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1. A single-x L-subgaussian estimator on (P, x,,) is a map
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XM= (Xq,...,Xn) ~ PN,

VX < X, IP’(‘E(X1”,X)EP‘>LJP 1:X>§e".

Hereafter, we denote by EX(.) = E(., x).
2. A multiple-x L-subgaussian estimator on (P, x,) is a map
E : R" — R such that, for any P € P, if X' = (Xi,..., Xp) ~ P®",

VX < X, IP’(’E(X{’)—EP‘ > Lop 1:") <ex .
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We provide a general method to build subgaussian estimators.

We also present a generic strategy to prove some impossibility
results.
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Behavior of the empirical mean

1. The central limit theorem ensures that, for any fixed x, the
empirical mean Eemp is asymptotically subgaussian over P», with
L=+2.

2. Catoni (2012) proved that Eemp is v/2 + o(1)-subgaussian over
(P5", xn) for any x, such that e = o(log n).

3. Bernstein’s inequality proves that Eemp is v/2 + o(1)-subgaussian

over (Pexp, Xn) if Pexp is a set of probability measures having
exponential moments, for any x, = o(n).

4. The rate o(n) for x, in the last result cannot be improved unless
P has subgaussian tails by the Gartner-Ellis Theorem.
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The confidence intervals method

Suppose 0% = o2 is known.
Using the median of means principle, one can build, for any k < Cn, a
confidence interval 7k = {Ek + La\/ﬂ for Ep with confidence level
e k.
Let

k=inf{ k<Cn st [1#07 .

j=k

ij:n;Z‘ is a non-empty closed interval, let E denote its midpoint.

Theorem
E is a multiple-x 2+/2L-subgaussian estimator for (Pg *.Ccn— 2).
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Let x € [0,Cn— 2] and let k < | x| 4 2. By construction,

CnA Cn R
P(Ep¢ﬂ/,) SZP<EP¢/]->§91—k§e—x .
j=k

j=k

=)
IN
x

When Ep € ﬂjc_"k7,-, then Ep € Iy and ﬂfz”kz £ () s0
When k < k, Eeﬂj " 1,50 E € k.
When both Ep and E belong to 7k,

N 1
E - Ep| §2Lo\/5§2La\/X:2 < 20v20/ :X .
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Other classes P

The method of confidence intervals can be used to build multiple-x
subgaussian intervals
1. overthe class Py = {P € P, 5. t. X ~ P = 2Ep— X ~ P},
2. over the classes
P ={P€P,, s t. Ep[|X — Ep|*] < (nop)*}, for a = 3,4 and
n > 0.
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Laplace distributions

The method of confidence intervals allows to build subgaussian
estimators with x, > cn assuming only a known variance of the data.
These clearly outperform the empirical mean.

We show now that the order n of x, is the best possible.
For any A € R, let La, denote the distribution on R with density

e—|X—)\|
h(x) = —

This distribution satisfies E;,, = A and UEaA =2. Let
Pra = {Lay, A e R}.

Theorem
LetL > /2 and C = 9L2. There doesn't exist single-x L-subgaussian
estimators over (Pra, Cn).
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Proof

By contradiction let x = 9.2n — 1 and let E, be a single-x,
L-subgaussian estimator. Let A = 2L/21E%, X7 ~ La§", Y/ ~ La§".
By the triangular inequality

n n
VX1, %) R [ R() > e M A() -
i=1 i=1
Therefore,
I= n A Y = n A
B |E(X7)— Ep| > 5 ) > e P ( |Ex(Y]) — Ep| > 5
Thus, by definition of A and the subgaussian property.
eX>e M1 -e) .

Again by definition of A and x, this implies e(®—6v2Ln < g1+092 \which
is wrong for any n > 2 since L > /2.
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multiple-x and single-x are different notions

Theorem
For any L > /2 and any x, — oo, there doesn’t exist multiple-x
L-subgaussian estimators over (P2, Xp).

The proof relies on the same kind of minimax arguments, but we used
the class Pp, of Poisson distributions instead of the class Pp,.
Consequences

1. Multiple-x and single-x are different notions (by the median of
means principle, there exists single-x L-subgaussian estimators
over (Pz, cn).

2. One cannot derive multiple-x from single-x subgaussian
estimators.



Getting optimal L

Catoni (2012) proved that
1. L= +/2is optimal on any class P O (N(m, 0?)) mer.



Getting optimal L

Catoni (2012) proved that
1. L= +/2is optimal on any class P > (N (m, c?)) mer.

2. there exists single-x (v/2 + o(1))-subgaussian estimators over
(Po, g -1).



Getting optimal L

Catoni (2012) proved that

1. L= +/2is optimal on any class P O (N(m, 0?)) mer.
2. there exists single-x (v/2 + o(1))-subgaussian estimators over

(Po, g -1).
Theorem 2/3
Forany x, = o ( (ﬁ) ) there exists multiple-x

(V2 + o(1))-subgaussian estimators over (P, x,).
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For any (E, R), define
R
Ve R(X) =p+ (|X—E|/\1>(X_E) :

Lemma
IfE = Epand R = O'P\/XZL, then, for any x < X,

1 n
— v X)) — E
P<|nlz1: e.R(Xi) — Ep

> (\@+o(1))ap\ﬁ> <1-2e"'.

Proof: exponential Markov’s inequality.
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[I: an insensitivity argument

LetR = {(E7 R), s. t. |E — Ep| < eqop, ‘R—Up,/zf’;n‘ < EQG'P} and
let .
1
Dep=—> (Ver(X) = Ve, ,, 2 (X)) -

. n
i=1

Lemma
Foranyey =o0(1) andex = O(1),

P <V(E7 R)eR,  |Agrl < 0(1)0P\/Z> >1-e'.

Proof: Chaining argument+Bernstein’s inequality.
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Let I::Xn, o2 denote a median of means estimator of Ep and a median
of "U-statistics” estimator of o2, built with x, + 1 blocks.

Lemma

~ Xn n . K _
_ zn _ — <= |>1—-e .
]P’( E,, Ep‘ > Lopy/ - and,/z)(’7 |ox, — op| < 2> > e
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