	Calibration for GL method 000000	Method of comparison with the worse 00000	Future works

About the Goldenshluger-Lepski methodology for bandwidth selection

<u>Claire Lacour¹</u>, Pascal Massart¹, Vincent Rivoirard²

1-Université Paris-Sud, 2-Université Paris Dauphine

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	000000	00000	

Introduction Statistical framework Some heuristics

Calibration for the Goldenshluger-Lepski method

Method of comparison with the worse

Future works

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ○ ○ ○ ○ ○

Statistical framework

 X_1,\ldots,X_n i.i.d. real random variables with unknown density f \hat{f}_h classical kernel estimator

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - X_i)$$

with $K_h(\cdot) = \frac{1}{h}K\left(\frac{\cdot}{h}\right)$ and K a given kernel

Quadratic loss $\mathbb{E}\|\hat{f}_h-f\|^2$ where $\|.\|$ is the L^2 norm

About bandwidth selection for density estimation

・ロト ・聞ト ・ヨト ・ヨト

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	000000	00000	

Bias estimation

Notation
$$f_h := \mathbb{E}[\hat{f}_h] = K_h * f$$

Bias-variance decomposition:

$$\mathbb{E}\|\hat{f}_h - f\|^2 = \|f_h - f\|^2 + \mathbb{E}\|f_h - \hat{f}_h\|^2 \approx \underbrace{\|f_h - f\|^2}_{B^2(h)} + \underbrace{\frac{\|K_h\|^2}{n}}_{V(h)}$$

Idea: estimator $\hat{B}^2(h)$ of $B^2(h)$ and then $\hat{h} = \operatorname*{argmin}_{h\in \mathcal{H}} \; \{ \hat{B}^2(h) + V(h) \}$

About bandwidth selection for density estimation

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	000000	00000	

Some heuristics

With high probability

$$\begin{aligned} \|\hat{f}_{h} - \hat{f}_{h'}\|^{2} &\approx \|f_{h} - f_{h'}\|^{2} + \frac{\|K_{h} - K_{h'}\|^{2}}{n} \\ \hookrightarrow \hat{B}^{2}(h) &= \sup_{h' \leq h} \{\|\hat{f}_{h} - \hat{f}_{h'}\|^{2} - \frac{\|K_{h} - K_{h'}\|^{2}}{n} \} \\ &\|\hat{f}_{h} - \hat{f}_{h_{\min}}\|^{2} \approx \|f_{h} - f_{h_{\min}}\|^{2} + \frac{\|K_{h} - K_{h_{\min}}\|^{2}}{n} \\ \hookrightarrow \hat{B}^{2}(h) &= \{\|\hat{f}_{h} - \hat{f}_{h_{\min}}\|^{2} - \frac{\|K_{h} - K_{h_{\min}}\|^{2}}{n} \} \end{aligned}$$

About bandwidth selection for density estimation

Э

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	000000	00000	

Introduction

Calibration for the Goldenshluger-Lepski method

Description Choice of the penalty Minimal penalty and calibration

Method of comparison with the worse

Future works

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	●00000	00000	

Goldenshluger-Lepski method

 $\mathcal{H} \in \mathbb{R}^*_+$ finite subset of bandwiths

$$\begin{cases} \hat{B}^2(h) = \sup_{h' \le h} \left[\|\hat{f}_h - \hat{f}_{h'}\|_2 - \operatorname{pen}(h') \right]_+ \\ \hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \hat{B}^2(h) + \operatorname{pen}(h) \right\}$$

Actually:

- more general
- $\|\hat{f}_h \hat{f}_{h'}\|_2 \longrightarrow \|\hat{f}_{h,h'} \hat{f}_{h'}\|_2$ with $\hat{f}_{h,h'}$ auxiliary estimators (not important here)

Here Penalty="Majorant"=
$$a$$
 Variance = $a \frac{||K||^2}{nh}$

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	00000	00000	

Oracle inequality

$$\tilde{B}(h) := \max(\sup_{h' \le h} \|f_{h'} - f_h\|, \|f - f_h\|) \approx \mathsf{bias}$$

Theorem

Assume that $||f||_{\infty} < \infty$ and $K \ge 0$ unimodal with mode 0, and $\mathcal{H} \subset [n^{-1}, \log^{-2}(n)]$. If $pen(h) = a||K||_2^2/(nh)$ with a > 1, then $\mathbb{E}\|\hat{f}_{\hat{h}} - f\|^2 \le C_0(a) \min_{h \in \mathcal{H}} \left\{ \tilde{B}^2(h) + a \frac{\|K_h\|^2}{n} \right\} + o(n^{-1})$

Ccl: the method works well if a > 1But what if a small? And how to choose a in practice?

