any xn = o(n).

4. The rate o(n) for xn in the last result cannot be improved unless
P has subgaussian tails by the Gärtner-Ellis Theorem.
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√
2 + o(1)-subgaussian over

(P≤κ4 , xn) for any xn such that exn = o(log n).

3. Bernstein’s inequality proves that Êemp is
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The median of mean principle

Suppose to simplify that x divides n and let B1, . . . ,Bx denotes a
partition of {1, . . . ,n} into sets Bi with cardinality |Bi | = n/x .

For any i , let Yi = x
n

∑
j∈Bi

Xj , (the vector of means).

Define Êx = median(Yi ) (the median of means).

Lemma

P

(∣∣∣Êx − EP

∣∣∣ > 2eσP

√
x
n

)
≤ e−x .
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(∣∣∣Êx − EP

∣∣∣ > 2eσP

√
x
n

)
≤ e−x .



The median of mean principle

Suppose to simplify that x divides n and let B1, . . . ,Bx denotes a
partition of {1, . . . ,n} into sets Bi with cardinality |Bi | = n/x .

For any i , let Yi = x
n

∑
j∈Bi

Xj , (the vector of means).
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Proof
By Tchebycheff’s inequality

∀i , P

(
|Yi − EP | > 2eσP

√
x
n

)
≤ 1

(2e)2 .

Now by definition

P

(∣∣∣Êx − EP

∣∣∣ > 2eσP

√
x
n

)

≤ P

(
#

{
i , s. t. |Yi − EP | > 2eσP

√
x
n

}
≥ x

2

)

≤ P
(

Bin
(

x ,
1

(2e)2

)
≥ x

2

)
≤
∑

k≥x/2

(
x
k

)(
1

(2e)2

)k (
1− 1

(2e)2

)x−k
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The confidence intervals method

Suppose σ2
P = σ2 is known.

Using the median of means principle, one can build, for any k ≤ Cn, a

confidence interval Îk =

[
Êk ± Lσ

√
k
n

]
for EP with confidence level

e−k .

Let

k̂ = inf

k ≤ Cn, s. t.
Cn⋂
j=k

Îj 6= ∅

 .

∩Cn
j=k̂

Îj is a non-empty closed interval, let Ê denote its midpoint.

Theorem
Ê is a multiple-x 2

√
2L-subgaussian estimator for (Pσ2

2 ,Cn − 2).
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[
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Îj is a non-empty closed interval, let Ê denote its midpoint.
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Îj 6= ∅

 .

∩Cn
j=k̂
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Theorem
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Îj 6= ∅

 .

∩Cn
j=k̂
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Proof

Let x ∈ [0,Cn − 2] and let k ≤ bxc+ 2.

By construction,

P

EP /∈
Cn⋂
j=k

Îj

 ≤ Cn∑
j=k

P
(

EP /∈ Îj
)
≤ e1−k ≤ e−x .

When EP ∈
⋂Cn

j=k Îj , then EP ∈ Îk and
⋂Cn

j=k Îj 6= ∅ so k̂ ≤ k .

When k̂ ≤ k , Ê ∈
⋂Cn

j=k Îj , so Ê ∈ Îk .

When both EP and Ê belong to Îk ,

|Ê − EP | ≤ 2Lσ

√
k
n
≤ 2Lσ

√
x + 2

n
≤ 2L

√
2σ

√
1 + x

n
.
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j=k Îj 6= ∅ so k̂ ≤ k .

When k̂ ≤ k , Ê ∈
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j=k Îj 6= ∅ so k̂ ≤ k .

When k̂ ≤ k , Ê ∈
⋂Cn

j=k Îj , so Ê ∈ Îk .
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Other classes P

The method of confidence intervals can be used to build multiple-x
subgaussian intervals

1. over the class Psym
2 = {P ∈ P2, s. t. X ∼ P =⇒ 2EP − X ∼ P },

2. over the classes
P≤ηα = {P ∈ Pα, s. t. EP [ |X − EP |α ] ≤ (ησP)α }, for α = 3,4 and
η > 0.
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Laplace distributions

The method of confidence intervals allows to build subgaussian
estimators with xn ≥ cn assuming only a known variance of the data.
These clearly outperform the empirical mean.

We show now that the order n of xn is the best possible.

For any λ ∈ R, let Laλ denote the distribution on R with density

fλ(x) =
e−|x−λ|

2
.

This distribution satisfies ELaλ = λ and σ2
Laλ = 2. Let

PLa = {Laλ, λ ∈ R}.

Theorem
Let L ≥

√
2 and C = 9L2. There doesn’t exist single-x L-subgaussian

estimators over (PLa,Cn).
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Proof

By contradiction let x = 9L2n − 1 and let Êx be a single-x ,

L-subgaussian estimator. Let λ = 2L
√

2 1+x
n , X n

1 ∼ La⊗n
0 , Y n

1 ∼ La⊗n
λ .

By the triangular inequality

∀(x1, . . . , xn) ∈ Rn,

n∏
i=1

f0(xi ) ≥ e−λn
n∏

i=1

fλ(xi ) .

Therefore,

P
(
|Êx (X n

1 )− EP | >
λ

2

)
≥ e−λnP

(
|Êx (Y n

1 )− EP | >
λ

2

)
.

Thus, by definition of λ and the subgaussian property.

e−x ≥ e−λn(1− e−x ) .
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L-subgaussian estimator. Let λ = 2L
√

2 1+x
n , X n

1 ∼ La⊗n
0 , Y n

1 ∼ La⊗n
λ .

By the triangular inequality

∀(x1, . . . , xn) ∈ Rn,

n∏
i=1

f0(xi ) ≥ e−λn
n∏

i=1

fλ(xi ) .

Therefore,

P
(
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multiple-x and single-x are different notions

Theorem
For any L ≥

√
2 and any xn →∞, there doesn’t exist multiple-x

L-subgaussian estimators over (P2, xn).
The proof relies on the same kind of minimax arguments, but we used
the class PPo of Poisson distributions instead of the class PLa.

Consequences
1. Multiple-x and single-x are different notions (by the median of

means principle, there exists single-x L-subgaussian estimators
over (P2, cn).

2. One cannot derive multiple-x from single-x subgaussian
estimators.
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Getting optimal L

Catoni (2012) proved that

1. L =
√

2 is optimal on any class P ⊃ (N (m, σ2))m∈R.

2. there exists single-x (
√

2 + o(1))-subgaussian estimators over
(P2,

n
2 − 1).

Theorem
For any xn = o

((
n√
κ

)2/3
)

, there exists multiple-x

(
√

2 + o(1))-subgaussian estimators over (P≤κ4 , xn).
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I: Truncation of the data

For any (E ,R), define

ΨE,R(x) = µ+

(
R

|x − E |
∧ 1
)

(x − E) .

Lemma
If E = EP and R = σP

√
n
xn

, then, for any x ≤ xn,

P

(∣∣∣∣∣1n
n∑

i=1

ΨE,R(Xi )− EP

∣∣∣∣∣ > (
√

2 + o(1))σP

√
t
n

)
≤ 1− 2e−t .

Proof: exponential Markov’s inequality.
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