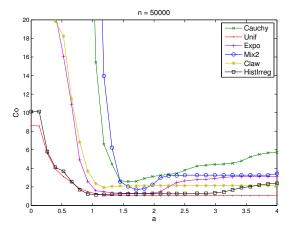
000 00000 00000	Introduction	Calibration for GL method	Method of comparison with the worse	Future works
	000	00000	00000	

Minimal penalty

Theorem (L., Massart, 2016)

Assume that $\|f\|_{\infty} < \infty$ and K good chosen, and choose $\mathcal{H} = \{e^{-k}, \lceil 2 \log \log n \rceil \le k \le \lfloor \log n \rfloor\}$. If $pen(h) = a \|K\|_2^2/(nh)$ with a < 1, then $\exists C(f, a, K) > 0$ s.t., for n large enough,

$$\mathbb{P}(\hat{h} \ge 3h_{\min}) \le C(\log n)^2 \exp(-(\log n)^2/C)$$


i.e. $\hat{h} < 3h_{\min}$ with high probability. Consequently

$$\liminf_{n \to \infty} \mathbb{E} \|\hat{f}_{\hat{h}} - f\|^2 > 0$$

Ccl: the method fails if a < 1, risk explosion

Introduction (Calibration for GL method	Method of comparison with the worse	Future works
000	00000	00000	

Simulations

Oracle constant C_0 as a function of a, for 6 examples of density, where $C_0 = \tilde{\mathbb{E}} \frac{\|\hat{f}_{\hat{h}} - f\|^2}{\min_{h \in \mathcal{H}} \|\hat{f}_h - f\|^2}$

About bandwidth selection for density estimation

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	00000	00000	

Issue of calibration

- \blacktriangleright visible explosion, and a_{opt} very close to the jump
- jump not always at a = 1

Not possible to choose a = 1 in practice \longrightarrow best idea: to detect the jump \hat{a}_J , and then $\hat{a} = 1.1 \hat{a}_J$ but not comfortable : optimal to close to minimal...

Another method to separate optimal penalty from minimal penalty:

$$\begin{cases} \hat{B}^{2}(h) = \sup_{h' \le h} \left[\|\hat{f}_{h} - \hat{f}_{h'}\|^{2} - \operatorname{pen}_{1}(h, h') \right]_{+} \\ \hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \hat{B}^{2}(h) + \operatorname{pen}_{2}(h) \right\}$$

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	00000	00000	

A degenerate case of the GL method

Theorem (L., Massart, Rivoirard, work in progress)

If $pen_1(h,h') = a \|K_h - K_{h'}\|^2 / n$ and $pen_2(h) = b \|K_h\|^2 / n$ then

- ▶ if a > 1 and b > 0: oracle inequality
- if $0 \le a < 1$ and $b < b_{crit}(a, K)$: $\hat{h} \approx h_{\min}$
- if $0 \le a < 1$ and $b > b_{crit}(a, K)$: oracle inequality

Csq: we can choose a small... and even a = 0! \hookrightarrow new method

$$\begin{cases} \hat{B}^2(h) = \sup_{h' \le h} \left[\|\hat{f}_h - \hat{f}_{h'}\|^2 \right] \approx \|\hat{f}_h - \hat{f}_{h_{\min}}\|^2 \\ \hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \hat{B}^2(h) + \operatorname{pen}_2(h) \right\} \end{cases}$$

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	000000	00000	

Introduction

Calibration for the Goldenshluger-Lepski method

Method of comparison with the worse

Description and link with other methods Results Conclusion

Future works

- * ロ ▶ * @ ▶ * 差 ▶ * 差 * の < @

Introduction	Calibration for GL method	Method of comparison with the worse	Future works
000	000000	● 0 000	

A new method for bandwidth selection (1/2)

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \| \hat{f}_h - \hat{f}_{h_{\min}} \|^2 + \operatorname{pen}(h) \right\}$$

Heuristic 1:

$$\hat{f}_{h_{\min}}(x) = \frac{1}{n} \sum_{i=1}^{n} K_{h_{\min}}(x - X_i) \xrightarrow[h_{\min} \to 0]{} \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}(x)$$
$$\Rightarrow \langle \hat{f}_h, \hat{f}_{h_{\min}} \rangle \xrightarrow[h_{\min} \to 0]{} \frac{1}{n} \sum_{i=1}^{n} \hat{f}_h(X_i)$$

$$\begin{split} \hat{h} &\approx \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \| \hat{f}_h \|^2 - \frac{2}{n} \sum_{i=1}^n \hat{f}_h(X_i) + \| \hat{f}_{h_{\min}} \|^2 + \operatorname{pen}(h) \right\} \\ \text{penalized least-squares contrast} \\ \text{method of Lerasle-Magalhães-Reynaud (2015)} \\ \text{Link with regression: } \hat{h} &= \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \| \hat{f}_h - Y \|_n^2 + \operatorname{pen}(h) \right\} \\ \end{split}$$

Introduction 000	Calibration for GL method 000000	Method of comparison with the worse 00000	Future works

A new method for bandwidth selection (2/2)

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \| \hat{f}_h - \hat{f}_{h_{\min}} \|^2 + \operatorname{pen}(h) \right\}$$

Heuristic 2:

$$B^{2}(h) \approx \|f_{h} - f_{h_{\min}}\|^{2} \approx \|\hat{f}_{h} - \hat{f}_{h_{\min}}\|^{2} - \frac{\|K_{h} - K_{h_{\min}}\|^{2}}{n}$$
$$\approx \|\hat{f}_{h} - \hat{f}_{h_{\min}}\|^{2} - \frac{\|K_{h}\|^{2}}{n} + 2\frac{\langle K_{h}, K_{h_{\min}} \rangle}{n} - \frac{\|K_{h_{\min}}\|^{2}}{n}$$

To minimize $\{B^2(h)+brac{\|K_h\|^2}{n}\}$ is equivalent to minimize

$$\|\hat{f}_{h} - \hat{f}_{h_{\min}}\|^{2} + \underbrace{2\frac{\langle K_{h}, K_{h_{\min}} \rangle}{n} + (b-1)\frac{\|K_{h}\|^{2}}{n}}_{\text{pen}(h)}$$

About bandwidth selection for density estimation

Introduction 000	Calibration for GL method 000000	Method of comparison with the worse $\circ \circ \bullet \circ \circ$	Future works

Minimal penalty

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \|\hat{f}_{h} - \hat{f}_{h_{\min}}\|^{2} + 2\frac{\langle K_{h}, K_{h_{\min}} \rangle}{n} + (b-1)\frac{\|K_{h}\|^{2}}{n} \right\}$$

Theorem 1 (L., Massart, Rivoirard, 2016)

Assume that $||f||_{\infty} < \infty$ and $||K||_{\infty} ||K||_1 n^{-1} \le h_{\min} \ll \log^{-2}(n)$ and $||f_{h_{\min}} - f||^2 = o(1)$ If b < 0, $\forall q > 0$, for n large enough,

 $\hat{h} \leq C(b)h_{\min}$ with probability $1 - n^{-q}$

and then $\liminf_{n\to\infty} \mathbb{E} \|\hat{f}_{\hat{h}} - f\|^2 > 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 000	Calibration for GL method 000000	Method of comparison with the worse $\circ \circ \circ \circ \circ \circ$	Future works

Oracle inequality

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left\{ \|\hat{f}_{h} - \hat{f}_{h_{\min}}\|^{2} + 2\frac{\langle K_{h}, K_{h_{\min}} \rangle}{n} + (b-1)\frac{\|K_{h}\|^{2}}{n} \right\}$$

Theorem 2 (L., Massart, Rivoirard, 2016)

Assume $||f||_{\infty} < \infty$ and $h_{\min} \ge ||K||_{\infty} ||K||_1/n$. Let $\epsilon \in (0, 1)$. If b > 0, $\forall x > 0$, with probability $1 - C_1 |\mathcal{H}| e^{-x}$

$$\|\hat{f}_{\hat{h}} - f\|^2 \le C_0(b) \min_{h \in \mathcal{H}} \|\hat{f}_h - f\|^2 + C_2 \|f_{h_{\min}} - f\|^2 + C_3 \frac{\|f\|_{\infty} x^3}{n}$$

with $C_0(b) = \begin{cases} b + \epsilon & \text{if } b > 1\\ 1 + \epsilon & \text{if } b = 1\\ 1/b + \epsilon & \text{if } 0 < b < 1 \end{cases}$

About bandwidth selection for density estimation

Introduction Calibr	ration for GL method	Method of comparison with the worse	Future works
000 00000	0	00000	

Conclusion

We just prove

 $b = 0 \qquad \text{pen}_{\min} = 2\frac{\langle K_h, K_{h_{\min}} \rangle}{n} - \frac{\|K_h\|^2}{n}$ $b = 1 \qquad \text{pen}_{\text{opt}} = 2\frac{\langle K_h, K_{h_{\min}} \rangle}{n}$

minimal different from the optimal: good news for calibration Examples: $pen_{opt} = pen_{min} * 2$ for rectangular kernel, $pen_{opt} = pen_{min} * \frac{2\sqrt{2}}{2\sqrt{2}-1}$ for Gaussian kernel

Simple to implement, less comparisons than for Lepski method: numerically faster (numerical experiments in progress...)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Introduction 000	Calibration for GL method 000000	Method of comparison with the worse 00000	Future works

Introduction

Calibration for the Goldenshluger-Lepski method

Method of comparison with the worse

Future works

・ロト ・ 個ト ・ ヨト ・ ヨト ・ ヨー ・ つへぐ

Introduction 000	Calibration for GL method 000000	Method of comparison with the worse 00000	Future works

Future works

multivariate case

further exploration of Goldenshluger-Lepski method

▶ other loss functions: Hellinger or L¹ loss (more appropriate for densities)

Introduction 000	Calibration for GL method	Method of comparison	with the worse	Future works
		_		
		and the second second	Report T	
-				
			- Mark	
	<u></u>	<u>_</u>		
	Contraction of the second	a contraction	- Carlos and a second	H.L.
			and the second s	
	4			
	The second	THE ST		
S.	Mary Carly			
			A. Star Care	

æ

▲日 → ▲圖 → ▲ 圖 → ▲ 圖 →